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1. Introduction 

*There has been considerable recent interest in 
solving large-scale optimization problems. Such 
problems arise in many specialties, for instance, 
multistage stochastic optimization, distributed 
model predictive control, transportation, 
telecommunication models, networks, and deep 
learning. More recently, the technology of big and 
fast computers favorable to parallel computations 
has helped a lot and encouraged many researchers 
to continue tackling larger and larger models. But it 
is still a challenging area where many real-world 
engineering problems are waiting for more and 
more bright ideas (classical or non-classical ones) to 
cope with their multi-millions decision variables. 
Basic references are Bertsekas and Tsitsiklis (1989) 
and Lasdon (1970), where the main motivation for 
decomposing appear separately, mainly: 

 
 Splitting into many weakly coupled subsystems. 
 Partitioning variable and/or constraint sets to 

isolate easier subproblems; decentralizing global 
optimal decisions among local decision levels. 

 Parallelizing or distributing computations on 
specific parallel computing device. 

 
Depending on the motivation, the way to split or 

partition the model may rely on different structural 
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properties of a given problem. It is well-known that 
the classical coordination functions are in general 
non-smooth and, therefore, hard to be optimized, 
turning the price to pay for decomposition too high 
for computational purposes. The computational cost 
is not the only drawback as the non-smoothness of 
the coordination function almost always implies that 
non-unique solutions are introduced in the 
subproblems, which reduce the possibility of 
decentralizing them completely. These are the 
reasons why some penalization ideas, regularization 
techniques like the proximal point method look 
attractive. Besides the possibility of treating non-
smooth convex coordination problems efficiently, 
the introduction of the quadratic penalty terms, for 
instance, in the subproblems, can impose unique 
solutions to guarantee decentralized procedures. 
Classical primal penalty quadratic methods (Fiacco 
and McCormick, 1990; Fletcher, 1975; Kort and 
Bertsekas, 1976; Polyak, 2001), when applied to 
large separable constrained models, lose the 
separability which allows decomposition of the 
subproblems' penalized objective. Indeed, this is 
removed by the presence of quadratic terms in the 
penalized potential functional. The same diagnostic 
can be reached by applying many other penalty 
schemes. Particularly, the Hyperbolic penalty 
method introduced and studied by Xavier (2001) 
and used in Melo et al. (2011; 2012) and Evirgen 
(2017).  

Motivated by the effective results obtained in 
Melo et al. (2011) to solve some difficult 
mathematical problems with complementarity 
constraints (MPCC) and those obtained in Evirgen 
(2017), where a nonlinear dynamic system was 
constructed using the hyperbolic penalty function 
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for a certain class of inequality constrained 
optimization problems. We aim to use this intriguing 
hyperbolic penalty function in order to develop a 
decomposition scheme favorable to parallel 
computations. Polyak (2001) proposed a nonlinear 
re-scaling algorithm based on the log-sigmoid 
functional, and he obtained some nice results and 
properties. This again motivated us to re-launch the 
use of the new hyperbolic functional (Xavier, 2001), 
which is twice continuously differentiable and is 
combining features of both exterior and interior 
penalty methods. Our approach consists in mixing 
the hyperbolic penalty algorithmic scheme with 
some recent decomposition algorithms developed by 
Hamdi et al. (1997), Hamdi and Mahey (2000) and 
Hamdi (2005a, 2005b). These decomposition class of 
methods known as separable augmented Lagrangian 
algorithms (SALA) can be derived from the resource 
directive sub-problems associated with the coupling 
constraints. A complete review of decomposition 
methods for convex and non-convex optimization 
minimization problems can be found in Hamdi and 
Mishra (2011). 

The paper is based upon the idea originally 
discussed by Hamdi et al. (1997), where the authors 
proposed a decomposable scheme that overcame the 
non-separability of the obtained augmented 
Lagrangian function. But here, we limit ourselves to 
propose a primal method based on the hyperbolic 
penalty functional far from augmented lagrangians 
where we have separable penalized subproblems.  

 This idea adds to the large number of 
publications that we find in the literature, aiming to 
build separable subproblems having strong 
legitimate theoretical properties. We limit ourselves 
to smooth convex cases, where some direct 
strategies have been proposed to exploit the inner 
structure of the penalty function and turn it into a 
separable one (see, for instance, the survey (Hamdi 
and Mishra, 2011) and references therein). 

The paper is organized as follows: In the next 
section, we present the hyperbolic penalty method of 
Xavier, followed by the proposed decomposition 
method. Section 4 contains the convergence analysis 
of the new algorithms. The last section contains 
some algorithmic issues and suggestions to extend 
the proposed algorithm. 

2. Hyperbolic penalty method 

Let 𝑓 be a convex real-valued function and let 

(𝑔1(𝑥),⋯ , 𝑔𝑝(𝑥))
⊤

 be finite concave real-valued 

functions on 𝑅𝑛 , and consider the convex 
programming problem:  
 
min
𝑥∈ℜ𝑛

{𝑓(𝑥)  ∶   𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1,𝑚}(𝐶). 

 
Using the Penalty function  

 

𝑃(𝑦, 𝛼, 𝜏) =
−tan(𝛼)

2
𝑦 + √(

tan(𝛼)

2
)
2
𝑦2 + 𝜏2. 

 

Alternatively, the hyperbolic penalty function 
may be put in a more convenient form:  

 

𝑃(𝑦, 𝜆, 𝜏) = −𝜆𝑦 + √𝜆2𝑦2 + 𝜏2,        𝜆 =
tan(𝛼)

2
, 

 
where, 𝜆 ⩾ 0 and 𝜏 ⩾ 0. The graphic representation 
of 𝑃(𝑦, 𝛼, 𝜏), as shown in Fig. 1, is a hyperbola with 
two asymptotes, a slant one forming an angle 𝜋 − 𝛼 
with the 𝑥-axis and a horizontal one. Also, the graph 
has 𝜏 as the 𝑦-intercept. 

Here are some properties of the function 
𝑃(𝑦, 𝛼, 𝜏) that will be used in this paper. All these 
properties are proved in Xavier (2001).  

 
Properties: 
 
• 𝑃(𝑦, 𝜆, 𝜏) is 𝑘-times continuously differentiable for 

any positive integer 𝑘 for 𝜏 > 0.  
• 𝑃(𝑦, 𝜆, 𝜏) is asymptotically tangent to the straight 

lines 𝑟1(𝑦) = −2𝜆𝑦   and   𝑟2(𝑦) = 0   for 𝜏 > 0.  
• 𝑃(𝑦, 𝜆, 0) = 0 for 𝑦 ≥ 0, 𝑃(𝑦, 𝜆, 0) = −2𝜆𝑦 for 𝑦 <
0.  

• 𝑃(𝑦, 𝜆, 𝜏) ⩾ −2𝜆𝑦,     for all 𝑦 ∈ ℜ, 𝜆 ≥ 0, 𝜏 ≥ 0.  
• 𝑃(0, 𝜆, 𝜏) = 𝜏 for 𝜏 ≥ 0 and 𝜆 ≥ 0.  
• 𝑃(𝑦, 𝜆, 𝜏) is: 
 
 A convex decreasing function of y for 𝜏 > 0 and 
𝜆 ≥ 0. 

 A convex non-increasing function of y for 𝜏 = 0 
and 𝜆 ≥ 0. 

 A convex function equal to 𝜏 for 𝜆 = 0.  
 
• For 𝜆𝑘+1 > 𝜆𝑘    and   𝜏 = 0 
 𝑃(𝑦, 𝜆𝑘+1, 𝜏) < 𝑃(𝑦, 𝜆𝑘 , 𝜏)     for     𝑦 > 0  
 𝑃(𝑦, 𝜆𝑘+1, 𝜏) = 𝑃(𝑦, 𝜆𝑘 , 𝜏)   for 𝑦 = 0  
 𝑃(𝑦, 𝜆𝑘+1, 𝜏) > 𝑃(𝑦, 𝜆𝑘 , 𝜏)   for 𝑦 < 0.  

