
 International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

87

A hyperbolic penalty method to solve structured convex minimization
problems

Abdelouahed Hamdi 1, Temadher K. Al-Maadeed 1, *, Akram Taati 2

1Department of Mathematics, Statistics, and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
2Department of Mathematics, University of Guilan, Rasht, Iran

A R T I C L E I N F O A B S T R A C T

Article history:
Received 1 December 2019
Received in revised form
15 February 2020
Accepted 20 February 2020

This paper presents a decomposition algorithm based on the smooth
hyperbolic penalty, which leads to a scheme suitable for parallelized
computations. The proposed algorithm can be seen as a separable version of
the earlier hyperbolic penalty method built, and its main idea is related to a
penalty-type scheme mixed with a kind of resource allocation approach to
decompose large scale separable constrained minimization programs.

Keywords:
Hyperbolic penalty methods
Decomposition
Convex functions
Large scale optimization

© 2020 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*There has been considerable recent interest in
solving large-scale optimization problems. Such
problems arise in many specialties, for instance,
multistage stochastic optimization, distributed
model predictive control, transportation,
telecommunication models, networks, and deep
learning. More recently, the technology of big and
fast computers favorable to parallel computations
has helped a lot and encouraged many researchers
to continue tackling larger and larger models. But it
is still a challenging area where many real-world
engineering problems are waiting for more and
more bright ideas (classical or non-classical ones) to
cope with their multi-millions decision variables.
Basic references are Bertsekas and Tsitsiklis (1989)
and Lasdon (1970), where the main motivation for
decomposing appear separately, mainly:

 Splitting into many weakly coupled subsystems.
 Partitioning variable and/or constraint sets to

isolate easier subproblems; decentralizing global
optimal decisions among local decision levels.

 Parallelizing or distributing computations on
specific parallel computing device.

Depending on the motivation, the way to split or

partition the model may rely on different structural

* Corresponding Author.
Email Address: abhamdi@qu.edu.qa (T. K. Al-Maadeed)

https://doi.org/10.21833/ijaas.2020.05.011
 Corresponding author's ORCID profile:

https://orcid.org/0000-0003-1950-8907
2313-626X/© 2020 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

properties of a given problem. It is well-known that
the classical coordination functions are in general
non-smooth and, therefore, hard to be optimized,
turning the price to pay for decomposition too high
for computational purposes. The computational cost
is not the only drawback as the non-smoothness of
the coordination function almost always implies that
non-unique solutions are introduced in the
subproblems, which reduce the possibility of
decentralizing them completely. These are the
reasons why some penalization ideas, regularization
techniques like the proximal point method look
attractive. Besides the possibility of treating non-
smooth convex coordination problems efficiently,
the introduction of the quadratic penalty terms, for
instance, in the subproblems, can impose unique
solutions to guarantee decentralized procedures.
Classical primal penalty quadratic methods (Fiacco
and McCormick, 1990; Fletcher, 1975; Kort and
Bertsekas, 1976; Polyak, 2001), when applied to
large separable constrained models, lose the
separability which allows decomposition of the
subproblems' penalized objective. Indeed, this is
removed by the presence of quadratic terms in the
penalized potential functional. The same diagnostic
can be reached by applying many other penalty
schemes. Particularly, the Hyperbolic penalty
method introduced and studied by Xavier (2001)
and used in Melo et al. (2011; 2012) and Evirgen
(2017).

Motivated by the effective results obtained in
Melo et al. (2011) to solve some difficult
mathematical problems with complementarity
constraints (MPCC) and those obtained in Evirgen
(2017), where a nonlinear dynamic system was
constructed using the hyperbolic penalty function

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:abhamdi@qu.edu.qa
https://doi.org/10.21833/ijaas.2020.05.011
https://orcid.org/0000-0003-1950-8907
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2020.05.011&domain=pdf&

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

88

for a certain class of inequality constrained
optimization problems. We aim to use this intriguing
hyperbolic penalty function in order to develop a
decomposition scheme favorable to parallel
computations. Polyak (2001) proposed a nonlinear
re-scaling algorithm based on the log-sigmoid
functional, and he obtained some nice results and
properties. This again motivated us to re-launch the
use of the new hyperbolic functional (Xavier, 2001),
which is twice continuously differentiable and is
combining features of both exterior and interior
penalty methods. Our approach consists in mixing
the hyperbolic penalty algorithmic scheme with
some recent decomposition algorithms developed by
Hamdi et al. (1997), Hamdi and Mahey (2000) and
Hamdi (2005a, 2005b). These decomposition class of
methods known as separable augmented Lagrangian
algorithms (SALA) can be derived from the resource
directive sub-problems associated with the coupling
constraints. A complete review of decomposition
methods for convex and non-convex optimization
minimization problems can be found in Hamdi and
Mishra (2011).

The paper is based upon the idea originally
discussed by Hamdi et al. (1997), where the authors
proposed a decomposable scheme that overcame the
non-separability of the obtained augmented
Lagrangian function. But here, we limit ourselves to
propose a primal method based on the hyperbolic
penalty functional far from augmented lagrangians
where we have separable penalized subproblems.

 This idea adds to the large number of
publications that we find in the literature, aiming to
build separable subproblems having strong
legitimate theoretical properties. We limit ourselves
to smooth convex cases, where some direct
strategies have been proposed to exploit the inner
structure of the penalty function and turn it into a
separable one (see, for instance, the survey (Hamdi
and Mishra, 2011) and references therein).

The paper is organized as follows: In the next
section, we present the hyperbolic penalty method of
Xavier, followed by the proposed decomposition
method. Section 4 contains the convergence analysis
of the new algorithms. The last section contains
some algorithmic issues and suggestions to extend
the proposed algorithm.

2. Hyperbolic penalty method

Let 𝑓 be a convex real-valued function and let

(𝑔1(𝑥),⋯ , 𝑔𝑝(𝑥))
⊤

 be finite concave real-valued

functions on 𝑅𝑛 , and consider the convex
programming problem:

min
𝑥∈ℜ𝑛

{𝑓(𝑥) ∶ 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1,𝑚}(𝐶).

Using the Penalty function

𝑃(𝑦, 𝛼, 𝜏) =
−tan(𝛼)

2
𝑦 + √(

tan(𝛼)

2
)
2
𝑦2 + 𝜏2.

Alternatively, the hyperbolic penalty function
may be put in a more convenient form:

𝑃(𝑦, 𝜆, 𝜏) = −𝜆𝑦 + √𝜆2𝑦2 + 𝜏2, 𝜆 =
tan(𝛼)

2
,

where, 𝜆 ⩾ 0 and 𝜏 ⩾ 0. The graphic representation
of 𝑃(𝑦, 𝛼, 𝜏), as shown in Fig. 1, is a hyperbola with
two asymptotes, a slant one forming an angle 𝜋 − 𝛼
with the 𝑥-axis and a horizontal one. Also, the graph
has 𝜏 as the 𝑦-intercept.

Here are some properties of the function
𝑃(𝑦, 𝛼, 𝜏) that will be used in this paper. All these
properties are proved in Xavier (2001).

Properties:

• 𝑃(𝑦, 𝜆, 𝜏) is 𝑘-times continuously differentiable for

any positive integer 𝑘 for 𝜏 > 0.
• 𝑃(𝑦, 𝜆, 𝜏) is asymptotically tangent to the straight

lines 𝑟1(𝑦) = −2𝜆𝑦 and 𝑟2(𝑦) = 0 for 𝜏 > 0.
• 𝑃(𝑦, 𝜆, 0) = 0 for 𝑦 ≥ 0, 𝑃(𝑦, 𝜆, 0) = −2𝜆𝑦 for 𝑦 <
0.

• 𝑃(𝑦, 𝜆, 𝜏) ⩾ −2𝜆𝑦, for all 𝑦 ∈ ℜ, 𝜆 ≥ 0, 𝜏 ≥ 0.
• 𝑃(0, 𝜆, 𝜏) = 𝜏 for 𝜏 ≥ 0 and 𝜆 ≥ 0.
• 𝑃(𝑦, 𝜆, 𝜏) is:

 A convex decreasing function of y for 𝜏 > 0 and
𝜆 ≥ 0.

 A convex non-increasing function of y for 𝜏 = 0
and 𝜆 ≥ 0.

 A convex function equal to 𝜏 for 𝜆 = 0.

