International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 7, Issue 1 (January 2020), Pages: 20-41

----------------------------------------------

 Review Paper

 Title: Synthesis of mesoporous calcium titanate catalyst for transesterification of used cooking oil: A review of the synthesized potential

 Author(s): Noor Yahida Yahya 1, *, Norzita Ngadi 2

 Affiliation(s):

 1Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Malaysia
 2School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-5995-224X

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2020.01.003

 Abstract:

Biodiesel is a promising alternative for conventional diesel fuel due to the unsustainable feature of the resources and unstable price of the fuels. However, the production cost is higher compared to the conventional ones and is significantly contributed from the feedstock. Realizing that a large portion of used cooking oil (UCO) is generated daily, this review aims to investigate and explore the production of biodiesel from UCO. In the production reaction process, undoubtedly, the catalyst plays an important role. It has been shown that calcium oxide (CaO) is one of the best heterogeneous basic catalysts in the transesterification reaction for biodiesel production. However, the catalyst has a low surface area which restricts the active basic sites to disperse on the catalyst surface. Moreover, CaO catalyst faces leaching problem, poor stability, and porosity which hinder its catalytic activity and reusability. Therefore, in this study, it is aimed to review the potential of titanium as a support catalyst to modify CaO supported titanium with a mesoporous structure (mesoporous calcium titanate) by a sol-gel-hydrothermal method to overcome the limitations of CaO catalyst. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Biodiesel, Transesterification, Used cooking oil, Mesoporous, Calcium oxide, Titanium

 Article History: Received 24 June 2019, Received in revised form 20 October 2019, Accepted 22 October 2019

 Acknowledgment:

This work is supported by Universiti Malaysia Pahang and Universiti Teknologi Malaysia.

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

 Yahya NY and Ngadi N (2020). Synthesis of mesoporous calcium titanate catalyst for transesterification of used cooking oil: A review of the synthesized potential. International Journal of Advanced and Applied Sciences, 7(1): 20-41

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9

----------------------------------------------

 References (182) 