 
• 𝑃(𝑦, 𝜆, 𝜏𝑘+1) < 𝑃(𝑦, 𝜆, 𝜏

𝑘) for all 𝑦 ∈ ℜ, 𝜆 >
0,    0 ≤ 𝜏𝑘+1 < 𝜏𝑘 .  

• 𝑚𝑎𝑥𝑦{𝑃(𝑦, 𝜆, 𝜏
0) − 𝑃(𝑦, 𝜆, 𝜏1)} = 𝜏0 − 𝜏1, and it 

occurs at 𝑦 = 0 for 0 ≤ 𝜏0 < 𝜏1. 

3. Hyperbolic decomposition algorithm (HDA) 

3.1. Model formulation  

In this section, we will build up a new hyperbolic 
decomposition algorithm (HDA) algorithm to solve 
too large scale convex inequality constrained 
programs with separable structure. We are 
concerned here with block separable nonlinear 
constrained optimization problems:  
 
min
𝑥∈ℜ𝑛

{𝐹(𝑥) = ∑
𝑝
𝑖=1 𝑓𝑖(𝑥𝑖): 𝑥 ∈ Ω, }(𝑆𝑃),  

 
where 𝑓𝑖: ℜ

𝑛𝑖 →    𝐼  − 2.5𝑝𝑡  𝑅    are all convex 
functions, and  
 

Ω = {𝑥 ∈ ℜ𝑛:∑

𝑝

𝑖=1

𝑔𝑖(𝑥𝑖) ≥ 0, } 
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is the convex set where 𝑔𝑖  are defined from ℜ𝑛𝑖 →

ℜ   for 𝑖 = 1, 𝑝, ∑
𝑝
𝑖=1 𝑛𝑖 = 𝑛.  

The above constraint is usually referred to as a 
coupling constraint. Along with this work, all the 
functions 𝑓𝑖, 𝑔𝑖  are 𝐶2 and we assume the following 
assumptions. 

 

 
Fig. 1: 𝑃(𝑦, 𝜆, 2): Orange 𝜆 = 0.5, Red 𝜆 = 1, Blue 𝜆 = 10, 

Green 𝜆 = 25 

Assumptions 1: 

A1: The optimal set 𝑋∗ of (𝑆𝑃) is nonempty and 
bounded.  
A2: The Slater’s condition holds, i.e.,  
 
∃�̅� ∈ ℜ𝑛: ∑

𝑝
𝑖=1 𝑔𝑖(�̅�𝑖) > 0, 𝑗 = 1,𝑚.  

3.2. New HDA 

To build our new decomposition algorithm, we 
follow the well-known resources allocation scheme. 
Since we aim to develop an algorithm to decompose 
large scale, structured optimization models, we 
thought about the iterative approach studied and 
developed by Hamdi et al. (1997), Hamdi (2005b), 
and Hamdi and Mishra (2011), the Separable 
Augmented Lagrangian Algorithm (SALA). To this 
goal, 𝑝 allocation vectors  

 
𝑦 ∈ 𝐴 = {𝑧 ∈    𝐼  − 2.5𝑝𝑡  𝑅 𝑝  | ∑

𝑝
𝑖=1 𝑧𝑖 = 0}  

 
are added in a such a way to get the equivalent 
problem†,  
 

 (𝑆𝑃𝑦)

{
 
 

 
 min     ∑

𝑝
𝑖=1 𝑓𝑖(𝑥𝑖)

𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡     𝑔𝑖(𝑥𝑖) + 𝑦𝑖 ≥ 0,     𝑖 = 1, 𝑝

𝑦 ∈ 𝐴       

𝑥𝑖 ∈    𝐼  − 2.5𝑝𝑡  𝑅 
𝑛𝑖 ,       𝑖 = 1, 𝑝,

  

 
to which we apply the Hyperbolic Penalty Method 
introduced previously with partial elimination of the 
constraints. In other words, for 𝜆 > 0, 𝜏 > 0, the 
potential function related to the problem (𝑆𝑃𝑦) is 

defined as follows:  
 
𝐹(𝑥, 𝑦, 𝜆, 𝜏) = ∑

𝑝
𝑖=1 𝑓𝑖(𝑥𝑖)  + ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆, 𝜏),     (1) 

                                                 
† If (𝑥∗, 𝑦∗) is an optimal solution to 𝑆𝑃𝑦 then 𝑥∗ is an optimal 

solution to (𝑆𝑃). 

where 𝑃(𝑎, 𝑏, 𝑐) = −𝑎 𝑏 + √𝑎2𝑏2 + 𝑐2. Thus it is 
clear that the functional 𝐹 is separable, i.e.,  
 
𝐹(𝑥, 𝑦, 𝜆, 𝜏) = ∑

𝑝
𝑖=1  𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆, 𝜏),  

 
where, 
 
𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆, 𝜏) = 𝑓𝑖(𝑥𝑖) + 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆, 𝜏).  
 

Thus, the Hyperbolic Penalty algorithm can be 
applied as follows:  

 
For any 𝜆, 𝜏 > 0, the following minimization 
problem, 
 
 (𝑥𝑘+1, 𝑦𝑘+1) → min

𝑦∈𝐴,    𝑥∈ℜ𝑛
𝐹(𝑥, 𝑦, 𝜆𝑘 , 𝜏𝑘)                               (2) 

 

and 
 
𝜆𝑘+1 = 𝑟 𝜆𝑘 ,    𝑟 > 1,        𝜏

𝑘+1 = 𝑞 𝜏𝑘 ,    0 < 𝑞 < 1.             (3) 
 

The minimization in Eq. 2 is done by alternating 
the minimization with respect to 𝑥, then followed by 
the one with respect to the allocation variable 𝑦. i.e., 
we fix 𝑦 = 𝑦𝑘  and find: 
 
𝑥𝑘+1 ∈ 𝐴𝑟𝑔min

𝑥
𝐹(𝑥, 𝑦𝑘 , 𝜆𝑘 , 𝜏𝑘) =

𝐴𝑟𝑔min
𝑥
∑𝑝𝑖=1 𝐹𝑖(𝑥𝑖 , 𝑦𝑖

𝑘 , 𝜆𝑘 , 𝜏𝑘).  

 
Then we can split the above minimization into 𝑝 
independent sub-problems with low-dimension. i.e., 
 
𝑥𝑖
𝑘+1 ∈ 𝐴𝑟𝑔min

𝑥𝑖
{𝑓𝑖(𝑥𝑖) + 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖

𝑘 , 𝜆𝑘 , 𝜏𝑘)} 

 
and now we fix 𝑥 = 𝑥𝑘+1 to solve for 𝑦𝑘+1  
 
𝑦𝑘+1 ∈ 𝐴𝑟𝑔  𝑚𝑖𝑛{∑

𝑝
𝑖=1 𝑃[𝑔𝑖(𝑥𝑖

𝑘+1) + 𝑦𝑖 , 𝜆𝑘 , 𝜏𝑘]: ∑
𝑝
𝑖=1 𝑦𝑖 =

0}.                                                                                                       (4) 
 

It is not hard to solve the minimization explicitly 
with respect to 𝑦 as shown in the following lemma, 
which gives us also an important remark about 
allocation variables.  
 
Lemma 1: According to Eq. 4, yk+1 satisfy  
 

𝑦𝑖
𝑘+1 = −𝑔𝑖(𝑥𝑖

𝑘+1) + 𝛿𝑘+1,    𝑖 = 1, 𝑝.                                     (5) 
 

where 𝛿𝑘+1 = 𝑝−1∑
𝑝
𝑖=1 𝑔𝑖(𝑥𝑖

𝑘+1). 