• For 𝜆𝑘+1 > 𝜆𝑘 and 𝜏 = 0
 𝑃(𝑦, 𝜆𝑘+1, 𝜏) < 𝑃(𝑦, 𝜆𝑘 , 𝜏) for 𝑦 > 0
 𝑃(𝑦, 𝜆𝑘+1, 𝜏) = 𝑃(𝑦, 𝜆𝑘 , 𝜏) for 𝑦 = 0
 𝑃(𝑦, 𝜆𝑘+1, 𝜏) > 𝑃(𝑦, 𝜆𝑘 , 𝜏) for 𝑦 < 0.

• 𝑃(𝑦, 𝜆, 𝜏𝑘+1) < 𝑃(𝑦, 𝜆, 𝜏

𝑘) for all 𝑦 ∈ ℜ, 𝜆 >
0, 0 ≤ 𝜏𝑘+1 < 𝜏𝑘 .

• 𝑚𝑎𝑥𝑦{𝑃(𝑦, 𝜆, 𝜏
0) − 𝑃(𝑦, 𝜆, 𝜏1)} = 𝜏0 − 𝜏1, and it

occurs at 𝑦 = 0 for 0 ≤ 𝜏0 < 𝜏1.

3. Hyperbolic decomposition algorithm (HDA)

3.1. Model formulation

In this section, we will build up a new hyperbolic
decomposition algorithm (HDA) algorithm to solve
too large scale convex inequality constrained
programs with separable structure. We are
concerned here with block separable nonlinear
constrained optimization problems:

min
𝑥∈ℜ𝑛

{𝐹(𝑥) = ∑
𝑝
𝑖=1 𝑓𝑖(𝑥𝑖): 𝑥 ∈ Ω, }(𝑆𝑃),

where 𝑓𝑖: ℜ

𝑛𝑖 → 𝐼 − 2.5𝑝𝑡 𝑅 are all convex
functions, and

Ω = {𝑥 ∈ ℜ𝑛:∑

𝑝

𝑖=1

𝑔𝑖(𝑥𝑖) ≥ 0, }

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

89

is the convex set where 𝑔𝑖 are defined from ℜ𝑛𝑖 →

ℜ for 𝑖 = 1, 𝑝, ∑
𝑝
𝑖=1 𝑛𝑖 = 𝑛.

The above constraint is usually referred to as a
coupling constraint. Along with this work, all the
functions 𝑓𝑖, 𝑔𝑖 are 𝐶2 and we assume the following
assumptions.

Fig. 1: 𝑃(𝑦, 𝜆, 2): Orange 𝜆 = 0.5, Red 𝜆 = 1, Blue 𝜆 = 10,

Green 𝜆 = 25

Assumptions 1:

A1: The optimal set 𝑋∗ of (𝑆𝑃) is nonempty and
bounded.
A2: The Slater’s condition holds, i.e.,

∃�̅� ∈ ℜ𝑛: ∑

𝑝
𝑖=1 𝑔𝑖(�̅�𝑖) > 0, 𝑗 = 1,𝑚.

3.2. New HDA

To build our new decomposition algorithm, we
follow the well-known resources allocation scheme.
Since we aim to develop an algorithm to decompose
large scale, structured optimization models, we
thought about the iterative approach studied and
developed by Hamdi et al. (1997), Hamdi (2005b),
and Hamdi and Mishra (2011), the Separable
Augmented Lagrangian Algorithm (SALA). To this
goal, 𝑝 allocation vectors

𝑦 ∈ 𝐴 = {𝑧 ∈ 𝐼 − 2.5𝑝𝑡 𝑅 𝑝 | ∑

𝑝
𝑖=1 𝑧𝑖 = 0}

are added in a such a way to get the equivalent
problem†,

 (𝑆𝑃𝑦)

{

 min ∑

𝑝
𝑖=1 𝑓𝑖(𝑥𝑖)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔𝑖(𝑥𝑖) + 𝑦𝑖 ≥ 0, 𝑖 = 1, 𝑝

𝑦 ∈ 𝐴

𝑥𝑖 ∈ 𝐼 − 2.5𝑝𝑡 𝑅
𝑛𝑖 , 𝑖 = 1, 𝑝,

to which we apply the Hyperbolic Penalty Method
introduced previously with partial elimination of the
constraints. In other words, for 𝜆 > 0, 𝜏 > 0, the
potential function related to the problem (𝑆𝑃𝑦) is

defined as follows:

𝐹(𝑥, 𝑦, 𝜆, 𝜏) = ∑

𝑝
𝑖=1 𝑓𝑖(𝑥𝑖) + ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆, 𝜏), (1)

† If (𝑥∗, 𝑦∗) is an optimal solution to 𝑆𝑃𝑦 then 𝑥∗ is an optimal

solution to (𝑆𝑃).

where 𝑃(𝑎, 𝑏, 𝑐) = −𝑎 𝑏 + √𝑎2𝑏2 + 𝑐2. Thus it is
clear that the functional 𝐹 is separable, i.e.,

𝐹(𝑥, 𝑦, 𝜆, 𝜏) = ∑

𝑝
𝑖=1 𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆, 𝜏),

where,

𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆, 𝜏) = 𝑓𝑖(𝑥𝑖) + 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆, 𝜏).

Thus, the Hyperbolic Penalty algorithm can be
applied as follows:

For any 𝜆, 𝜏 > 0, the following minimization
problem,

 (𝑥𝑘+1, 𝑦𝑘+1) → min

𝑦∈𝐴, 𝑥∈ℜ𝑛
𝐹(𝑥, 𝑦, 𝜆𝑘 , 𝜏𝑘) (2)

and

𝜆𝑘+1 = 𝑟 𝜆𝑘 , 𝑟 > 1, 𝜏

𝑘+1 = 𝑞 𝜏𝑘 , 0 < 𝑞 < 1. (3)

The minimization in Eq. 2 is done by alternating
the minimization with respect to 𝑥, then followed by
the one with respect to the allocation variable 𝑦. i.e.,
we fix 𝑦 = 𝑦𝑘 and find:

𝑥𝑘+1 ∈ 𝐴𝑟𝑔min

𝑥
𝐹(𝑥, 𝑦𝑘 , 𝜆𝑘 , 𝜏𝑘) =

𝐴𝑟𝑔min
𝑥
∑𝑝𝑖=1 𝐹𝑖(𝑥𝑖 , 𝑦𝑖

𝑘 , 𝜆𝑘 , 𝜏𝑘).

Then we can split the above minimization into 𝑝
independent sub-problems with low-dimension. i.e.,

𝑥𝑖
𝑘+1 ∈ 𝐴𝑟𝑔min

𝑥𝑖
{𝑓𝑖(𝑥𝑖) + 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖

𝑘 , 𝜆𝑘 , 𝜏𝑘)}

and now we fix 𝑥 = 𝑥𝑘+1 to solve for 𝑦𝑘+1

𝑦𝑘+1 ∈ 𝐴𝑟𝑔 𝑚𝑖𝑛{∑

𝑝
𝑖=1 𝑃[𝑔𝑖(𝑥𝑖

𝑘+1) + 𝑦𝑖 , 𝜆𝑘 , 𝜏𝑘]: ∑
𝑝
𝑖=1 𝑦𝑖 =

0}. (4)

It is not hard to solve the minimization explicitly
with respect to 𝑦 as shown in the following lemma,
which gives us also an important remark about
allocation variables.

Lemma 1: According to Eq. 4, yk+1 satisfy

𝑦𝑖
𝑘+1 = −𝑔𝑖(𝑥𝑖

𝑘+1) + 𝛿𝑘+1, 𝑖 = 1, 𝑝. (5)

where 𝛿𝑘+1 = 𝑝−1∑
𝑝
𝑖=1 𝑔𝑖(𝑥𝑖

𝑘+1).