  1. Abbaszaadeh A, Ghobadian B, Omidkhah MR, and Najafi G (2012). Current biodiesel production technologies: A comparative review. Energy Conversion and Management, 63: 138-148. https://doi.org/10.1016/j.enconman.2012.02.027   [Google Scholar]
  2. Abdulkareem-Alsultan G, Asikin-Mijan N, Lee HV, and Taufiq-Yap YH (2016). A new route for the synthesis of La-Ca oxide supported on nano activated carbon via vacuum impregnation method for one pot esterification-transesterification reaction. Chemical Engineering Journal, 304: 61-71. https://doi.org/10.1016/j.cej.2016.05.116   [Google Scholar]
  3. Abedin MJ, Kalam MA, Masjuki HH, Sabri MFM, Rahman SA, Sanjid A, and Fattah IR (2016). Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5. Renewable Energy, 88: 20-29. https://doi.org/10.1016/j.renene.2015.11.027   [Google Scholar]
  4. Akbar E, Binitha N, Yaakob Z, Kamarudin SK, and Salimon J (2009). Preparation of Na doped SiO2 solid catalysts by the sol-gel method for the production of biodiesel from jatropha oil. Green Chemistry, 11(11): 1862-1866. https://doi.org/10.1039/b916263c   [Google Scholar]
  5. Alaba PA, Sani YM, Mohammed IY, Abakr YA, and Daud WMAW (2016). Synthesis and application of hierarchical mesoporous HZSM-5 for biodiesel production from shea butter. Journal of the Taiwan Institute of Chemical Engineers, 59: 405-412. https://doi.org/10.1016/j.jtice.2015.09.006   [Google Scholar]
  6. Amani H, Ahmad Z, and Hameed BH (2014). Highly active alumina-supported Cs–Zr mixed oxide catalysts for low-temperature transesterification of waste cooking oil. Applied Catalysis A: General, 487: 16-25. https://doi.org/10.1016/j.apcata.2014.08.038   [Google Scholar]
  7. Amani H, Asif M, and Hameed BH (2016). Transesterification of waste cooking palm oil and palm oil to fatty acid methyl ester using cesium-modified silica catalyst. Journal of the Taiwan Institute of Chemical Engineers, 58: 226-234. https://doi.org/10.1016/j.jtice.2015.07.009   [Google Scholar]
  8. Anuar MR and Abdullah AZ (2016a). Ultrasound-assisted biodiesel production from waste cooking oil using hydrotalcite prepared by combustion method as catalyst. Applied Catalysis A: General, 514: 214-223. https://doi.org/10.1016/j.apcata.2016.01.023   [Google Scholar]
  9. Anuar MR and Abdullah AZ (2016b). Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Renewable and Sustainable Energy Reviews, 58: 208-223. https://doi.org/10.1016/j.rser.2015.12.296   [Google Scholar]
  10. Asikin-Mijan N, Lee HV, and Taufiq-Yap YH (2015). Synthesis and catalytic activity of hydration–dehydration treated clamshell derived CaO for biodiesel production. Chemical Engineering Research and Design, 102: 368-377. https://doi.org/10.1016/j.cherd.2015.07.002   [Google Scholar]
  11. Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, and Fayaz H (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18: 211-245. https://doi.org/10.1016/j.rser.2012.10.013   [Google Scholar]
  12. Avhad MR and Marchetti JM (2015). A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews, 50: 696-718. https://doi.org/10.1016/j.rser.2015.05.038   [Google Scholar]
  13. Bagheri S, Muhd Julkapli N, and Bee Abd Hamid S (2014). Titanium dioxide as a catalyst support in heterogeneous catalysis. The Scientific World Journal, 2014: 727496. http://doi.org/10.1155/2014/727496   [Google Scholar] PMid:25383380 PMCid:PMC4213406
  14. Banković-Ilić IB, Stojković IJ, Stamenković OS, Veljkovic VB, and Hung YT (2014). Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews, 32: 238-254. https://doi.org/10.1016/j.rser.2014.01.038   [Google Scholar]
  15. Baskar G and Aiswarya R (2016). Trends in catalytic production of biodiesel from various feedstocks. Renewable and Sustainable Energy Reviews, 57: 496-504. https://doi.org/10.1016/j.rser.2015.12.101   [Google Scholar]
  16. Bastakoti BP, Ishihara S, Leo SY, Ariga K, Wu KCW, and Yamauchi Y (2014). Polymeric micelle assembly for preparation of large-sized mesoporous metal oxides with various compositions. Langmuir, 30(2): 651-659. https://doi.org/10.1021/la403901x   [Google Scholar] PMid:24392806
  17. Bazargan A, Kostić MD, Stamenković OS, Veljković VB, and McKay G (2015). A calcium oxide-based catalyst derived from palm kernel shell gasification residues for biodiesel production. Fuel, 150: 519-525. https://doi.org/10.1016/j.fuel.2015.02.046   [Google Scholar]