 
Proof: By writing the classical Lagrangian to Eq. 4  
 
𝐿𝑘(𝑦, 𝑡) = ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑥𝑖

𝑘+1) + 𝑦𝑖 , 𝜆, 𝜏) + 𝑡 ∑
𝑝
𝑖=1 𝑦𝑖   

 
where 𝑡 ∈    𝐼  − 2.5𝑝𝑡  𝑅 , and using the optimality, 
with the fact that ∑

𝑝
𝑖=1 𝑦𝑖

𝑘+1 = 0, we obtain after 

some direct calculations  
 

𝑡 = 𝜆 −
𝜆2(𝑔𝑖(𝑥𝑖

𝑘+1)+𝑦𝑖
𝑘+1)

√𝜏2+𝜆2 (𝑔𝑖(𝑥𝑖
𝑘+1)+𝑦𝑖

𝑘+1)
2
,                                                   (6) 
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which means that 𝜆 − 𝑡 does not depend on 𝑖 and has 

the same sign as 𝑔𝑖(𝑥𝑖
𝑘+1) + 𝑦𝑖

𝑘+1 for any 𝑖 = 1, 𝑝.  
Now, according to Eq. 6, we have:  
 

𝑔𝑖(𝑥𝑖
𝑘+1) + 𝑦𝑖

𝑘+1 =
𝜏(𝜆−𝑡)

𝜆√𝜆2−(𝜆−𝑡)2
,      𝑖 = 1, 𝑝,                             (7) 

 
and straightforwardly after summing both sides and 
using the definition of 𝛿𝑘+1 we reach  
 

(𝑝 𝛿𝑘+1)2 =
𝑝2 𝜏2 (𝜆−𝑡)2

𝜆2[𝜆2−(𝜆−𝑡)2]
,                                                                    (8) 

and after some obvious calculations, we obtain:  

 (𝜆 − 𝑡)2 =
𝜆4(𝑝 𝛿𝑘+1)

2

𝜆2(𝑝 𝛿𝑘+1)2+𝑝2𝜏2
,                                                                (9) 

 
and by plugging directly Eq. 9 in Eq. 7 and after some 
simplifications and using the fact that 𝜆 − 𝑡 and 𝛿𝑘+1 
has the same sign as 𝑔𝑖(𝑥𝑖

𝑘+1) + 𝑦𝑖
𝑘+1, we obtain 

directly  
 
𝑦𝑖
𝑘+1 = −𝑔𝑖(𝑥𝑖

𝑘+1) + 𝛿𝑘+1,    𝑖 = 1, 𝑝. 

  
Algorithm 1:  

   𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐  𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚  (𝐻𝐷𝐴):

𝑆𝑡𝑒𝑝  1:   𝑆𝑒𝑙𝑒𝑐𝑡   𝜏0 > 0, 𝜆0 > 0, 𝑦0 = (𝑦1
0, ⋯ , 𝑦𝑝

0),   𝑠. 𝑡   ∑

𝑝

𝑖=1

𝑦𝑖
0 = 0,    𝜖1 > 0, 𝜖2 > 0,

                          𝑟 > 1, 0 < 𝑞 < 1,    𝑘 = 0.

𝑆𝑡𝑒𝑝  2:   𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 ∶   𝑓𝑜𝑟  𝑎𝑛𝑦   𝑖 = 1, 𝑝

        𝑥𝑖
𝑘+1: = 𝑎𝑟𝑔 min

𝑥𝑖∈   𝐼  −2.5𝑝𝑡  𝑅 
𝑛𝑖
{𝑓𝑖(𝑥𝑖) − 𝜆𝑘  (𝑔𝑖(𝑥𝑖) + 𝑦𝑖

𝑘) + √𝜏𝑘
2 + 𝜆𝑘

2  (𝑔𝑖(𝑥𝑖) + 𝑦𝑖
𝑘)2} .

𝑆𝑡𝑒𝑝  3: 𝑆𝑡𝑜𝑝𝑖𝑛𝑔  𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎:  𝑆𝑡𝑜𝑝.
   𝐸𝑙𝑠𝑒 ∶   𝑔𝑜  𝑡𝑜  𝑠𝑡𝑒𝑝  4 

𝑆𝑡𝑒𝑝  4:   𝑈𝑝𝑑𝑎𝑡𝑒  𝑎𝑛𝑑  𝑔𝑜  𝑏𝑎𝑐𝑘  𝑡𝑜  𝑠𝑡𝑒𝑝  2:   

                                

{
 
 

 
 
𝑦𝑖
𝑘+1 = −𝑔𝑖(𝑥𝑖

𝑘+1) + 𝛿𝑘+1,    𝑖 = 1, 𝑝,      𝛿𝑘+1  =  
1

𝑝
∑

𝑝

𝑖=1

𝑔𝑖(𝑥𝑖
𝑘+1)

𝜆𝑘+1 = 𝑟 𝜆𝑘 ,    𝜏𝑘+1 = 𝑞 𝜏𝑘 .

 

  
 

4. Properties and convergence analysis 

For our analysis, we need some assumptions.  

 
Assumptions 2: 
 
A3: There is a pair (𝜆0, 𝜏0) such that: 

 
inf

𝑦𝑖,𝑥𝑖∈   𝐼  −2.5𝑝𝑡  𝑅 
𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆0, 𝜏0) = 𝐹𝑖

0 > −∞. 

 
A4: There is a value 𝜖 > 0 such that the set  

 

Ω𝜖 = {𝑥 ∈ ℜ
𝑛:∑

𝑝

𝑖=1

𝑔𝑖(𝑥𝑖) > −𝜖  }. 

 
is bounded.  
 

A5: The derivative of the functions 𝑓𝑖  and 𝑔𝑖 , 𝑖 = 1, 𝑝 
are bounded in the set Ω𝜖 . 

 
The following theorem shows the existence of the 

minimum of the function 𝐹(𝑥, 𝑦, 𝜆, 𝜏) and 
consequently for the functions 𝐹𝑖 . 

 
Proposition 1: If the conditions (A1)-(A5) hold, then 

there exists λ ≥ λ0 such that  

inf
𝑥∈   𝐼  −2.5𝑝𝑡  𝑅 𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏) = min
𝑥∈ℜ𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏) 

 

for all 𝜆 ⩾ 𝜆 and 0 ≤ 𝜏 ≤ 𝜏0, ∑
𝑝
𝑖=1 𝑦𝑖 = 0. 

 
Proof: We preferred to add it in the Appendix A of 
the paper.  
 
Proposition 2: If conditions (A1)-(A5) are satisfied, 

then there exists a value λ such that for all λ ≥ λ and 
0 ≤ τ ≤ τ0, the minimum point x(y, λ, τ) of the 
modified objective function F(x, y, λ, τ) is feasible.  
 

Proof: From prop 1, for 𝜆 ≥ 𝜆 there is �̃� ∈ Ω𝜖  such 
that: 
 
�̃�𝑖 ∈ argmin

𝑥𝑖
𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆, 𝜏). 