Proof: By writing the classical Lagrangian to Eq. 4

𝐿𝑘(𝑦, 𝑡) = ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑥𝑖

𝑘+1) + 𝑦𝑖 , 𝜆, 𝜏) + 𝑡 ∑
𝑝
𝑖=1 𝑦𝑖

where 𝑡 ∈ 𝐼 − 2.5𝑝𝑡 𝑅 , and using the optimality,
with the fact that ∑

𝑝
𝑖=1 𝑦𝑖

𝑘+1 = 0, we obtain after

some direct calculations

𝑡 = 𝜆 −
𝜆2(𝑔𝑖(𝑥𝑖

𝑘+1)+𝑦𝑖
𝑘+1)

√𝜏2+𝜆2 (𝑔𝑖(𝑥𝑖
𝑘+1)+𝑦𝑖

𝑘+1)
2
, (6)

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

90

which means that 𝜆 − 𝑡 does not depend on 𝑖 and has

the same sign as 𝑔𝑖(𝑥𝑖
𝑘+1) + 𝑦𝑖

𝑘+1 for any 𝑖 = 1, 𝑝.
Now, according to Eq. 6, we have:

𝑔𝑖(𝑥𝑖
𝑘+1) + 𝑦𝑖

𝑘+1 =
𝜏(𝜆−𝑡)

𝜆√𝜆2−(𝜆−𝑡)2
, 𝑖 = 1, 𝑝, (7)

and straightforwardly after summing both sides and
using the definition of 𝛿𝑘+1 we reach

(𝑝 𝛿𝑘+1)2 =
𝑝2 𝜏2 (𝜆−𝑡)2

𝜆2[𝜆2−(𝜆−𝑡)2]
, (8)

and after some obvious calculations, we obtain:

 (𝜆 − 𝑡)2 =
𝜆4(𝑝 𝛿𝑘+1)

2

𝜆2(𝑝 𝛿𝑘+1)2+𝑝2𝜏2
, (9)

and by plugging directly Eq. 9 in Eq. 7 and after some
simplifications and using the fact that 𝜆 − 𝑡 and 𝛿𝑘+1
has the same sign as 𝑔𝑖(𝑥𝑖

𝑘+1) + 𝑦𝑖
𝑘+1, we obtain

directly

𝑦𝑖
𝑘+1 = −𝑔𝑖(𝑥𝑖

𝑘+1) + 𝛿𝑘+1, 𝑖 = 1, 𝑝.

Algorithm 1:

 𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐻𝐷𝐴):

𝑆𝑡𝑒𝑝 1: 𝑆𝑒𝑙𝑒𝑐𝑡 𝜏0 > 0, 𝜆0 > 0, 𝑦0 = (𝑦1
0, ⋯ , 𝑦𝑝

0), 𝑠. 𝑡 ∑

𝑝

𝑖=1

𝑦𝑖
0 = 0, 𝜖1 > 0, 𝜖2 > 0,

 𝑟 > 1, 0 < 𝑞 < 1, 𝑘 = 0.

𝑆𝑡𝑒𝑝 2: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 ∶ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 = 1, 𝑝

 𝑥𝑖
𝑘+1: = 𝑎𝑟𝑔 min

𝑥𝑖∈ 𝐼 −2.5𝑝𝑡 𝑅
𝑛𝑖
{𝑓𝑖(𝑥𝑖) − 𝜆𝑘 (𝑔𝑖(𝑥𝑖) + 𝑦𝑖

𝑘) + √𝜏𝑘
2 + 𝜆𝑘

2 (𝑔𝑖(𝑥𝑖) + 𝑦𝑖
𝑘)2} .

𝑆𝑡𝑒𝑝 3: 𝑆𝑡𝑜𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎: 𝑆𝑡𝑜𝑝.
 𝐸𝑙𝑠𝑒 ∶ 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 4

𝑆𝑡𝑒𝑝 4: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑎𝑛𝑑 𝑔𝑜 𝑏𝑎𝑐𝑘 𝑡𝑜 𝑠𝑡𝑒𝑝 2:

{

𝑦𝑖
𝑘+1 = −𝑔𝑖(𝑥𝑖

𝑘+1) + 𝛿𝑘+1, 𝑖 = 1, 𝑝, 𝛿𝑘+1 =
1

𝑝
∑

𝑝

𝑖=1

𝑔𝑖(𝑥𝑖
𝑘+1)

𝜆𝑘+1 = 𝑟 𝜆𝑘 , 𝜏𝑘+1 = 𝑞 𝜏𝑘 .

4. Properties and convergence analysis

For our analysis, we need some assumptions.

Assumptions 2:

A3: There is a pair (𝜆0, 𝜏0) such that:

inf

𝑦𝑖,𝑥𝑖∈ 𝐼 −2.5𝑝𝑡 𝑅
𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆0, 𝜏0) = 𝐹𝑖

0 > −∞.

A4: There is a value 𝜖 > 0 such that the set

Ω𝜖 = {𝑥 ∈ ℜ
𝑛:∑

𝑝

𝑖=1

𝑔𝑖(𝑥𝑖) > −𝜖 }.

is bounded.

A5: The derivative of the functions 𝑓𝑖 and 𝑔𝑖 , 𝑖 = 1, 𝑝
are bounded in the set Ω𝜖 .

The following theorem shows the existence of the

minimum of the function 𝐹(𝑥, 𝑦, 𝜆, 𝜏) and
consequently for the functions 𝐹𝑖 .

Proposition 1: If the conditions (A1)-(A5) hold, then

there exists λ ≥ λ0 such that

inf
𝑥∈ 𝐼 −2.5𝑝𝑡 𝑅 𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏) = min
𝑥∈ℜ𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏)

for all 𝜆 ⩾ 𝜆 and 0 ≤ 𝜏 ≤ 𝜏0, ∑
𝑝
𝑖=1 𝑦𝑖 = 0.

Proof: We preferred to add it in the Appendix A of
the paper.

Proposition 2: If conditions (A1)-(A5) are satisfied,

then there exists a value λ such that for all λ ≥ λ and
0 ≤ τ ≤ τ0, the minimum point x(y, λ, τ) of the
modified objective function F(x, y, λ, τ) is feasible.

Proof: From prop 1, for 𝜆 ≥ 𝜆 there is �̃� ∈ Ω𝜖 such
that:

�̃�𝑖 ∈ argmin

𝑥𝑖
𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆, 𝜏).

From the first-order optimality condition

𝜕

𝜕𝑥𝑖
𝐹𝑖(�̃�𝑖 , 𝑦𝑖 , 𝜆, 𝜏) = 0

hence,

𝑑

𝑑𝑥𝑖
𝑓𝑖(�̃�𝑖) −

𝜕

𝜕𝑥𝑖
𝑃(𝑔𝑖(�̃�𝑖) + 𝑦𝑖 , 𝜆, 𝜏) ⋅ 𝑔′𝑖(�̃�𝑖) = 0,

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

91

which implies

|
𝑑

𝑑 𝑥𝑖
𝑓𝑖(�̃�𝑖)| = |

𝜕

𝜕𝑥𝑖
𝑃(𝑔𝑖(�̃�𝑖) + 𝑦𝑖 , 𝜆, 𝜏)| |𝑔

′
𝑖
(�̃�𝑖)|. (10)

From the properties of the hyperbolic penalty
function 𝑃 for 𝑦 < 0,

lim
𝜆→∞

𝑃(𝑦, 𝜆, 𝜏) = −∞,

and since 𝑓′𝑖 and 𝑔′𝑖 are bounded on Ω𝜖 then there is

𝜆̅̅ ⩾ 𝜆̅ such that Eq. 10 will be impossible unless

𝑔𝑖(�̃�𝑖) + 𝑦𝑖 ≥ 0, ∀𝑖 = 1, 𝑝, and hence ∑
𝑝
𝑖=1 𝑔𝑖(�̃�𝑖) ≥

0, in other words, the optimal point �̃� will certainly
be feasible.

The next theorem will be similar to the result
given in Xavier (2001), which shows a conditional
convergence of a feasible minimum point sequence.

Theorem 1: If conditions (A1)-(A5) are satisfied,

and if limk→∞τ
k = 0 and λ ≥ λ then a convergent

sub-sequence {xk} → x̃ will exist, and the limit of any
of these sub-sequences is an optimal point.

Proof: For any 𝜆 ≥ 𝜆 the point 𝑥𝑘 will be feasible and
then for any point 𝑥∗ ∈ 𝑋∗ we have

∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖

∗) ⩽ ∑
𝑝
𝑖=1 𝑓𝑖(𝑥𝑖

𝑘). (11)

On the other hand, 𝑥𝑘 is a minimum point of 𝐹. Then,

𝐹(𝑥𝑘 , 𝑦𝑘 , 𝜆, 𝜏) ⩽ 𝐹(𝑥∗, 𝑦𝑘 , 𝜆, 𝜏), 𝜆 ≥ 𝜆.

