International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 7, Issue 4 (April 2020), Pages: 103-106

----------------------------------------------

 Original Research Paper

 Title: Integrability and wave solutions for fifth-order KdV type equation

 Author(s): A. A. Gaber 1, 2, *

 Affiliation(s):

 1Department of Mathematics, College of Science and Humanities at Howtat Sudair, Majmaah University, Majmaah 11952, Saudi Arabia
 2Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-6109-8898

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2020.04.013

 Abstract:

Under investigation in this paper is the Kawahara equation, which is one of the fifth-order KdV types of equations. With the help of symbolic computation, we studied the integrability in the Painlevé property. Furthermore, Kruskal's transformation and Bäcklund transformation are used to obtain the exact wave solutions. Two wave solutions are obtained and figured to show the behavior of these solutions. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Painlevé property, Wave solutions, Fifth-order KdV type equation

 Article History: Received 21 October 2019, Received in revised form 25 January 2020, Accepted 26 January 2020

 Acknowledgment:

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The authors declare that they have no conflict of interest.

 Citation:

 Gaber AA (2020). Integrability and wave solutions for fifth-order KdV type equation. International Journal of Advanced and Applied Sciences, 7(4): 103-106

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 

 Tables

 No Table

----------------------------------------------

 References (12) 

  1. Ablowitz MJ, Ramani A, and Segur H (1980). A connection between nonlinear evolution equations and ordinary differential equations of P‐type. I. Journal of Mathematical Physics, 21(4): 715-721. https://doi.org/10.1063/1.524491   [Google Scholar]
  2. Alagesan T and Porsezian K (1996). Painlevé analysis and the integrability properties of coupled integrable dispersionless equations. Chaos, Solitons and Fractals, 7(8): 1209-1212. https://doi.org/10.1016/0960-0779(95)00108-5   [Google Scholar]
  3. Bhutani OP, Moussa MHM, and Vijaykumar K (1995). Krook-Wu model and integrability. International Journal of Engineering Science, 33(3): 331-334. https://doi.org/10.1016/0020-7225(94)00081-T   [Google Scholar]
  4. Chen W, Li J, Miao C, and Wu J (2009). Low regularity solutions of two fifth-order KdV type equations. Journal d'Analyse Mathématique, 107: 221. https://doi.org/10.1007/s11854-009-0009-0   [Google Scholar]
  5. Hao X, Liu Y, Li Z, and Ma WX (2019). Painlevé analysis, soliton solutions and lump-type solutions of the (3+ 1)-dimensional generalized KP equation. Computers and Mathematics with Applications, 77(3): 724-730. https://doi.org/10.1016/j.camwa.2018.10.007   [Google Scholar]
  6. Hunter JK and Scheurle J (1988). Existence of perturbed solitary wave solutions to a model equation for water waves. Physica D: Nonlinear Phenomena, 32(2): 253-268. https://doi.org/10.1016/0167-2789(88)90054-1   [Google Scholar]
  7. McLeod JB and Olver PJ (1983). The connection between partial differential equations soluble by inverse scattering and ordinary differential equations of Painlevé type. SIAM Journal on Mathematical Analysis, 14(3): 488-506. https://doi.org/10.1137/0514042   [Google Scholar]
  8. Moatimid GM, Moussa MHM, El-Shiekh Rehab M, and El-Satar AA (2012). Integrability and exact solutions of complexly coupled KDV system: Painlevé property and bäcklund transformation. American Journal of Computational and Applied Mathematics, 2(2): 14-16. https://doi.org/10.5923/j.ajcam.20120202.03   [Google Scholar]
  9. Steeb WH and Euler N (1988). Nonlinear evolution equations and painlev test. World Scientific, Singapore, Singapore. https://doi.org/10.1142/0723   [Google Scholar]
  10. Wang DS (2010). Integrability of a coupled KdV system: Painlevé property, Lax pair and Bäcklund transformation. Applied Mathematics and Computation, 216(4): 1349-1354. https://doi.org/10.1016/j.amc.2010.02.030   [Google Scholar]
  11. Wazwaz AM (2012). Two forms of (3+ 1)-dimensional B-type Kadomtsev–Petviashvili equation: Multiple soliton solutions. Physica Scripta, 86(3): 035007. https://doi.org/10.1088/0031-8949/86/03/035007   [Google Scholar]
  12. Weiss J, Tabor M, and Carnevale G (1983). The Painlevé property for partial differential equations. Journal of Mathematical Physics, 24(3): 522-526. https://doi.org/10.1063/1.525721   [Google Scholar]