 
From the first-order optimality condition  
 
𝜕

𝜕𝑥𝑖
𝐹𝑖(�̃�𝑖 , 𝑦𝑖 , 𝜆, 𝜏) = 0 

 
hence, 
 
𝑑

𝑑𝑥𝑖
𝑓𝑖(�̃�𝑖) −

𝜕

𝜕𝑥𝑖
𝑃(𝑔𝑖(�̃�𝑖) + 𝑦𝑖 , 𝜆, 𝜏) ⋅ 𝑔′𝑖(�̃�𝑖) = 0, 
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which implies 
 

|
𝑑

𝑑 𝑥𝑖
𝑓𝑖(�̃�𝑖)| = |

𝜕

𝜕𝑥𝑖
𝑃(𝑔𝑖(�̃�𝑖) + 𝑦𝑖 , 𝜆, 𝜏)| |𝑔

′
𝑖
(�̃�𝑖)|.                  (10) 

 
From the properties of the hyperbolic penalty 
function 𝑃 for 𝑦 < 0,  
 
lim
𝜆→∞

𝑃(𝑦, 𝜆, 𝜏) = −∞, 

 
and since 𝑓′𝑖  and 𝑔′𝑖  are bounded on Ω𝜖  then there is 

𝜆̅̅ ⩾ 𝜆̅ such that Eq. 10 will be impossible unless 

𝑔𝑖(�̃�𝑖) + 𝑦𝑖 ≥ 0, ∀𝑖 = 1, 𝑝, and hence ∑
𝑝
𝑖=1 𝑔𝑖(�̃�𝑖) ≥

0, in other words, the optimal point �̃� will certainly 
be feasible. 

The next theorem will be similar to the result 
given in Xavier (2001), which shows a conditional 
convergence of a feasible minimum point sequence. 

 
Theorem 1: If conditions (A1)-(A5) are satisfied, 

and if limk→∞τ
k = 0 and λ ≥ λ then a convergent 

sub-sequence {xk} → x̃ will exist, and the limit of any 
of these sub-sequences is an optimal point.  

 

Proof: For any 𝜆 ≥ 𝜆 the point 𝑥𝑘 will be feasible and 
then for any point 𝑥∗ ∈ 𝑋∗ we have 
 
∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖

∗) ⩽ ∑
𝑝
𝑖=1 𝑓𝑖(𝑥𝑖

𝑘).                                                              (11) 

 

On the other hand, 𝑥𝑘 is a minimum point of 𝐹. Then, 
 

𝐹(𝑥𝑘 , 𝑦𝑘 , 𝜆, 𝜏) ⩽ 𝐹(𝑥∗, 𝑦𝑘 , 𝜆, 𝜏),      𝜆 ≥ 𝜆. 
 
Therefore,  
 
lim
𝑘→∞

𝐹(𝑥𝑘 , 𝑦𝑘 , 𝜆, 𝜏) ⩽ lim
𝑘→∞

𝐹(𝑥∗, 𝑦𝑘 , 𝜆, 𝜏) 

lim
𝑘→∞

∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖
𝑘) + ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑥𝑖

𝑘) + 𝑦𝑖
𝑘 , 𝜆, 𝜏) ⩽

lim
𝑘→∞

∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖
∗) + ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑥𝑖

∗) + 𝑦𝑖
𝑘 , 𝜆, 𝜏).  

 
Since lim𝑘→∞𝜏

𝑘 = 0 and from (𝑃1), 
 
lim
𝑘→∞

∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖
𝑘) ⩽ ∑

𝑝
𝑖=1 𝑓𝑖(𝑥𝑖

∗)  

 
by Eq. 11 we have: 

 
lim
𝑘→∞

∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖
𝑘) = ∑

𝑝
𝑖=1 𝑓𝑖(𝑥𝑖

∗).  

 
Since Ω is compact set then there exists a sub-
sequence of {𝑥𝑘} that will converge to �̃� ∈ 𝑋∗. 

5. Numerical study 

This section is devoted to some numerical tests 
where we study the numerical behavior of the HDA. 
The study will tackle the feasibility, optimality, and 
stability of this method with respect to the 
parameters involved. Furthermore, an extension of 
the HDA, the Proximal Hyperbolic Decomposition 
Algorithm (PHDA), described below, is tested. This 
study is completed by a brief comparison involving 

HDA, PHDA, and the well-known strong CVX tool for 
some Convex Programming models developed by 
S.T. Boyd and M.C Grant from Standford University 
(Grant and Boyd, 2020). CVX is a Matlab-based 
modeling system for constructing and solving some 
convex programs (CPs). CVX supports a number of 
standard problem types, including linear and 
quadratic programs, and it is mainly based on 
primal-dual interior-point techniques.  

In this section, we present some computational 
tests on the performance of the two presented 
algorithm in this paper for solving convex separable 
problems of such form:  
 
min{∑

𝑝
𝑖=1 𝑐𝑖  𝑥𝑖    ∶   ∑

𝑝
𝑖=1 𝑎𝑖𝑥𝑖

2 + 𝑏𝑖𝑥𝑖 + 𝑑 ≥ 0, 𝑥𝑖 ∈

ℜ𝑛𝑖}      𝑃(𝑛, 𝑝)  

 
where ∑

𝑝
𝑖=1 𝑛𝑖 = 𝑛, and  

 
min{𝑎1(𝑥1 − 0.5)

2 +∑𝑚𝑖=2 𝑎𝑖(𝑥𝑖 + 1)
2 + ∑𝑛𝑖=𝑚+1 𝑎𝑖(𝑥𝑖 −

1)2:  𝑔(𝑥) ≥ 0}      𝑄(𝑛,𝑚, 𝜌)  
 
where  
 
𝑔(𝑥) = 𝑏1(1 − 𝑥1) + ∑

𝑚
𝑖=2 𝑏𝑖  𝑥𝑖

2 + ∑𝑛𝑖=𝑚+1 𝑏𝑖(𝑥𝑖 −
1)2,  
 
and, 
 

𝑎𝑖 = 𝜌 −
𝜌2 − 1

𝜌(𝑛 − 1)
(𝑖 − 1),                                       

𝑏𝑖 = 𝜌 +
𝜌2−1

𝑛−1
(𝑖 − 1),    𝑖 = 1, 2,⋯ , 𝑛.  

 
These problems were generated randomly using 

MATLAB. Generator and the size of the considered 
problems vary from 10 to 1,000,000. The programs 
were written in MATLAB version R2018b.  

To solve the unconstrained minimization 
problems in Step 2 of Algorithms (HDA) and (PHDA), 
we used "fminunc" function in MATLAB (Coleman et 
al., 1999), amending its default setting to apply the 
Quasi-Newton method. In addition, the CVX employs 
a primal-dual interior-point algorithm (Grant and 
Boyd, 2014; 2020). 

5.1. Algorithmic considerations 

 In practice, the penalty parameters 𝜏, 𝜆 play a 
fundamental role in the behavior and efficiency of 
the proposed algorithms of type HDA and in general 
for any algorithms based on penalization and or on 
augmented (modified) Lagrangian. These 
parameters can be used to reach some accepted 
feasibility of the iterates. In order to avoid the case 
where 𝜆 becomes too large, we have fixed an upper 
bound 𝜆𝑚𝑎𝑥 . We have used convenient stopping 
criteria, which are similar to those used by Breitfeld 
and Shanno (Breitfeld and Shanno, 1996). This 2-
parameters penalization depends on two positive 
parameters 𝜆 and 𝜏 which proceeds as follows: 
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• In the initial phase of the process, 𝜆 increases, 
causing a significant increase of the penalty at 
infeasible points, while a reduction in penalty is 
observed for points inside the feasible region. 
This way, the search is directed to the feasible 
region since the goal is to minimize the penalty.  

• From the moment that a feasible point is 
obtained, the second parameter 𝜏 decreases.  
 

Now, we propose to update 𝜆 and 𝜏 according to 
the following scheme  
 

{
𝜆𝑘+1
𝑖 = 𝑟 𝜆𝑘

𝑖 ,    𝜏𝑘+1
𝑖 = 𝜏𝑘

𝑖  𝑖𝑓   𝑔𝑖(𝑥𝑖
𝑘+1) < 0

𝜆𝑘+1
𝑖 = 𝜆𝑘

𝑖 ,    𝜏𝑘+1
𝑖 = 𝑞 𝜏𝑘

𝑖  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  

 

where 𝑟 > 1 and 0 < 𝑞 < 1. 