Therefore,

lim
𝑘→∞

𝐹(𝑥𝑘 , 𝑦𝑘 , 𝜆, 𝜏) ⩽ lim
𝑘→∞

𝐹(𝑥∗, 𝑦𝑘 , 𝜆, 𝜏)

lim
𝑘→∞

∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖
𝑘) + ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑥𝑖

𝑘) + 𝑦𝑖
𝑘 , 𝜆, 𝜏) ⩽

lim
𝑘→∞

∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖
∗) + ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑥𝑖

∗) + 𝑦𝑖
𝑘 , 𝜆, 𝜏).

Since lim𝑘→∞𝜏

𝑘 = 0 and from (𝑃1),

lim
𝑘→∞

∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖
𝑘) ⩽ ∑

𝑝
𝑖=1 𝑓𝑖(𝑥𝑖

∗)

by Eq. 11 we have:

lim
𝑘→∞

∑𝑝𝑖=1 𝑓𝑖(𝑥𝑖
𝑘) = ∑

𝑝
𝑖=1 𝑓𝑖(𝑥𝑖

∗).

Since Ω is compact set then there exists a sub-
sequence of {𝑥𝑘} that will converge to �̃� ∈ 𝑋∗.

5. Numerical study

This section is devoted to some numerical tests
where we study the numerical behavior of the HDA.
The study will tackle the feasibility, optimality, and
stability of this method with respect to the
parameters involved. Furthermore, an extension of
the HDA, the Proximal Hyperbolic Decomposition
Algorithm (PHDA), described below, is tested. This
study is completed by a brief comparison involving

HDA, PHDA, and the well-known strong CVX tool for
some Convex Programming models developed by
S.T. Boyd and M.C Grant from Standford University
(Grant and Boyd, 2020). CVX is a Matlab-based
modeling system for constructing and solving some
convex programs (CPs). CVX supports a number of
standard problem types, including linear and
quadratic programs, and it is mainly based on
primal-dual interior-point techniques.

In this section, we present some computational
tests on the performance of the two presented
algorithm in this paper for solving convex separable
problems of such form:

min{∑

𝑝
𝑖=1 𝑐𝑖 𝑥𝑖 ∶ ∑

𝑝
𝑖=1 𝑎𝑖𝑥𝑖

2 + 𝑏𝑖𝑥𝑖 + 𝑑 ≥ 0, 𝑥𝑖 ∈

ℜ𝑛𝑖} 𝑃(𝑛, 𝑝)

where ∑

𝑝
𝑖=1 𝑛𝑖 = 𝑛, and

min{𝑎1(𝑥1 − 0.5)

2 +∑𝑚𝑖=2 𝑎𝑖(𝑥𝑖 + 1)
2 + ∑𝑛𝑖=𝑚+1 𝑎𝑖(𝑥𝑖 −

1)2: 𝑔(𝑥) ≥ 0} 𝑄(𝑛,𝑚, 𝜌)

where

𝑔(𝑥) = 𝑏1(1 − 𝑥1) + ∑

𝑚
𝑖=2 𝑏𝑖 𝑥𝑖

2 + ∑𝑛𝑖=𝑚+1 𝑏𝑖(𝑥𝑖 −
1)2,

and,

𝑎𝑖 = 𝜌 −
𝜌2 − 1

𝜌(𝑛 − 1)
(𝑖 − 1),

𝑏𝑖 = 𝜌 +
𝜌2−1

𝑛−1
(𝑖 − 1), 𝑖 = 1, 2,⋯ , 𝑛.

These problems were generated randomly using

MATLAB. Generator and the size of the considered
problems vary from 10 to 1,000,000. The programs
were written in MATLAB version R2018b.

To solve the unconstrained minimization
problems in Step 2 of Algorithms (HDA) and (PHDA),
we used "fminunc" function in MATLAB (Coleman et
al., 1999), amending its default setting to apply the
Quasi-Newton method. In addition, the CVX employs
a primal-dual interior-point algorithm (Grant and
Boyd, 2014; 2020).

5.1. Algorithmic considerations

 In practice, the penalty parameters 𝜏, 𝜆 play a
fundamental role in the behavior and efficiency of
the proposed algorithms of type HDA and in general
for any algorithms based on penalization and or on
augmented (modified) Lagrangian. These
parameters can be used to reach some accepted
feasibility of the iterates. In order to avoid the case
where 𝜆 becomes too large, we have fixed an upper
bound 𝜆𝑚𝑎𝑥 . We have used convenient stopping
criteria, which are similar to those used by Breitfeld
and Shanno (Breitfeld and Shanno, 1996). This 2-
parameters penalization depends on two positive
parameters 𝜆 and 𝜏 which proceeds as follows:

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

92

• In the initial phase of the process, 𝜆 increases,
causing a significant increase of the penalty at
infeasible points, while a reduction in penalty is
observed for points inside the feasible region.
This way, the search is directed to the feasible
region since the goal is to minimize the penalty.

• From the moment that a feasible point is
obtained, the second parameter 𝜏 decreases.

Now, we propose to update 𝜆 and 𝜏 according to
the following scheme

{
𝜆𝑘+1
𝑖 = 𝑟 𝜆𝑘

𝑖 , 𝜏𝑘+1
𝑖 = 𝜏𝑘

𝑖 𝑖𝑓 𝑔𝑖(𝑥𝑖
𝑘+1) < 0

𝜆𝑘+1
𝑖 = 𝜆𝑘

𝑖 , 𝜏𝑘+1
𝑖 = 𝑞 𝜏𝑘

𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝑟 > 1 and 0 < 𝑞 < 1.

5.2. HDA Performances

To evaluate the performance of implementable
versions of HDA, we have presented in Tables 1-2
some partial results at each iteration with the
corresponding given data and parameters. We have
gathered the feasibility and the variations in the
objective function at each iteration. Table 3 gives
iterations number, feasibility, the variations in the
objective function, and the needed time of

computations for different sizes of model 𝑃(𝑛, 𝑝).
Furthermore, Table 2 presents the changes in the
parameter 𝜏 at each iteration (Note that the
parameter 𝜆 = 10 is fixed).

Table 1: HDA for 𝑃(100,2), 𝜆0 = 10 and 𝜏0 = 1

Iter Feasibility |𝐹(𝑥(𝑘+1)) − 𝐹(𝑥𝑘)|
1 4.1936e-01 1.8552e+01
2 4.2075e-02 3.7145e-01
3 4.2092e-03 3.7156e-02
4 4.2438e-04 3.7119e-03
5 5.7679e-05 3.5766e-04
6 8.1032e-06 4.8575e-05
7 1.1651e-06 6.8266e-06
8 6.7084e-08 1.0781e-06
9 4.3774e-09 6.1283e-08

10 1.0977e-09 3.2056e-09

Table 2: Algorithm HDA for 𝑃(500,500), 𝜆0 = 10 and 𝑞 =

0.5
Iter 𝜏 𝜆 |𝐹(𝑥(𝑘+1)) − 𝐹(𝑥𝑘)| Feasibility

1 2.5 10 35.105 264.99
2 1.25 10 21.804 264.23
3 0.625 10 77.689 180.41
⋮ ⋮ ⋮ ⋮

17 3.8147e-05 10 0.0075591 0.014325
18 1.9073e-05 10 0.0037705 0.0072049
19 9.5367e-06 10 0.0018808 0.0036412
⋮ ⋮ ⋮ ⋮

36 7.276e-11 10 2.404e-08 4.4237e-08
37 3.638e-11 10 1.0975e-08 2.2281e-08
38 1.819e-11 10 5.3219e-09 1.1487e-08

Table 3: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 10 and 𝜏0 = 1

𝑛 𝑝 Iter Feasibility |𝐹(𝑥(𝑘+1)) − 𝐹(𝑥𝑘)| CPU Time

5000 250 46 6.4984e-09 6.7364e-09 25.1389
5000 5000 51 1.8737e-08 7.0277e-09 382.717

10000 250 45 1.1804e-08 8.4542e-09 33.5606
10000 1000 48 1.1603e-08 5.4056e-09 115.541
12500 2500 50 1.1785e-08 4.9536e-09 245.936
12500 2500 49 1.7593e-08 9.9312e-09 249.963
15000 1500 48 1.7505e-08 8.009e-09 167.658
15000 5000 51 1.56472-08 6.8158-e9 470.214
25000 5000 51 1.5386e-08 8.8085e-09 520.194
50000 10000 53 8.422e-09 7.0049e-09 1067.88
75000 25000 54 1.4206-e08 9.3169e-09 2131.75

150000 10000 52 1.566-e08 5.8644e-09 1081.3
200000 10000 52 1.7434e-08 6.8612e-09 1116.12
300000 15000 51 2.7308e-08 9.3423e-09 1149.3
500000 20000 55 5.9431e-09 3.5798e-09 2378.06

In Tables 4-8, we have studied the influence of
the penalty parameters 𝜏 and 𝜆. We have used
different initial values of these parameters, and some
conclusions could be drawn according to these
tables. In general the case 𝜏0 = 0.01, 0.5, 1 are
better than 𝜏0 = 10 and more, but one has to be
careful because sometimes when 𝜆𝑘 is so large,
feasibility is rapidly reached, but optimality does not
follow at the same speed (Table 7).