  18. Bet-Moushoul E, Farhadi K, Mansourpanah Y, Nikbakht AM, Molaei R, and Forough M (2016). Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel, 164: 119-127. https://doi.org/10.1016/j.fuel.2015.09.067   [Google Scholar]
  19. Birla A, Singh B, Upadhyay SN, and Sharma YC (2012). Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresource Technology, 106: 95-100. https://doi.org/10.1016/j.biortech.2011.11.065   [Google Scholar] PMid:22206916
  20. Bokhari A, Chuah LF, Yusup S, Klemeš JJ, Akbar MM, and Kamil RNM (2016). Cleaner production of rubber seed oil methyl ester using a hydrodynamic cavitation: Optimisation and parametric study. Journal of Cleaner Production, 136: 31-41. https://doi.org/10.1016/j.jclepro.2016.04.091   [Google Scholar]
  21. Cao Y, Zhou H, and Li J (2016). Preparation of a supported acidic ionic liquid on silica-gel and its application to the synthesis of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews, 58: 871-875. https://doi.org/10.1016/j.rser.2015.12.237   [Google Scholar]
  22. Chen GY, Shan R, Yan BB, Shi JF, Li SY, and Liu CY (2016a). Remarkably enhancing the biodiesel yield from palm oil upon abalone shell-derived CaO catalysts treated by ethanol. Fuel Processing Technology, 143: 110-117. https://doi.org/10.1016/j.fuproc.2015.11.017   [Google Scholar]
  23. Chen SY, Mochizuki T, Abe Y, Toba M, and Yoshimura Y (2013). Production of high-quality biodiesel fuels from various vegetable oils over Ti-incorporated SBA-15 mesoporous silica. Catalysis Communications, 41: 136-139. https://doi.org/10.1016/j.catcom.2013.07.021   [Google Scholar]
  24. Chen SY, Mochizuki T, Abe Y, Toba M, Yoshimura Y, Somwongsa P, and Lao-ubol S (2016b). Carbonaceous Ti-incorporated SBA-15 with enhanced activity and durability for high-quality biodiesel production: Synthesis and utilization of the P123 template as carbon source. Applied Catalysis B: Environmental, 181: 800-809. https://doi.org/10.1016/j.apcatb.2015.08.053   [Google Scholar]
  25. Cheng J, Qiu Y, Huang R, Yang W, Zhou J, and Cen K (2016). Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst. Bioresource Technology, 221: 344-349. https://doi.org/10.1016/j.biortech.2016.09.064   [Google Scholar] PMid:27658172
  26. Dai YM, Kao IH, and Chen CC (2017). Evaluating the optimum operating parameters of biodiesel production process from soybean oil using the Li2TiO3 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 70: 260-266. https://doi.org/10.1016/j.jtice.2016.11.001   [Google Scholar]
  27. Dange PN, Sharma A, and Rathod VK (2014). Synthesis of methyl butyrate using heterogeneous catalyst: Kinetic studies. Catalysis Letters, 144(9): 1537-1546. https://doi.org/10.1007/s10562-014-1313-6   [Google Scholar]
  28. Davison TJ, Okoli C, Wilson K, Lee AF, Harvey A, Woodford J, and Sadhukhan J (2013). Multiscale modelling of heterogeneously catalysed transesterification reaction process: An overview. RSC Advances, 3(18): 6226-6240. https://doi.org/10.1039/c2ra23371a   [Google Scholar]
  29. de Sousa FP, dos Reis GP, Cardoso CC, Mussel WN, and Pasa VM (2016). Performance of CaO from different sources as a catalyst precursor in soybean oil transesterification: Kinetics and leaching evaluation. Journal of Environmental Chemical Engineering, 4(2): 1970-1977. https://doi.org/10.1016/j.jece.2016.03.009   [Google Scholar]
  30. Degirmenbasi N, Coskun S, Boz N, and Kalyon DM (2015). Biodiesel synthesis from canola oil via heterogeneous catalysis using functionalized CaO nanoparticles. Fuel, 153: 620-627. https://doi.org/10.1016/j.fuel.2015.03.018   [Google Scholar]
  31. Deshmane VG and Adewuyi YG (2013). Synthesis and kinetics of biodiesel formation via calcium methoxide base catalyzed transesterification reaction in the absence and presence of ultrasound. Fuel, 107: 474-482. https://doi.org/10.1016/j.fuel.2012.12.080   [Google Scholar]
  32. Doğan TH (2016). The testing of the effects of cooking conditions on the quality of biodiesel produced from waste cooking oils. Renewable Energy, 94: 466-473. https://doi.org/10.1016/j.renene.2016.03.088   [Google Scholar]
  33. Encinar JM, Pardal A, and Sánchez N (2016). An improvement to the transesterification process by the use of co-solvents to produce biodiesel. Fuel, 166: 51-58. https://doi.org/10.1016/j.fuel.2015.10.110   [Google Scholar]