5.2. HDA Performances 

To evaluate the performance of implementable 
versions of HDA, we have presented in Tables 1-2 
some partial results at each iteration with the 
corresponding given data and parameters. We have 
gathered the feasibility and the variations in the 
objective function at each iteration. Table 3 gives 
iterations number, feasibility, the variations in the 
objective function, and the needed time of 

computations for different sizes of model 𝑃(𝑛, 𝑝). 
Furthermore, Table 2 presents the changes in the 
parameter 𝜏 at each iteration (Note that the 
parameter 𝜆 = 10 is fixed). 

 
Table 1: HDA for 𝑃(100,2), 𝜆0 = 10 and 𝜏0 = 1 

Iter Feasibility |𝐹(𝑥(𝑘+1)) − 𝐹(𝑥𝑘)| 
1 4.1936e-01 1.8552e+01 
2 4.2075e-02 3.7145e-01 
3 4.2092e-03 3.7156e-02 
4 4.2438e-04 3.7119e-03 
5 5.7679e-05 3.5766e-04 
6 8.1032e-06 4.8575e-05 
7 1.1651e-06 6.8266e-06 
8 6.7084e-08 1.0781e-06 
9 4.3774e-09 6.1283e-08 

10 1.0977e-09 3.2056e-09 

 
Table 2: Algorithm HDA for 𝑃(500,500), 𝜆0 = 10 and 𝑞 =

0.5 
Iter 𝜏 𝜆 |𝐹(𝑥(𝑘+1)) − 𝐹(𝑥𝑘)| Feasibility 

1 2.5 10 35.105 264.99 
2 1.25 10 21.804 264.23 
3 0.625 10 77.689 180.41 
⋮ ⋮ ⋮ ⋮ 

17 3.8147e-05 10 0.0075591 0.014325 
18 1.9073e-05 10 0.0037705 0.0072049 
19 9.5367e-06 10 0.0018808 0.0036412 
⋮ ⋮ ⋮ ⋮ 

36 7.276e-11 10 2.404e-08 4.4237e-08 
37 3.638e-11 10 1.0975e-08 2.2281e-08 
38 1.819e-11 10 5.3219e-09 1.1487e-08 

 
Table 3: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 10 and 𝜏0 = 1 

𝑛 𝑝 Iter Feasibility |𝐹(𝑥(𝑘+1)) − 𝐹(𝑥𝑘)| CPU Time 

5000 250 46 6.4984e-09 6.7364e-09 25.1389 
5000 5000 51 1.8737e-08 7.0277e-09 382.717 

10000 250 45 1.1804e-08 8.4542e-09 33.5606 
10000 1000 48 1.1603e-08 5.4056e-09 115.541 
12500 2500 50 1.1785e-08 4.9536e-09 245.936 
12500 2500 49 1.7593e-08 9.9312e-09 249.963 
15000 1500 48 1.7505e-08 8.009e-09 167.658 
15000 5000 51 1.56472-08 6.8158-e9 470.214 
25000 5000 51 1.5386e-08 8.8085e-09 520.194 
50000 10000 53 8.422e-09 7.0049e-09 1067.88 
75000 25000 54 1.4206-e08 9.3169e-09 2131.75 

150000 10000 52 1.566-e08 5.8644e-09 1081.3 
200000 10000 52 1.7434e-08 6.8612e-09 1116.12 
300000 15000 51 2.7308e-08 9.3423e-09 1149.3 
500000 20000 55 5.9431e-09 3.5798e-09 2378.06 

 

In Tables 4-8, we have studied the influence of 
the penalty parameters 𝜏 and 𝜆. We have used 
different initial values of these parameters, and some 
conclusions could be drawn according to these 
tables. In general the case 𝜏0 = 0.01, 0.5, 1 are 
better than 𝜏0 = 10 and more, but one has to be 
careful because sometimes when 𝜆𝑘  is so large, 
feasibility is rapidly reached, but optimality does not 
follow at the same speed (Table 7). 

 
 

Table 4: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 1, 𝜏0 = 25 
𝑛 𝑝 𝑟 𝑞 Iter CPU Time 

100 10 2 0.05 9 0.78667 
100 10 2 0.1 14 1.10219 
100 10 2 0.005 8 0.805029 

100 10 √10 0.8 95 2.96916 

100 10 √10 0.05 11 0.981767 

250 25 √10 0.8 95 7.61844 

250 25 √10 0.05 11 1.66404 

250 50 2 0.5 36 3.68528 
2500 250 3 0.5 40 25.7556 

Table 5: Time (in sec): 𝐻𝐷𝐴  →   𝜏0 = 100 
Pbs 𝜆0 = 1 𝜆0 = 5 𝜆0 = 10 𝜆0 = 25 𝜆0 = 50 

𝑃(100,100) 0.3149 0.2802 0.2798 0.2123 0.2143 
𝑃(250,250) 0.5521 0.5828 0.5122 0.4598 0.4876 
𝑃(500,500) 9.72063 9.13909 9.1225 9.25871 10.3971 
𝑃(1000,1000) 32.7545 32.7647 32.8279 33.0139 34.4139 
𝑃(2500,2500) 274.599 272.765 260.295 249.205 251.668 

 

Remark 1: We observed that in the case where λ0 
was chosen less than 1, the method may reach 

rapidly feasible points but stuck far from the optimal 
value, or it diverges. For instance, for P(500,5) with 
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τ0 = 100, (HDA) diverges when λ0 = 0.1 and λ0 =
0.7. In addition, for λ0 = 0.9, the algorithm stopped 
after reaching a feasible point with fobj = −111.981 

while the optimal objective obtained by the software 
CVX was fCVX

∗ = −112.08. But, when λ = 1, CVX beats 
HDA lightly in time, and we get: fobj

∗ = −112.08 =

fCVX
∗  in 1.80012 sec, where CVX needs 1.59872 sec. 

The same conclusions were drawn for the following 
case (P(50,50), τ0 = 10) (Table 6). 
 

𝜆0 = 0.7 ⟶ 𝑓𝐻𝐷𝐴
∗ = −19.7908,    𝑓𝐶𝑉𝑋

∗ =
−26.9991,    𝑇𝑖𝑚𝑒 = 1.69784,  
 

and for 𝜆0 = 1, we get:  
 

𝑓𝐻𝐷𝐴
∗ = −26.9987,    𝑇𝑖𝑚𝑒 = 4.08835,   
  𝑓𝐶𝑉𝑋

∗ = −26.9991,    𝑇𝑖𝑚𝑒 = 1.69784.  
 

In Tables 8 and 9, we tested problems 𝑄(𝑛,𝑚, 𝜌) for 
different dimensions from 100 to 12500 variables. 
The obtained results show the efficiency of HDA with 
respect to the CPU time used to reach convergence. 

One may observe that the values of 𝜆0 are not 
influencing the CPU-Time heavily. Except when the 
number of variables is more than 5000, we observed 
that when 𝜆0 is greater of equal than 100 HDA is 
faster than the other tested cases (Tables 8 and 9). 
 