Table 4: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 1, 𝜏0 = 25
𝑛 𝑝 𝑟 𝑞 Iter CPU Time

100 10 2 0.05 9 0.78667
100 10 2 0.1 14 1.10219
100 10 2 0.005 8 0.805029

100 10 √10 0.8 95 2.96916

100 10 √10 0.05 11 0.981767

250 25 √10 0.8 95 7.61844

250 25 √10 0.05 11 1.66404

250 50 2 0.5 36 3.68528
2500 250 3 0.5 40 25.7556

Table 5: Time (in sec): 𝐻𝐷𝐴 → 𝜏0 = 100
Pbs 𝜆0 = 1 𝜆0 = 5 𝜆0 = 10 𝜆0 = 25 𝜆0 = 50

𝑃(100,100) 0.3149 0.2802 0.2798 0.2123 0.2143
𝑃(250,250) 0.5521 0.5828 0.5122 0.4598 0.4876
𝑃(500,500) 9.72063 9.13909 9.1225 9.25871 10.3971
𝑃(1000,1000) 32.7545 32.7647 32.8279 33.0139 34.4139
𝑃(2500,2500) 274.599 272.765 260.295 249.205 251.668

Remark 1: We observed that in the case where λ0
was chosen less than 1, the method may reach

rapidly feasible points but stuck far from the optimal
value, or it diverges. For instance, for P(500,5) with

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

93

τ0 = 100, (HDA) diverges when λ0 = 0.1 and λ0 =
0.7. In addition, for λ0 = 0.9, the algorithm stopped
after reaching a feasible point with fobj = −111.981

while the optimal objective obtained by the software
CVX was fCVX

∗ = −112.08. But, when λ = 1, CVX beats
HDA lightly in time, and we get: fobj

∗ = −112.08 =

fCVX
∗ in 1.80012 sec, where CVX needs 1.59872 sec.

The same conclusions were drawn for the following
case (P(50,50), τ0 = 10) (Table 6).

𝜆0 = 0.7 ⟶ 𝑓𝐻𝐷𝐴
∗ = −19.7908, 𝑓𝐶𝑉𝑋

∗ =
−26.9991, 𝑇𝑖𝑚𝑒 = 1.69784,

and for 𝜆0 = 1, we get:

𝑓𝐻𝐷𝐴
∗ = −26.9987, 𝑇𝑖𝑚𝑒 = 4.08835,
 𝑓𝐶𝑉𝑋

∗ = −26.9991, 𝑇𝑖𝑚𝑒 = 1.69784.

In Tables 8 and 9, we tested problems 𝑄(𝑛,𝑚, 𝜌) for
different dimensions from 100 to 12500 variables.
The obtained results show the efficiency of HDA with
respect to the CPU time used to reach convergence.

One may observe that the values of 𝜆0 are not
influencing the CPU-Time heavily. Except when the
number of variables is more than 5000, we observed
that when 𝜆0 is greater of equal than 100 HDA is
faster than the other tested cases (Tables 8 and 9).

Table 6: Time (in sec): 𝐻𝐷𝐴 → 𝜏0 = 100

Pbs
𝜆0
= 0.05

𝜆0
= 0.01

𝜆0 = 0.1 𝜆0 = 0.5

𝑃(500,5) Div Div Div Div
Pbs 𝜆0 = 0.7 𝜆0 = 0.9 𝜆0 = 1 𝜆0 = 1.5

𝑃(500,5) Div
almost

cv
cv (1.80012

sec)
cv (4.0392

sec)

Table 7: CPU Time: 𝐻𝐷𝐴 → 𝜏0 = 0.1

Pbs
𝜆0
= 100

𝜆0
= 250

𝜆0
= 500

𝜆0
= 1000

𝜆0
= 2000

𝑃(1000,1000) div div div div div

𝑃(1500,1500)
21.802

4
22.025

3
21.395

2
26.709

3
24.880

5

𝑃(2500,2500)
111.79

3
div div div div

Table 8: Time (in sec): 𝐻𝐷𝐴 → 𝜏0 = 1
Pbs 𝜆0 = 100 𝜆0 = 250 𝜆0 = 500 𝜆0 = 1000 𝜆0 = 2000

𝑄(100,1,1) 0.294983 0.258932 0.252127 0.290235 0.264605
𝑄(100,50,1) 0.291264 0.247257 0.234184 0.262379 0.24013
𝑄(500,150,1) 0.914938 0.881906 0.905574 0.91685 0.959121
𝑄(500,100,1/2) 1.11858 1.1027 1.05881 1.13897 1.32782
𝑄(1000,800,1/4) 0.629116 0.592817 0.619653 0.64378 0.657695
𝑄(5000,2,1) 3.54268 3.65463 4.47767 4.16171 4.4505

𝑄(8000,3500,1) 4.8168 4.70235 4.54321 5.58043 5.0586
𝑄(12500,5000,1) 8.06193 6.75195 6.9635 7.0534 6.99595

Table 9: CPU Time for 𝐻𝐷𝐴 → 𝜏0 = 1

Problems 𝜆0 = 1 𝜆0 = 5 𝜆0 = 10 𝜆0 = 20 𝜆0 = 30 𝜆0 = 50
𝑄(100,50,1) 0.978355 0.77753 0.708556 0.747519 0.792013 0.814627
𝑄(500,150,1) 1.27856 1.17787 1.14185 1.28701 1.33009 1.40368
𝑄(500,100,1/2) 1.81536 1.13002 1.83701 1.30857 1.60893 1.9679
𝑄(1000,800,1) 0.757987 0.617783 0.560985 0.542147 0.546702 0.5657
𝑄(5000,1,1) 3.51629 3.73427 3.74421 3.89665 4.29453 4.41673

𝑄(8000,3500,1) 10.2324 11.8915 5.95551 4.19212 4.83697 5.16421
𝑄(12500,5000,1) 13.7405 21.0406 11.5494 9.1961 8.82265 8.50312

In the following Tables 10 and 11, we show that
sometimes, we may face the influence of other
internal parameters. For instance, the factors (𝑞, 𝜌)
to increase and decrease the 𝜆 and 𝜏 respectively.
According to many tests, feasibility is not altered, but
the obtained objective function values may be
unstable. This is due to the fast feasibility that stops
the penalization effect of the algorithm and may
cause slow convergence or produce some jumps
around the optimal solution. Table 12, shows the
CPU Time needed to solve large scale problems
reaching 106 variables.

5.3. Extension and comparison

In order to increase the stability of the HDA and
enrich it with some nice properties, we propose here
to mix the proximal point technique (Rockafellar,
1976) with our (HDA).

In other words, we add a quadratic term
1

2𝑐
∥ 𝑥 −

𝑥𝑘 ∥2 to the hyperbolic penalty function. Thus, it is
an easy exercise to extend the convergence analysis

in Section 4 for our proximal hyperbolic
decomposition algorithm.