  34. Endo T, Okada S, Torigoe K, Koshikawa N, Shresta RG, Sakai K, and Sakai H (2015). Removal of surfactant template from mesoporous titania. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 464: 52-56. https://doi.org/10.1016/j.colsurfa.2014.10.004   [Google Scholar]
  35. Enweremadu CC and Mbarawa MM (2009). Technical aspects of production and analysis of biodiesel from used cooking oil: A review. Renewable and Sustainable Energy Reviews, 13(9): 2205-2224. https://doi.org/10.1016/j.rser.2009.06.007   [Google Scholar]
  36. Esipovich A, Danov S, Belousov A, and Rogozhin A (2014). Improving methods of CaO transesterification activity. Journal of Molecular Catalysis A: Chemical, 395: 225-233. https://doi.org/10.1016/j.molcata.2014.08.011   [Google Scholar]
  37. Ezzah-Mahmudah S, Lokman IM, Saiman MI, and Taufiq-Yap YH (2016). Synthesis and characterization of Fe2O3/CaO derived from Anadara Granosa for methyl ester production. Energy Conversion and Management, 126: 124-131. https://doi.org/10.1016/j.enconman.2016.07.072   [Google Scholar]
  38. Fadhil AB, Aziz AM, and Altamer MH (2016). Potassium acetate supported on activated carbon for transesterification of new non-edible oil, bitter almond oil. Fuel, 170: 130-140. https://doi.org/10.1016/j.fuel.2015.12.027   [Google Scholar]
  39. Farooq M, Ramli A, and Naeem A (2015). Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy, 76: 362-368. https://doi.org/10.1016/j.renene.2014.11.042   [Google Scholar]
  40. Feinle A, Akbarzadeh J, Peterlik H, and Hüsing N (2015). Ordered meso-/macroporous silica and titania films by breath figure templating in combination with non-hydrolytic sol–gel processing. Microporous and Mesoporous Materials, 217: 233-243. https://doi.org/10.1016/j.micromeso.2015.06.043   [Google Scholar]
  41. Feyzi M and Norouzi L (2016). Preparation and kinetic study of magnetic Ca/Fe3O4@ SiO2 nanocatalysts for biodiesel production. Renewable Energy, 94: 579-586. https://doi.org/10.1016/j.renene.2016.03.086   [Google Scholar]
  42. Feyzi M and Shahbazi E (2015). Catalytic performance and characterization of Cs–Ca/SiO2–TiO2 nanocatalysts for biodiesel production. Journal of Molecular Catalysis A: Chemical, 404: 131-138. https://doi.org/10.1016/j.molcata.2015.04.018   [Google Scholar]
  43. Feyzi M and Shahbazi Z (2017). Preparation, kinetic and thermodynamic studies of Al–Sr nanocatalysts for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 71: 145-155. https://doi.org/10.1016/j.jtice.2016.11.023   [Google Scholar]
  44. Feyzi M, Hosseini N, Yaghobi N, and Ezzati R (2017). Preparation, characterization, kinetic and thermodynamic studies of MgO-La2O3 nanocatalysts for biodiesel production from sunflower oil. Chemical Physics Letters, 677: 19-29. https://doi.org/10.1016/j.cplett.2017.03.014   [Google Scholar]
  45. Fu J, Li Z, Xing S, Wang Z, Miao C, Lv P, and Yuan Z (2016). Cation exchange resin catalysed biodiesel production from used cooking oil (UCO): Investigation of impurities effect. Fuel, 181: 1058-1065. https://doi.org/10.1016/j.fuel.2016.04.131   [Google Scholar]
  46. Gardy J, Hassanpour A, Lai X, Ahmed MH, and Rehan M (2017). Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst. Applied Catalysis B: Environmental, 207: 297-310. https://doi.org/10.1016/j.apcatb.2017.01.080   [Google Scholar]
  47. Gardy J, Hassanpour A, Lai X, and Ahmed MH (2016). Synthesis of Ti (SO4) O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Applied Catalysis A: General, 527: 81-95. https://doi.org/10.1016/j.apcata.2016.08.031   [Google Scholar]
  48. Guldhe A, Singh P, Ansari FA, Singh B, and Bux F (2017). Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel, 187: 180-188. https://doi.org/10.1016/j.fuel.2016.09.053   [Google Scholar]
  49. Gurunathan B and Ravi A (2015). Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresource Technology, 190: 424-428. https://doi.org/10.1016/j.biortech.2015.04.101   [Google Scholar] PMid:25958133
  50. Haigh KF, Abidin SZ, Vladisavljević GT, and Saha B (2013). Comparison of Novozyme 435 and Purolite D5081 as heterogeneous catalysts for the pretreatment of used cooking oil for biodiesel production. Fuel, 111: 186-193. https://doi.org/10.1016/j.fuel.2013.04.056   [Google Scholar]
  51. Hajjari M, Tabatabaei M, Aghbashlo M, and Ghanavati H (2017). A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72: 445-464. https://doi.org/10.1016/j.rser.2017.01.034   [Google Scholar]