Table 6: Time (in sec): 𝐻𝐷𝐴  →   𝜏0 = 100 

Pbs 
𝜆0
= 0.05 

𝜆0
= 0.01 

𝜆0 = 0.1 𝜆0 = 0.5 

𝑃(500,5) Div Div Div Div 
Pbs 𝜆0 = 0.7 𝜆0 = 0.9 𝜆0 = 1 𝜆0 = 1.5 

𝑃(500,5) Div 
almost 

cv 
cv (1.80012 

sec) 
cv (4.0392 

sec) 

 
 

Table 7: CPU Time: 𝐻𝐷𝐴  →   𝜏0 = 0.1 

Pbs  
𝜆0
= 100 

𝜆0
= 250 

𝜆0
= 500 

𝜆0
= 1000 

𝜆0
= 2000 

𝑃(1000,1000)  div div div div div 

𝑃(1500,1500)  
21.802

4 
22.025

3 
21.395

2 
26.709

3 
24.880

5 

𝑃(2500,2500)  
111.79

3 
div div div div 

 
 

Table 8: Time (in sec): 𝐻𝐷𝐴  →   𝜏0 = 1 
Pbs 𝜆0 = 100 𝜆0 = 250 𝜆0 = 500 𝜆0 = 1000 𝜆0 = 2000 

𝑄(100,1,1) 0.294983 0.258932 0.252127 0.290235 0.264605 
𝑄(100,50,1) 0.291264 0.247257 0.234184 0.262379 0.24013 
𝑄(500,150,1) 0.914938 0.881906 0.905574 0.91685 0.959121 
𝑄(500,100,1/2) 1.11858 1.1027 1.05881 1.13897 1.32782 
𝑄(1000,800,1/4) 0.629116 0.592817 0.619653 0.64378 0.657695 
𝑄(5000,2,1) 3.54268 3.65463 4.47767 4.16171 4.4505 

𝑄(8000,3500,1) 4.8168 4.70235 4.54321 5.58043 5.0586 
𝑄(12500,5000,1) 8.06193 6.75195 6.9635 7.0534 6.99595 

 
Table 9: CPU Time for 𝐻𝐷𝐴  →   𝜏0 = 1 

Problems 𝜆0 = 1 𝜆0 = 5 𝜆0 = 10 𝜆0 = 20 𝜆0 = 30 𝜆0 = 50 
𝑄(100,50,1) 0.978355 0.77753 0.708556 0.747519 0.792013 0.814627 
𝑄(500,150,1) 1.27856 1.17787 1.14185 1.28701 1.33009 1.40368 
𝑄(500,100,1/2) 1.81536 1.13002 1.83701 1.30857 1.60893 1.9679 
𝑄(1000,800,1) 0.757987 0.617783 0.560985 0.542147 0.546702 0.5657 
𝑄(5000,1,1) 3.51629 3.73427 3.74421 3.89665 4.29453 4.41673 

𝑄(8000,3500,1) 10.2324 11.8915 5.95551 4.19212 4.83697 5.16421 
𝑄(12500,5000,1) 13.7405 21.0406 11.5494 9.1961 8.82265 8.50312 

 

In the following Tables 10 and 11, we show that 
sometimes, we may face the influence of other 
internal parameters. For instance, the factors (𝑞, 𝜌) 
to increase and decrease the 𝜆 and 𝜏 respectively. 
According to many tests, feasibility is not altered, but 
the obtained objective function values may be 
unstable. This is due to the fast feasibility that stops 
the penalization effect of the algorithm and may 
cause slow convergence or produce some jumps 
around the optimal solution. Table 12, shows the 
CPU Time needed to solve large scale problems 
reaching 106 variables. 

5.3. Extension and comparison 

In order to increase the stability of the HDA and 
enrich it with some nice properties, we propose here 
to mix the proximal point technique (Rockafellar, 
1976) with our (HDA). 

In other words, we add a quadratic term 
1

2𝑐
∥ 𝑥 −

𝑥𝑘 ∥2 to the hyperbolic penalty function. Thus, it is 
an easy exercise to extend the convergence analysis 

in Section 4 for our proximal hyperbolic 
decomposition algorithm. 

 
Table 10: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 10, 𝜏0 = 1 

𝑛 𝑝 𝑟 𝑞 𝑓𝑜𝑏𝑗 

50 50 √8 0.6 -17.9542 

50 50 √12 0.1 -17.2152 

50 50 √8 0.05 -16.7776 

 
Table 11: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 10, 𝜏0 = 1 

𝑛 𝑝 𝑟 𝑞 𝑓𝑜𝑏𝑗 

100 100 √8 0.6 -40.5734 

100 100 √12 0.1 -41.158 

100 100 √8 0.05 -40.3244 

 

Table 12: CPU Time: 𝐻𝐷𝐴 for 𝑃(𝑛, 𝑝) 

𝑛 𝑝 
CPU 
Time 

Number of Variables per sub-
problem 

50000 100 671.596 500 
60000 1,000 286.759 60 
70000 1,000 430.534 70 
90000 1,000 468.946 90 

100000 1,000 547.154 100 
1000000 5,000 4623.25 200 
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Algorithm 2: 

𝑃𝑟𝑜𝑥𝑖𝑚𝑎𝑙  𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐  𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚  (𝑃𝐻𝐷𝐴):

𝑆𝑡𝑒𝑝  1:   𝑆𝑒𝑙𝑒𝑐𝑡   𝜏0 > 0, 𝜆0 > 0, 𝑦
0 = (𝑦1

0, ⋯ , 𝑦𝑝
0),   𝑠. 𝑡   ∑

𝑝
𝑖=1 𝑦𝑖

0 = 0,    𝜖1 > 0, 𝜖2 > 0,

                          𝑟 > 1, 0 < 𝑞 < 1, 𝑐 > 0,    𝑘 = 0.

𝑆𝑡𝑒𝑝  2:   𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒:  𝑓𝑜𝑟  𝑎𝑛𝑦   𝑖 = 1, 𝑝

        𝑥𝑖
𝑘+1: = 𝑎𝑟𝑔 min

𝑥𝑖∈ℜ
𝑛𝑖
{𝑓𝑖(𝑥𝑖) − 𝜆𝑘  (𝑔𝑖(𝑥𝑖) + 𝑦𝑖

𝑘) + √𝜏𝑘
2 + 𝜆𝑘

2  (𝑔𝑖(𝑥𝑖) + 𝑦𝑖
𝑘)2 +

1

2𝑐
(𝑥𝑖 − 𝑥𝑖

𝑘)2} .

𝑆𝑡𝑒𝑝  3:   𝐼𝑓       𝑣1 ≤ 𝜖1  , 𝑣2 ≤ 𝜖2,           𝑤ℎ𝑒𝑟𝑒   

        𝑣1 = −𝛿
𝑘+1,

                                        𝑣2 = |𝑓(𝑥
𝑘) − 𝑓(𝑥𝑘+1)|.

   𝑆𝑡𝑜𝑝.   
   𝐸𝑙𝑠𝑒:  𝑔𝑜  𝑡𝑜  𝑠𝑡𝑒𝑝  4 

𝑆𝑡𝑒𝑝  4:   𝑈𝑝𝑑𝑎𝑡𝑒  𝑎𝑛𝑑  𝑔𝑜  𝑏𝑎𝑐𝑘  𝑡𝑜  𝑠𝑡𝑒𝑝  2:   

                                {
𝑦𝑖
𝑘+1 = −𝑔𝑖(𝑥𝑖

𝑘+1) + 𝛿𝑘+1,    𝑖 = 1, 𝑝.

𝜆𝑘+1 = 𝑟 𝜆𝑘 ,    𝜏𝑘+1 = 𝑞 𝜏𝑘 .

  

  
 

As it was done for HDA, to evaluate the 
performance of implementable versions of PHDA, 

Tables 13 and 14 present some partial results per 
iteration.  