Table 10: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 10, 𝜏0 = 1

𝑛 𝑝 𝑟 𝑞 𝑓𝑜𝑏𝑗

50 50 √8 0.6 -17.9542

50 50 √12 0.1 -17.2152

50 50 √8 0.05 -16.7776

Table 11: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 10, 𝜏0 = 1

𝑛 𝑝 𝑟 𝑞 𝑓𝑜𝑏𝑗

100 100 √8 0.6 -40.5734

100 100 √12 0.1 -41.158

100 100 √8 0.05 -40.3244

Table 12: CPU Time: 𝐻𝐷𝐴 for 𝑃(𝑛, 𝑝)

𝑛 𝑝
CPU
Time

Number of Variables per sub-
problem

50000 100 671.596 500
60000 1,000 286.759 60
70000 1,000 430.534 70
90000 1,000 468.946 90

100000 1,000 547.154 100
1000000 5,000 4623.25 200

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

94

Algorithm 2:

𝑃𝑟𝑜𝑥𝑖𝑚𝑎𝑙 𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝑃𝐻𝐷𝐴):

𝑆𝑡𝑒𝑝 1: 𝑆𝑒𝑙𝑒𝑐𝑡 𝜏0 > 0, 𝜆0 > 0, 𝑦
0 = (𝑦1

0, ⋯ , 𝑦𝑝
0), 𝑠. 𝑡 ∑

𝑝
𝑖=1 𝑦𝑖

0 = 0, 𝜖1 > 0, 𝜖2 > 0,

 𝑟 > 1, 0 < 𝑞 < 1, 𝑐 > 0, 𝑘 = 0.

𝑆𝑡𝑒𝑝 2: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒: 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 = 1, 𝑝

 𝑥𝑖
𝑘+1: = 𝑎𝑟𝑔 min

𝑥𝑖∈ℜ
𝑛𝑖
{𝑓𝑖(𝑥𝑖) − 𝜆𝑘 (𝑔𝑖(𝑥𝑖) + 𝑦𝑖

𝑘) + √𝜏𝑘
2 + 𝜆𝑘

2 (𝑔𝑖(𝑥𝑖) + 𝑦𝑖
𝑘)2 +

1

2𝑐
(𝑥𝑖 − 𝑥𝑖

𝑘)2} .

𝑆𝑡𝑒𝑝 3: 𝐼𝑓 𝑣1 ≤ 𝜖1 , 𝑣2 ≤ 𝜖2, 𝑤ℎ𝑒𝑟𝑒

 𝑣1 = −𝛿
𝑘+1,

 𝑣2 = |𝑓(𝑥
𝑘) − 𝑓(𝑥𝑘+1)|.

 𝑆𝑡𝑜𝑝.
 𝐸𝑙𝑠𝑒: 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 4

𝑆𝑡𝑒𝑝 4: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑎𝑛𝑑 𝑔𝑜 𝑏𝑎𝑐𝑘 𝑡𝑜 𝑠𝑡𝑒𝑝 2:

 {
𝑦𝑖
𝑘+1 = −𝑔𝑖(𝑥𝑖

𝑘+1) + 𝛿𝑘+1, 𝑖 = 1, 𝑝.

𝜆𝑘+1 = 𝑟 𝜆𝑘 , 𝜏𝑘+1 = 𝑞 𝜏𝑘 .

As it was done for HDA, to evaluate the
performance of implementable versions of PHDA,

Tables 13 and 14 present some partial results per
iteration.

Table 13: Time (in sec): 𝑃𝐻𝐷𝐴 → 𝜏0 = 1, 𝑐0 = 10, ∗∗↪ 𝑙𝑜𝑐. 𝑚𝑖𝑛

Problems 𝜆0 = 100 𝜆0 = 250 𝜆0 = 500 𝜆0 = 1000 𝜆0 = 2000
𝑄(100,1,1) 1.44611 1.5348 1.43017 1.40501 1.50096
𝑄(100,50,1) 1.46166 1.37706 1.45547 1.43519 1.38023
𝑄(500,150,1) 1.70518 1.69838 1.73651 2.114 1.88389
𝑄(500,100,1/2) 1.86011 2.51599 1.83019 2.23843 1.32782
𝑄(1000,800,1/4) ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
𝑄(5000,1,1) 22.1233 22.2789 18.0528 15.4161 20.5188

𝑄(8000,3500,1) 82.2186 100.744 131.566 192.106 297.834

Table 14: Comparison: 𝜆0 = 0.5, 𝜏0 = 0.001
 HDA PHDA
𝑛 𝑝 𝐹𝑣𝑎𝑙 Time 𝐹𝑣𝑎𝑙 Time

7500 75 -2322.71 10.2137 -2320.62 34.0168
7500 25 -2045.8 21.3731 -2044.85 54.4529
5000 1000 -1293.92 38.2184 -1292.55 41.1541
2500 50 -672.162 8.05189 -672.393 10.8952
1500 50 -283.072 5.68878 -283.237 8.1505
1000 500 -327.637 35.5733 -327.95 38.2991
500 500 -221.349 30.1621 -221.847 32.6024
500 10 -148.462 2.18094 -148.318 3.81574
100 10 -18.2256 1.01365 -18.1856 2.02456

In Tables 13-18, we compared the three
algorithms on the same set of problems with
different dimensions. We focused on the role of
different parameters that produce nice results.

Remark 2:

• CVX for the above problems got many problems
with memory, and sometimes it reached only
feasible solutions. For large dimensions, CVX
generally did not give good results. But for
dimensions less than 5000, CVX is very efficient
and beats HDA and its proximal version, as shown
in Table 17.

• PHDA efficiency is closely related to HDA, but by
tuning the proximal parameter 𝑐, we observed that
PHDA is faster than HDA for solving problems
𝑄(𝑛,𝑚, 𝜌) as it is shown in Table 18. Not easy to

understand, the inverse happened for problems
𝑃(𝑛, 𝑝) (Table 14). In general, we expected more
stability around the optimal solution, but we think
that the hyperbolic penalty term is dominant
during the calculations, and the proximal term is
unable to play its role as it should be. This situation
is related to the proximal parameter 𝑐 which needs
some careful tuning in order to avoid any
perturbations.

6. Conclusion

In this paper, we were interested in the
development of the Hyperbolic Decomposition
Algorithm (HDA) favorable to parallel computations.
The main challenge was to overcome the non-
separability of the obtained hyperbolic penalty
function. The algorithm converges under some
classical conditions and the nice properties of the
hyperbolic functional. We ended our paper by a
numerical study, where we discussed the behavior of
the (HDA), its parameters’ influence. In addition, we
proposed a regularized version of HDA, the PHDA
and we compared it to (HDA) and to a very strong
algorithm CVX (Grant and Boyd, 2014). Since the
(HDA) is mainly based on a penalization, so the
penalty parameter influence is well-known and is
shown in the numerical part. (HDA) can be made

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

95

faster if we could program it on parallel processors machines.

Table 15: Comparison of HDA with CVX for 𝜆0 = 0.5, 𝜏0 = 0.001 and 𝑝 = 1
 HDA CVX
𝑛 𝐹𝑣𝑎𝑙 Time 𝐹𝑣𝑎𝑙 Time |𝐹𝑣𝑎𝑙𝑎𝑙𝑔1 − 𝐹𝑣𝑎𝑙𝐶𝑉𝑋|

100 -2.9856e+01 3.77 -3.0389e+01 2.47 5.3307e-01
200 -3.6411e+01 3.81 -3.6414e+01 1.93 3.4272e-03
500 -1.2000e+02 17.68 -1.2124e+02 4.76 1.2458e+00
800 -3.5445e+02 35.33 -3.5503e+02 8.90 5.7573e-01

1000 -5.8513e+02 47.09 -5.8579e+02 10.85 6.6386e-01
1500 -4.8653e+02 100.89 -4.8969e+02 24.78 3.1535e+00

Table 16: HDA for 𝑃(𝑛, 𝑝) with 𝜆0 = 1, 𝜏0 = 25

𝑛 𝑝 𝑟 𝑞 Iter
HDA-CPU

Time
CVX-CPU

Time
100 10 2 0.05 9 0.78667 5.88306
100 10 2 0.1 14 1.10219 5.87564
100 10 2 0.005 8 0.805029 6.94072
100 10 √10 0.8 95 2.96916 4.27314

