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Under investigation in this paper is the Kawahara equation, which is one of
the fifth-order KdV types of equations. With the help of symbolic
computation, we studied the integrability in the Painlevé property.
Furthermore, Kruskal's transformation and Backlund transformation are
used to obtain the exact wave solutions. Two wave solutions are obtained
and figured to show the behavior of these solutions.
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BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As we known that there are many techniques to
find the exact solutions for a given partial differential
equation in the nonlinear science, such as the
symmetry analysis, the bilinear form, Backlund
transformation, and Darboux transformation, etc.
(McLeod and Olver, 1983; Weiss et al, 1983;
Ablowitz et al.,1980; Bhutani et al., 1995; Alagesan
and Porsezian, 1996; Wang, 2010; Moatimid et al,,
2012; Steeb and Euler, 1988; Hao et al, 2019;
Wazwaz, 2012).

The Painlevé analysis has drawn attention in
much of neoteric research, and in fact, this study has
been well utilized by Weiss, Tabor and Carnevale
(WTC) for the partial differential equations in 1983,
plays a very important role to find many other
integrable properties such as the Backlund
transformations, Lax pair, Schwarzian form, and
more new integrable models.

Consequently, we have, herein, utilized singular
manifold expansion to obtain some special exact
solutions of the Kawahara equation. Unlike the
integrable cases of ODEs and PDEs, the procedure
yields, for the non-integrable case, a consistency
condition which, when exploited further, leads to
certain special solutions. In this paper, we obtain the
Kawahara equation:
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where u=u(x, t) denotes the unknown function, all
the parameters a, f and y € R. This equation is one

the type of fifth-order KdV equations, which
described many physical phenomena, such as
gravity-capillary waves on a shallow layer and
magneto-sound propagation in plasma of Hunter and
Scheurle (1988); the authors proved there are
traveling wave solutions for a fifth-order partial
differential equation, which describes water waves
with surface tension. The paper Chen et al. (2009) is
mainly concerned with the local well-posedness of
the initial-value problems for the Kawahara and the
modified Kawahara equations in Sobolev spaces.

2. Painlevé analysis

In this part, we study the Painlevé integrability of
Eg. 1 following Weiss's algorithm (Weiss et al., 1983)
of singularity analysis. To proceed with the Painlevé
singularity analysis, set Eq. 1 to:

u(x,t) = " (x,t) i u;(x, t) @7 (x, t) (2)

where @=¢(x, t) and w; (j=0,1,2,..) are analytic
functions in a neighborhood of the manifold
determined by @(t, x)=0. Further, r is an integer to
be found. Inserting expansion Eq. 2 in Eq. 1 a leading
order analysis uniquely determines the possible
value of r analysis yields:

r=-=2,u =6 /_tﬂ(p,%. 3)

Substituting Eq. 2 into Eq. 1, we get:
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On collecting terms involving U; (xt) in Eq. 4, it is

readily found that:

61y |~ 2[( + 1) ~ 6)(j ~ 8)
(G2 =7j+30)] = F(wj_g,.., ujr ...) (5)
forj=0,1, 2,... From Eq. 5 we find that j=-1, 6, and 8
are the resonances. Thus, Eq. 2 can be expressed in
the following alternative form:

u(x,t) =up@ 2 +u @t +uy +uz
tuz@? + U p?® + usp® + ugp* (6)
where u,, u; and u, are functions to be determined.
The recursion relation for U; (t,x) is found to be,
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For j=0,1, 2, ... the resonances are -1, 6, and 8, but
-1, as previously referred to, is not admissible for
these values od j. Further, u;(x,t) is an arbitrary
function of x and t.

Assigning j=0, 1, 2 in Eq. 7, we get:

(8)
j=1

Uy = S00r @kt aubuo.
j=2

9)

120y@3+50u3 @y

= ——— (—4auuepy + 20ueusu
40(113({))(( 1 0(px ov1Yox

+aug Uy x — 24Buo@F + Y(120us 4 @3
+240u;1 PFPxx — 720U Q2Pyy — 240U 4 P3

—240UoP% Oxxx
j=3

Uz

(10)

_ 1
 Baudey
+2ugUyUg x + 2UgUy Uy 5 + USUZ 4x)
V10cy(—6u; 9% + 18ugx 5 + 18uopxPxx) +
Y(—180uo,x<P>2((Pxx - 90u1(P)2((Pxx + 90u0,xx‘p)2(x +
180u0,xx(Px(Pxx - 60u1,xx(P)3( - 60u1‘~P)2(‘~Pxxx +
120U @y Py + 60U Py Pyxx + 60UFQOF +

30upPxPyxxx = 0
j=4

uz (a((—uj — 6uguiuz) Py + ufugy

(11)