 
Table 13: Time (in sec): 𝑃𝐻𝐷𝐴  →   𝜏0 = 1, 𝑐0 = 10,    ∗∗↪  𝑙𝑜𝑐.  𝑚𝑖𝑛 

Problems 𝜆0 = 100 𝜆0 = 250 𝜆0 = 500 𝜆0 = 1000 𝜆0 = 2000 
𝑄(100,1,1) 1.44611 1.5348 1.43017 1.40501 1.50096 
𝑄(100,50,1) 1.46166 1.37706 1.45547 1.43519 1.38023 
𝑄(500,150,1) 1.70518 1.69838 1.73651 2.114 1.88389 
𝑄(500,100,1/2) 1.86011 2.51599 1.83019 2.23843 1.32782 
𝑄(1000,800,1/4) ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 
𝑄(5000,1,1) 22.1233 22.2789 18.0528 15.4161 20.5188 

𝑄(8000,3500,1) 82.2186 100.744 131.566 192.106 297.834 
 

Table 14: Comparison: 𝜆0 = 0.5, 𝜏0 = 0.001 
  HDA PHDA 
𝑛 𝑝 𝐹𝑣𝑎𝑙 Time 𝐹𝑣𝑎𝑙 Time 

7500 75 -2322.71 10.2137 -2320.62 34.0168 
7500 25 -2045.8 21.3731 -2044.85 54.4529 
5000 1000 -1293.92 38.2184 -1292.55 41.1541 
2500 50 -672.162 8.05189 -672.393 10.8952 
1500 50 -283.072 5.68878 -283.237 8.1505 
1000 500 -327.637 35.5733 -327.95 38.2991 
500 500 -221.349 30.1621 -221.847 32.6024 
500 10 -148.462 2.18094 -148.318 3.81574 
100 10 -18.2256 1.01365 -18.1856 2.02456 

 

In Tables 13-18, we compared the three 
algorithms on the same set of problems with 
different dimensions. We focused on the role of 
different parameters that produce nice results. 

Remark 2: 

• CVX for the above problems got many problems 
with memory, and sometimes it reached only 
feasible solutions. For large dimensions, CVX 
generally did not give good results. But for 
dimensions less than 5000, CVX is very efficient 
and beats HDA and its proximal version, as shown 
in Table 17.  

• PHDA efficiency is closely related to HDA, but by 
tuning the proximal parameter 𝑐, we observed that 
PHDA is faster than HDA for solving problems 
𝑄(𝑛,𝑚, 𝜌) as it is shown in Table 18. Not easy to 

understand, the inverse happened for problems 
𝑃(𝑛, 𝑝) (Table 14). In general, we expected more 
stability around the optimal solution, but we think 
that the hyperbolic penalty term is dominant 
during the calculations, and the proximal term is 
unable to play its role as it should be. This situation 
is related to the proximal parameter 𝑐 which needs 
some careful tuning in order to avoid any 
perturbations. 

6. Conclusion 

In this paper, we were interested in the 
development of the Hyperbolic Decomposition 
Algorithm (HDA) favorable to parallel computations. 
The main challenge was to overcome the non-
separability of the obtained hyperbolic penalty 
function. The algorithm converges under some 
classical conditions and the nice properties of the 
hyperbolic functional. We ended our paper by a 
numerical study, where we discussed the behavior of 
the (HDA), its parameters’ influence. In addition, we 
proposed a regularized version of HDA, the PHDA 
and we compared it to (HDA) and to a very strong 
algorithm CVX (Grant and Boyd, 2014). Since the 
(HDA) is mainly based on a penalization, so the 
penalty parameter influence is well-known and is 
shown in the numerical part. (HDA) can be made 
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faster if we could program it on parallel processors machines.  
 

Table 15: Comparison of HDA with CVX for 𝜆0 = 0.5, 𝜏0 = 0.001 and 𝑝 = 1 
 HDA CVX  
𝑛 𝐹𝑣𝑎𝑙 Time 𝐹𝑣𝑎𝑙 Time |𝐹𝑣𝑎𝑙𝑎𝑙𝑔1 − 𝐹𝑣𝑎𝑙𝐶𝑉𝑋| 

100 -2.9856e+01 3.77 -3.0389e+01 2.47 5.3307e-01 
200 -3.6411e+01 3.81 -3.6414e+01 1.93 3.4272e-03 
500 -1.2000e+02 17.68 -1.2124e+02 4.76 1.2458e+00 
800 -3.5445e+02 35.33 -3.5503e+02 8.90 5.7573e-01 

1000 -5.8513e+02 47.09 -5.8579e+02 10.85 6.6386e-01 
1500 -4.8653e+02 100.89 -4.8969e+02 24.78 3.1535e+00 

 
Table 16: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 1, 𝜏0 = 25 

𝑛 𝑝 𝑟 𝑞 Iter 
HDA-CPU 

Time 
CVX-CPU 

Time 
100 10 2 0.05 9 0.78667 5.88306 
100 10 2 0.1 14 1.10219 5.87564 
100 10 2 0.005 8 0.805029 6.94072 
100 10 √10 0.8 95 2.96916 4.27314 

100 10 √10 0.05 11 0.981767 6.03685 

250 25 √10 0.8 95 7.61844 6.07923 

250 25 √10 0.05 11 1.66404 7.13811 
250 50 2 0.5 36 3.68528 4.49324 

2500 250 3 0.5 40 25.7556 14.2906 

 

Table 17: Comparison of HDA with CVX for 𝜆0 = 0.5, 𝜏0 =
0.001 and 𝑝 = 1 

 HDA CVX  
𝑛 𝐹𝑣𝑎𝑙 Time 𝐹𝑣𝑎𝑙 Time Comments 

7500 -2499.11 498.877 1524.58 45.07 CVX Div. 
5000 -1095.96 209.074 3780.12 30.426 CVX Div. 
2500 9.457 52.431 681.357 14.148 CVX Div. 
1500 -631.604 19.5159 -631.604 10.3011  
100 -286.232 9.833 -286.232 7.187  
800 308.033 6.719 308.033 8.203  
500 -134.375 3.802 -134.375 5.602  

 

  
Table 18: HDA, MHDA, and CVX for 𝜆0 = 100, 𝜏0 = 0.1, 𝑐𝑜 = 10, and 𝑝 = 1 Problems 𝑄(𝑚, 𝑛) with 𝜌 = 1 

  HDA  CVX  PHDA  
𝑛 𝑚 Fval Time 𝐹𝑣𝑎𝑙 Time 𝐹𝑣𝑎𝑙 Time 

100 2 0.793871 6.58139 0.793871 15.8529 0.793871 2.80084 
500 100 78.9603 0.876856 78.9603 7.51149 78.9603 1.20662 

1000 250 209.408 2.19094 209.408 12.1679 209.408 1.95086 
1500 750 661.848 5.38192 661.848 18.1677 661.848 3.591 
2500 1000 892.215 16.1945 NaN * 892.215 10.9551 
5000 2500 2296.45 48.5921 NaN * 2296.45 26.1938 
7500 4000 3718.64 106.094 NaN * 3718.64 69.8502 

10000 5000 4672.2 190.278 * * 4672.2 97.6716 
12500 4000 3718.64 346.232 * * 3718.64 233.032 
20000 8000 7547.61 3209.84 * * 7547.61 4256.93 

 
We tested a problem with one million variables 

subject to 5000 constraints in less than 4625 sec 
(Table 12). According to our experience with these 
type of algorithms, we think that a primal-dual 
version of (HDA) will be more stable and gives better 
results. A forthcoming paper will be devoted to the 
study of the performance of the Primal-Dual 
Hyperbolic Decomposition Algorithm with some 
comparisons with some well-known algorithms in 
literature as the Alternating Direction Multipliers 
Method (ADMM) (Hamdi and Mishra, 2011) and the 
Separable Augmented Lagrangian Algorithm 
(SALA)(Hamdi, 2005b). Particular efforts should be 
made to understand the interaction between the 
three parameters within the Proximal version of 
HDA. 

Also, since (SALA) showed efficiency to reach nice 
local extrema, we believe that HDA and PHDA can 
also be efficient when solving some non-convex 
large-scale optimization problems. 