100 10 √10 0.05 11 0.981767 6.03685

250 25 √10 0.8 95 7.61844 6.07923

250 25 √10 0.05 11 1.66404 7.13811
250 50 2 0.5 36 3.68528 4.49324

2500 250 3 0.5 40 25.7556 14.2906

Table 17: Comparison of HDA with CVX for 𝜆0 = 0.5, 𝜏0 =
0.001 and 𝑝 = 1

 HDA CVX
𝑛 𝐹𝑣𝑎𝑙 Time 𝐹𝑣𝑎𝑙 Time Comments

7500 -2499.11 498.877 1524.58 45.07 CVX Div.
5000 -1095.96 209.074 3780.12 30.426 CVX Div.
2500 9.457 52.431 681.357 14.148 CVX Div.
1500 -631.604 19.5159 -631.604 10.3011
100 -286.232 9.833 -286.232 7.187
800 308.033 6.719 308.033 8.203
500 -134.375 3.802 -134.375 5.602

Table 18: HDA, MHDA, and CVX for 𝜆0 = 100, 𝜏0 = 0.1, 𝑐𝑜 = 10, and 𝑝 = 1 Problems 𝑄(𝑚, 𝑛) with 𝜌 = 1

 HDA CVX PHDA
𝑛 𝑚 Fval Time 𝐹𝑣𝑎𝑙 Time 𝐹𝑣𝑎𝑙 Time

100 2 0.793871 6.58139 0.793871 15.8529 0.793871 2.80084
500 100 78.9603 0.876856 78.9603 7.51149 78.9603 1.20662

1000 250 209.408 2.19094 209.408 12.1679 209.408 1.95086
1500 750 661.848 5.38192 661.848 18.1677 661.848 3.591
2500 1000 892.215 16.1945 NaN * 892.215 10.9551
5000 2500 2296.45 48.5921 NaN * 2296.45 26.1938
7500 4000 3718.64 106.094 NaN * 3718.64 69.8502

10000 5000 4672.2 190.278 * * 4672.2 97.6716
12500 4000 3718.64 346.232 * * 3718.64 233.032
20000 8000 7547.61 3209.84 * * 7547.61 4256.93

We tested a problem with one million variables

subject to 5000 constraints in less than 4625 sec
(Table 12). According to our experience with these
type of algorithms, we think that a primal-dual
version of (HDA) will be more stable and gives better
results. A forthcoming paper will be devoted to the
study of the performance of the Primal-Dual
Hyperbolic Decomposition Algorithm with some
comparisons with some well-known algorithms in
literature as the Alternating Direction Multipliers
Method (ADMM) (Hamdi and Mishra, 2011) and the
Separable Augmented Lagrangian Algorithm
(SALA)(Hamdi, 2005b). Particular efforts should be
made to understand the interaction between the
three parameters within the Proximal version of
HDA.

Also, since (SALA) showed efficiency to reach nice
local extrema, we believe that HDA and PHDA can
also be efficient when solving some non-convex
large-scale optimization problems.

Appendix A: Sub-problems solvability

Proposition 3: If the conditions (A1)-(A5) hold, then

there exists λ ≥ λ0 such that:

inf
𝑥∈ℜ𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏) = min
𝑥∈ℜ𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏)

for all 𝜆 ≥ 𝜆 and 0 ⩽ 𝜏 ≤ 𝜏0, ∑
𝑝
𝑖=1 𝑦𝑖 = 0.

Proof: Let 𝜏1 ∈ 𝐼 − 2.5𝑝𝑡 𝑅 such that 𝜏0 > 𝜏1. By
using 𝑃8 and 𝜆0 ≥ 0

𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆

0, 𝜏0) − 𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆
0, 𝜏1) = 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆

0, 𝜏0) −
𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆

0, 𝜏1)
⩽ 𝜏0 − 𝜏1 (12)
⩽ 𝜏0.

Using (A3) and Eq. 12, we get

𝐹𝑖
0 ⩽ 𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆

0, 𝜏0) ≤ 𝜏0 + 𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆0, 𝜏), ∀𝜏 ∈ [0, 𝜏0],

then

𝐹𝑖
0 − 𝜏0 ⩽ 𝐹𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜆0, 𝜏) = 𝑓𝑖(𝑥𝑖) + 𝑃(𝑔𝑖(𝑥𝑖) + 𝑦𝑖 , 𝜆0, 𝜏)

 (13)

where, 𝜏 ∈ [0, 𝜏0]. Now, let 𝑧 ∈ Ω be a feasible point,
and by condition (A1) and (A4), the set Ω is compact,
and since 𝑓𝑖 are all continuous, then they attain their
maximum value on the set Ω. Hence,

𝐹(𝑧, 𝑦, 𝜆, 𝜏) = ∑𝑝𝑖=1 𝑓𝑖(𝑧𝑖) + ∑

𝑝
𝑖=1 𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖 , 𝜆, 𝜏)

⩽ ∑𝑝
𝑖=1 𝑓𝑖(𝑧𝑖

0) + ∑
𝑝
𝑖=1 𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖 , 𝜆, 𝜏)

where 𝐹(𝑧0) = ∑
𝑝
𝑖=1 𝑓𝑖(𝑧𝑖

0) is the maximum value of

𝐹 on Ω.

Let 𝑦𝑖
𝑧 = −𝑔𝑖(𝑧𝑖) +

1

𝑝
∑𝑝𝑖=1 𝑔𝑖(𝑧𝑖), then using 𝑃1

and 𝑃3, we have for 𝜆 > 0,

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

96

𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖
𝑧, 𝜆, 𝜏) < 𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖

𝑧 , 0, 𝜏) = 𝜏

for 𝜏 > 0. For 𝜏 = 0, 𝑃(𝑔𝑖(𝑧𝑖) + 𝑦𝑖
𝑧 , 𝜆, 𝜏) = 0 = 𝜏

since 𝑔𝑖(𝑧𝑖) + 𝑦𝑖
𝑧 > 0.

Hence,

𝐹(𝑧, 𝑦𝑧 , 𝜆, 𝜏) ⩽ ∑

𝑝
𝑖=1 𝑓𝑖(𝑧𝑖

0) + 𝜏𝑝. (14)

On the other hand, if 𝑤 is not in the set Ω𝜖 , i.e.,
∑𝑝𝑖=1 𝑔𝑖(𝑤𝑖) ≤ −𝜖. Then:

𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) = 𝑓𝑖(𝑤𝑖) + 𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏).

If 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 ≥ 0 then 𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏) > 0
and we conclude:

𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) > 𝑓𝑖(𝑤𝑖). (15)

Also, if 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 < 0, then from 𝑃1 and 𝑃4, we
get

𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏) > −2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖),

and thus,
𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) > 𝑓𝑖(𝑤𝑖) − 2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖). (16)

For the other side, using 𝑃3, if 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 ≥ 0, we
have:

𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏) < 𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 0, 𝜏) = 𝜏

and if 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 < 0, it is easy to show that:

𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆, 𝜏) ≤ −2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) + 𝜏.

So, for 0 ⩽ 𝜏 ≤ 𝜏0

𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆0, 𝜏) = 𝑓𝑖(𝑤𝑖) + 𝑃(𝑔𝑖(𝑤𝑖) + 𝑦𝑖 , 𝜆0, 𝜏)
⩽ 𝑓𝑖(𝑤𝑖) +

{

𝜏0 𝑖𝑓 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 ⩾ 0

−2𝜆0(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) + 𝜏0 𝑖𝑓 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 < 0.
 (17)

Therefore, using the above results:

• If 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 ≥ 0 from Eq. 15 to Eq. 17

𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ⩾ 𝐹𝑖

0 − 2𝜏0 − 2(𝜆 − 𝜆0)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖). (18)

• If 𝑔𝑖(𝑤𝑖) + 𝑦𝑖 < 0 then from Eq. 16 and Eq. 18

𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ⩾ 𝑓𝑖(𝑤𝑖) − 2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖).

⩾ 𝑓𝑖(𝑤𝑖) − 2𝜆(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) − 2𝜆0(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) + 2𝜆0(𝑔𝑖(𝑤𝑖) + 𝑦𝑖)

≥ 𝑓𝑖(𝑤𝑖) − 2𝜆0(𝑔𝑖(𝑤𝑖) + 𝑦𝑖) + (2𝜆0 − 2𝜆)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖)

⩾ 𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆0, 𝜏) − 𝜏0 + (2𝜆0 − 2𝜆)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖)

Using Eq. 13, we have:

𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ⩾ 𝐹𝑖

0 − 2𝜏0 − 2(𝜆 − 𝜆0)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖). (19)

In general, using Eq. 17 and Eq. 18

𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ≥ 𝐹𝑖

0 − 2𝜏0 − 2(𝜆 − 𝜆0)(𝑔𝑖(𝑤𝑖) + 𝑦𝑖)

and hence,

𝐹(𝑤, 𝑦, 𝜆, 𝜏) = ∑

𝑝
𝑖=1 𝐹𝑖(𝑤𝑖 , 𝑦𝑖 , 𝜆, 𝜏) ≥ ∑

𝑝
𝑖=1 𝐹𝑖

0 − 2𝜏0𝑝 −

2(𝜆 − 𝜆0) ∑
𝑝
𝑖=1 𝑔𝑖(𝑤𝑖).