Uy (—2ug + a((—2uu, —

- 2audey
2ufu, — 4uguguz) @y + 2uyuguf + 2uguszlyy)
+@euiug x + 2UgUaUpy + Ufuzy) + B(6Us < PF
6u1(Px(Pxx - 6u0,x(PX - Zuocpxxx) + Y(goul,x
60u1,xx(Px(Pxx + 40u1,X(PX(Pxxx + ZOUO,XX(PXX
_Zouo,xxcpxxcpxxx - Zouo,xxcpxx + 10u1,xx‘~Px

_10u0,x(Pxxx - 10u0,xxx‘Px - Zuo@xxxxx))
j=5

(12)

U5 = —5— (—u;@¢ + ugy + a((—usuj — uzuf
AUp Py
2ugUzUz — 2UgUsUs) Py + UGy + 2UgUzUgx
+2ujuzugy + 2ugugUgx + 2ugusz + 2ujuyuy
+2uguzuy y + Uugy + 2UgUzUyy + 2UgUyUgy
+ugu4,x + ﬁ(_3ul,x¢)xx - 3u1,xx(px — U1 Qxxx
+u0,xxx) + V(_loul,xx(pxxx — 10Uy xxxPxx —
5u1.x(Pxxx - 5u1,xxxx(px — U1 Pyxxx T+ uO,xxxx))
j=6
Uy ¢ + @(2uuzupy + 2u3UgUpx + 2UgUsUg x
+ulu,y + 2UgUzlgy + 2UgUgUgx + 2UgUp Uy,
+2uguzuy x + UZuzy + 2UgUaUsy + 2UgUqUgy

u5u5,x) + Bul,xxx + YUy xxxx = 0
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(14)

Therefore, we know for resonance Laurent series
(2) admits the sufficient number of arbitrary
functions. So it is concluded that the Kawahara Eq. 1
possesses Painlevé property.

3. Exact solution of Kawahara equation

Case I: In this part, we would like to use Kruskal's
transformation to obtain the soliton solution of Eq. 1,
which can have written in the form:

o, t)=x—ct (15)
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Substituting Eq. 15 into Egs. 9-13, proceeding as
in earlier cases we get, for successive powers of ¢/,

uo =6 =2t =7 5o
uy =2 L8 +100p),

Uz =Us=1Ug =0 (16)

Further, the integrability condition (j=6) is
satisfied identically. On combining Eqgs. 16 and 6 we
get:

_ |zy 60 B
ulx, t) = 1001((x+li’_2)2+y)

10y

(17)

—_R2
where c= % Eq. 17 represents an exact solution to

the Kawahara equation that, to our knowledge, is
being reported for the first in literature.

Case II: After verifying the Painlevé property of
the integrable dispersionless equation, we now
proceed to obtain the other integrability properties
like Backlund transformation. To construct the
Backlund transformation, we now truncate the
Laurent series at the constant level term, that is,
u; =0, for j=2, which gives:
ulx,t) =upp 2 +u 07l +u, (18)

In order to get the periodic solution of Eq. 1, we
substitute a trial solution,

o(t,x) = Exp(6(), n=x+c¢, (19)
into Egs. 8, 9 and 18, where u,=0, we get:
u(x,t) =2 /?(592 —20"). (20)

To obtain the solution of Eq. 10, we put 562 —
20" =k (where ks constant), then we utilized:

6 = c, —2log[cosh( \/{—" (1 + 2¢1)), (21)
where c; and c, are constants. The periodic solution
of Eq. 1 can be written in the following form:

u(x, t) = % /_Toyk(tanhz(\/% (x+ct

+2¢;) + sechz(\/?Tk (x+ct+2c¢)) (22)

4. Conclusions and discussions
In this paper, we have done the followings:

(1)We have investigated the integrability for the
Kawahara equation via the Painlevé property,
and two integrability conditions are obtained at
j=6 and j=8.

(2) The integrability condition at J=6 was satisfied by
Kruskal's transformation.
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(3)We obtained two-wave solutions for the
Kawahara equation. The first was inferred by
Kruskal's transformation and the other by using
the Backlund transformation.

Two wave solutions were shown in Fig. 1 and Fig.
3. Furthermore, the properties of the solution are
shown in Fig. 2 and Fig. 4.
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Fig. 1: Singular wave solution u(x,t) given by Eq. 17 with
a=B=1,y=-1
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Fig. 2: Properties of the solution u(x,t) given by Eq. 17 for
different values of t when a=p=1,y=-1
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Fig. 3: Singular wave solution u(x,t) given by Eq. 22 with
a=y=c=c1=k=1
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Fig. 4: Properties of the solution u(x,t) given by Eq. 22 for
different values of t when a=y=c=c1=k=1
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