Appendix A: Sub-problems solvability 

Proposition 3: If the conditions (A1)-(A5) hold, then 

there exists λ ≥ λ0 such that: 
 
inf
𝑥∈ℜ𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏) = min
𝑥∈ℜ𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏) 

 

for all 𝜆 ≥ 𝜆 and 0 ⩽ 𝜏 ≤ 𝜏0, ∑
𝑝
𝑖=1 𝑦𝑖 = 0. 

Proof: Let 𝜏1 ∈    𝐼  − 2.5𝑝𝑡  𝑅  such that 𝜏0 > 𝜏1. By 
using 𝑃8 and 𝜆0 ≥ 0  
 
𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆

0, 𝜏0) − 𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆
0, 𝜏1) = 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆

0, 𝜏0) −
𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆

0, 𝜏1)  
⩽ 𝜏0 − 𝜏1                      (12) 
⩽ 𝜏0. 
 

Using (A3) and Eq. 12, we get  
 
𝐹𝑖
0 ⩽ 𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆

0, 𝜏0) ≤ 𝜏0 + 𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆0, 𝜏), ∀𝜏 ∈ [0, 𝜏0],  
 

then  
 
𝐹𝑖
0 − 𝜏0 ⩽ 𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆0, 𝜏) = 𝑓𝑖(𝑥𝑖) + 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆0, 𝜏)   

               (13) 
 

where, 𝜏 ∈ [0, 𝜏0]. Now, let 𝑧 ∈ Ω be a feasible point, 
and by condition (A1) and (A4), the set Ω is compact, 
and since 𝑓𝑖  are all continuous, then they attain their 
maximum value on the set Ω. Hence,  
 
𝐹(𝑧, 𝑦, 𝜆, 𝜏) = ∑𝑝𝑖=1 𝑓𝑖(𝑧𝑖) + ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖 , 𝜆, 𝜏)

⩽ ∑𝑝
𝑖=1 𝑓𝑖(𝑧𝑖

0) + ∑
𝑝
𝑖=1 𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖 , 𝜆, 𝜏)

  

 

where 𝐹(𝑧0) = ∑
𝑝
𝑖=1 𝑓𝑖(𝑧𝑖

0) is the maximum value of 

𝐹 on Ω. 

Let 𝑦𝑖
𝑧 = −𝑔𝑖(𝑧𝑖) +

1

𝑝
∑𝑝𝑖=1 𝑔𝑖(𝑧𝑖), then using 𝑃1 

and 𝑃3, we have for 𝜆 > 0,  
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𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖
𝑧, 𝜆, 𝜏) < 𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖

𝑧 , 0, 𝜏) = 𝜏 
 

for 𝜏 > 0. For 𝜏 = 0, 𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖
𝑧 , 𝜆, 𝜏) = 0 = 𝜏 

since 𝑔𝑖(𝑧𝑖) + 𝑦𝑖
𝑧 > 0. 

Hence, 
 
𝐹(𝑧, 𝑦𝑧 , 𝜆, 𝜏) ⩽ ∑

𝑝
𝑖=1 𝑓𝑖(𝑧𝑖

0) + 𝜏𝑝.                                           (14) 

 

On the other hand, if 𝑤 is not in the set Ω𝜖 , i.e., 
∑𝑝𝑖=1 𝑔𝑖(𝑤𝑖) ≤ −𝜖. Then: 
 
𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) = 𝑓𝑖(𝑤𝑖) + 𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏). 
 

If 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 ≥ 0 then 𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏) > 0 
and we conclude: 
 
𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) > 𝑓𝑖(𝑤𝑖).                                                                     (15) 
 

Also, if 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 < 0, then from 𝑃1 and 𝑃4, we 
get  
 
𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏) > −2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖), 
 

and thus, 
𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) > 𝑓𝑖(𝑤𝑖) − 2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖).                             (16) 
 

For the other side, using 𝑃3, if 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 ≥ 0, we 
have: 
 
𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏) < 𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 0, 𝜏) = 𝜏 
 

and if 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 < 0, it is easy to show that: 
 
𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏) ≤ −2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) + 𝜏. 
 

So, for 0 ⩽ 𝜏 ≤ 𝜏0  
 
𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆0, 𝜏) = 𝑓𝑖(𝑤𝑖) + 𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆0, 𝜏)  
⩽ 𝑓𝑖(𝑤𝑖) +

{

𝜏0 𝑖𝑓 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 ⩾ 0

−2𝜆0(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) + 𝜏0 𝑖𝑓 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 < 0.
             (17) 

 

Therefore, using the above results: 
 

• If 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 ≥ 0 from Eq. 15 to Eq. 17  
 
𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ⩾ 𝐹𝑖

0 − 2𝜏0 − 2(𝜆 − 𝜆0)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖).      (18) 

 
• If 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 < 0 then from Eq. 16 and Eq. 18  

  
  

𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ⩾ 𝑓𝑖(𝑤𝑖) − 2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖).

⩾ 𝑓𝑖(𝑤𝑖) − 2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) − 2𝜆0(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) + 2𝜆0(𝑔𝑖(𝑤𝑖) + 𝑦𝑖)

≥ 𝑓𝑖(𝑤𝑖) − 2𝜆0(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) + (2𝜆0 − 2𝜆)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖)

⩾ 𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆0, 𝜏) − 𝜏0 + (2𝜆0 − 2𝜆)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖)

  

  
 

Using Eq. 13, we have: 
 
𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ⩾ 𝐹𝑖

0 − 2𝜏0 − 2(𝜆 − 𝜆0)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖).      (19) 

 
In general, using Eq. 17 and Eq. 18  
 
𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ≥ 𝐹𝑖

0 − 2𝜏0 − 2(𝜆 − 𝜆0)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) 
 
and hence, 
 
𝐹(𝑤, 𝑦, 𝜆, 𝜏) = ∑

𝑝
𝑖=1 𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ≥ ∑

𝑝
𝑖=1 𝐹𝑖

0 − 2𝜏0𝑝 −

2(𝜆 − 𝜆0) ∑
𝑝
𝑖=1 𝑔𝑖(𝑤𝑖).  

 
Using the fact that 𝑤 is not in Ω𝜖  we have: 
 
𝐹(𝑤, 𝑦, 𝜆, 𝜏) ≥ ∑

𝑝
𝑖=1 𝐹𝑖

0 − 2𝜏0𝑝 + 2(𝜆 − 𝜆0)𝜖.  

 
Notice that the right side of the above inequality 

is an increasing function for 𝜆. Therefore, there is a 

value 𝜆 such that this expression will be greater than 

∑𝑝𝑖=1 𝑓𝑖(𝑧𝑖
0) + 𝜏0𝑝 for all 𝜆 ≥ 𝜆 and 0 ≤ 𝜏 ≤ 𝜏0, where  

 

𝜆 = 𝜆0 +
∑
𝑝
𝑖=1 (𝑓𝑖(𝑧𝑖

0)−𝐹𝑖
0)+3𝑛𝜏0

2𝜖
.  

 

Thus, for 𝜆 ≥ 𝜆, we have from Eq. 14,  
 

𝐹(𝑤, 𝑦, 𝜆, 𝜏) ≥ 𝐹(𝑧, 𝑦𝑧, 𝜆, 𝜏), 
 
which implies that the inf𝑥∈   𝐼  −2.5𝑝𝑡  𝑅 𝑛𝐹(𝑥, 𝑦, 𝜆, 𝜏) 

does not occur on the set    𝐼  − 2.5𝑝𝑡  𝑅 𝑛\Ω𝜖 , then 
  

inf
𝑥∈   𝐼  −2.5𝑝𝑡  𝑅 𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏) = inf
𝑥∈Ω𝜖

𝐹(𝑥, 𝑦, 𝜆, 𝜏) =

min
𝑥∈Ω𝜖

𝐹(𝑥, 𝑦, 𝜆, 𝜏)  

 
since Ω𝜖  is a compact set. The authors would like to 
thank the referees for their valuable remarks and 
suggestions to improve the final version of the paper. 
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