Using the fact that 𝑤 is not in Ω𝜖 we have:

𝐹(𝑤, 𝑦, 𝜆, 𝜏) ≥ ∑

𝑝
𝑖=1 𝐹𝑖

0 − 2𝜏0𝑝 + 2(𝜆 − 𝜆0)𝜖.

Notice that the right side of the above inequality

is an increasing function for 𝜆. Therefore, there is a

value 𝜆 such that this expression will be greater than

∑𝑝𝑖=1 𝑓𝑖(𝑧𝑖
0) + 𝜏0𝑝 for all 𝜆 ≥ 𝜆 and 0 ≤ 𝜏 ≤ 𝜏0, where

𝜆 = 𝜆0 +
∑
𝑝
𝑖=1 (𝑓𝑖(𝑧𝑖

0)−𝐹𝑖
0)+3𝑛𝜏0

2𝜖
.

Thus, for 𝜆 ≥ 𝜆, we have from Eq. 14,

𝐹(𝑤, 𝑦, 𝜆, 𝜏) ≥ 𝐹(𝑧, 𝑦𝑧, 𝜆, 𝜏),

which implies that the inf𝑥∈ 𝐼 −2.5𝑝𝑡 𝑅 𝑛𝐹(𝑥, 𝑦, 𝜆, 𝜏)

does not occur on the set 𝐼 − 2.5𝑝𝑡 𝑅 𝑛\Ω𝜖 , then

inf
𝑥∈ 𝐼 −2.5𝑝𝑡 𝑅 𝑛

𝐹(𝑥, 𝑦, 𝜆, 𝜏) = inf
𝑥∈Ω𝜖

𝐹(𝑥, 𝑦, 𝜆, 𝜏) =

min
𝑥∈Ω𝜖

𝐹(𝑥, 𝑦, 𝜆, 𝜏)

since Ω𝜖 is a compact set. The authors would like to
thank the referees for their valuable remarks and
suggestions to improve the final version of the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of
interest.

References

Bertsekas DP and Tsitsiklis JN (1989). Parallel and distributed
computation: Numerical methods. Volume 23, Prentice-Hall,
Englewood Cliffs, USA.

Breitfeld MG and Shanno DF (1996). Computational experience
with penalty-barrier methods for nonlinear programming.

Hamdi et al/International Journal of Advanced and Applied Sciences, 7(5) 2020, Pages: 87-97

97

Annals of Operations Research, 62(1): 439-463.
https://doi.org/10.1007/BF02206826

Coleman T, Branch M, and Grace A (1999). Optimization toolbox
for use with MATLAB: Users guide. The MathWorks Inc.,
Natick, Massachusetts, USA.

Evirgen F (2017). Solution of a class of optimization problems
based on hyperbolic penalty dynamic framework. Acta
Physica Polonica A, 132: 1062-1065.
https://doi.org/10.12693/APhysPolA.132.1062

Fiacco AV and McCormick GP (1990). Nonlinear programming:
Sequential unconstrained minimization techniques. Volume 4,
SIAM, Philadelphia, USA.
https://doi.org/10.1137/1.9781611971316

Fletcher R (1975). An ideal penalty function for constrained
optimization. IMA Journal of Applied Mathematics, 15(3): 319-
342.
https://doi.org/10.1093/imamat/15.3.319

Grant M and Boyd S (2014). CVX: Matlab software for disciplined
convex programming. Version 2.1. Available online at:
https://bit.ly/2WzKf7U

Grant MC and Boyd SP (2020). The CVX users guide. CVX research
Inc., Cambridge, UK. Available online at:
https://bit.ly/3dj7RUh

Hamdi A (2005a). Two-level primal–dual proximal decomposition
technique to solve large scale optimization problems. Applied
Mathematics and Computation, 160(3): 921-938.
https://doi.org/10.1016/j.amc.2003.11.040

Hamdi A (2005b). Decomposition for structured convex programs
with smooth multiplier methods. Applied Mathematics and
Computation, 169(1): 218-241.
https://doi.org/10.1016/j.amc.2004.10.079

Hamdi A and Mahey P (2000). Separable diagonalized multiplier
method for decomposing nonlinear programs. Computational
and Applied Mathematics, 19(1): 1-29.

Hamdi A and Mishra SK (2011). Decomposition methods based on
augmented Lagrangians: A survey. In: Mishra S (Eds.), Topics
in nonconvex optimization: 175-203. Volume 50, Springer,
New York, USA.
https://doi.org/10.1007/978-1-4419-9640-4_11

Hamdi A, Mahey P, and Dussault JP (1997). A new decomposition
method in nonconvex programming via a separable
augmented Lagrangian. In: Gritzmann P, Horst R, Sachs E, and
Tichatschke R (Eds), Recent advances in optimization: 90-104.
Volume 452, Springer, Berlin, Germany.
https://doi.org/10.1007/978-3-642-59073-3_7

Kort BW and Bertsekas DP (1976). Combined primal–dual and
penalty methods for convex programming. SIAM Journal on
Control and Optimization, 14(2): 268-294.
https://doi.org/10.1137/0314020

Lasdon LS (1970). Optimization theory for large system.
MacMillan, New York, USA.

Melo T, Monteiro MTT, and Matias J (2011). Solving MPCC
problem with the hyperbolic penalty function. In the AIP
Conference Proceedings, American Institute of Physics, 1389:
763-766.
https://doi.org/10.1063/1.3636844

Melo T, Monteiro MTT, and Matias J (2012). Solving a signalized
traffic intersection problem with a hyperbolic penalty
function. In the AIP Conference Proceedings, American
Institute of Physics, 1479 (1): 830-833.
https://doi.org/10.1063/1.4756266

Polyak RA (2001). Log-Sigmoid multipliers method in constrained
optimization. Annals of Operations Research, 101(1-4): 427-
460.
https://doi.org/10.1023/A:1010938423538

Rockafellar RT (1970). Convex analysis. Princeton University
Press, Princeton, USA.
https://doi.org/10.1515/9781400873173

Rockafellar RT (1976). Augmented Lagrangians and applications
of the proximal point algorithm in convex programming.
Mathematics of Operations Research, 1(2): 97-116.
https://doi.org/10.1287/moor.1.2.97

Xavier AE (2001). Hyperbolic penalty: A new method for
nonlinear programming with inequalities. International
Transactions in Operational Research, 8(6): 659-671.
https://doi.org/10.1111/1475-3995.t01-1-00330

https://doi.org/10.1007/BF02206826
https://doi.org/10.12693/APhysPolA.132.1062
https://doi.org/10.1137/1.9781611971316
https://doi.org/10.1093/imamat/15.3.319
https://bit.ly/2WzKf7U
https://bit.ly/3dj7RUh
https://doi.org/10.1016/j.amc.2003.11.040
https://doi.org/10.1016/j.amc.2004.10.079
https://doi.org/10.1007/978-1-4419-9640-4_11
https://doi.org/10.1007/978-3-642-59073-3_7
https://doi.org/10.1137/0314020
https://doi.org/10.1063/1.3636844
https://doi.org/10.1063/1.4756266
https://doi.org/10.1023/A:1010938423538
https://doi.org/10.1515/9781400873173
https://doi.org/10.1287/moor.1.2.97
https://doi.org/10.1111/1475-3995.t01-1-00330

	A hyperbolic penalty method to solve structured convex minimization problems
	1. Introduction
	2. Hyperbolic penalty method
	3. Hyperbolic decomposition algorithm (HDA)
	3.1. Model formulation
	3.2. New HDA

	4. Properties and convergence analysis
	5. Numerical study
	5.1. Algorithmic considerations
	5.2. HDA Performances
	5.3. Extension and comparison

	6. Conclusion
	Appendix A: Sub-problems solvability
	Compliance with ethical standards
	Conflict of interest
	References