  52. Hassan MH and Kalam MA (2013). An overview of biofuel as a renewable energy source: Development and challenges. Procedia Engineering, 56: 39-53. https://doi.org/10.1016/j.proeng.2013.03.087   [Google Scholar]
  53. Hayyan A, Hashim MA, Hayyan M, Mjalli FS, and AlNashef IM (2014). A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent. Journal of Cleaner Production, 65: 246-251. https://doi.org/10.1016/j.jclepro.2013.08.031   [Google Scholar]
  54. Helwani Z, Aziz N, Kim J, and Othman MR (2016). Improving the yield of Jatropha curcas's FAME through sol–gel derived meso-porous hydrotalcites. Renewable Energy, 86: 68-74. https://doi.org/10.1016/j.renene.2015.07.094   [Google Scholar]
  55. Hernández-Hipólito P, Juárez-Flores N, Martínez-Klimova E, Gómez-Cortés A, Bokhimi X, Escobar-Alarcón L, and Klimova TE (2015). Novel heterogeneous basic catalysts for biodiesel production: Sodium titanate nanotubes doped with potassium. Catalysis Today, 250: 187-196. https://doi.org/10.1016/j.cattod.2014.03.025   [Google Scholar]
  56. Hindryawati N, Maniam GP, Karim MR, and Chong KF (2014). Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst. Engineering Science and Technology, an International Journal, 17(2): 95-103. https://doi.org/10.1016/j.jestch.2014.04.002   [Google Scholar]
  57. Ho WWS, Ng HK, Gan S, and Tan SH (2014). Evaluation of palm oil mill fly ash supported calcium oxide as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil. Energy Conversion and Management, 88: 1167-1178. https://doi.org/10.1016/j.enconman.2014.03.061   [Google Scholar]
  58. Hosseini SE and Wahid MA (2012). Necessity of biodiesel utilization as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 16(8): 5732-5740. https://doi.org/10.1016/j.rser.2012.05.025   [Google Scholar]
  59. Hu S, Wang Y, and Han H (2011). Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass and Bioenergy, 35(8): 3627-3635. https://doi.org/10.1016/j.biombioe.2011.05.009   [Google Scholar]
  60. Ilgen O and Akin AN (2012). Determination of reaction orders for the transesterification of canola oil with methanol by using KOH/MgO as a heterogeneous catalyst. Applied Catalysis B: Environmental, 126: 342-346. https://doi.org/10.1016/j.apcatb.2012.07.034   [Google Scholar]
  61. Islam A, Taufiq-Yap YH, Chan ES, Moniruzzaman M, Islam S, and Nabi MN (2014). Advances in solid-catalytic and non-catalytic technologies for biodiesel production. Energy Conversion and Management, 88: 1200-1218. https://doi.org/10.1016/j.enconman.2014.04.037   [Google Scholar]
  62. Islam A, Taufiq-Yap YH, Ravindra P, Teo SH, Sivasangar S, and Chan ES (2015). Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst. Energy, 89: 965-973. https://doi.org/10.1016/j.energy.2015.06.036   [Google Scholar]
  63. Issariyakul T and Dalai AK (2014). Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews, 31: 446-471. https://doi.org/10.1016/j.rser.2013.11.001   [Google Scholar]
  64. Joshi G, Rawat DS, Lamba BY, Bisht KK, Kumar P, Kumar N, and Kumar S (2015). Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides. Energy Conversion and Management, 96: 258-267. https://doi.org/10.1016/j.enconman.2015.02.061   [Google Scholar]
  65. Kaur N and Ali A (2014). Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha crucas oil. Fuel Processing Technology, 119: 173-184. https://doi.org/10.1016/j.fuproc.2013.11.002   [Google Scholar]
  66. Kaur N and Ali A (2015a). Preparation and application of Ce/ZrO2− TiO2/SO42− as solid catalyst for the esterification of fatty acids. Renewable Energy, 81: 421-431. https://doi.org/10.1016/j.renene.2015.03.051   [Google Scholar]
  67. Kaur N and Ali A (2015b). Lithium zirconate as solid catalyst for simultaneous esterification and transesterification of low quality triglycerides. Applied Catalysis A: General, 489: 193-202. https://doi.org/10.1016/j.apcata.2014.10.013   [Google Scholar]
  68. Kaur N and Ali A (2015c). Preparation and application of Ce/ZrO2− TiO2/SO42− as solid catalyst for the esterification of fatty acids. Renewable Energy, 81: 421-431. https://doi.org/10.1016/j.renene.2015.03.051   [Google Scholar]
  69. Kazemian H, Turowec B, Siddiquee MN, and Rohani S (2013). Biodiesel production using cesium modified mesoporous ordered silica as heterogeneous base catalyst. Fuel, 103: 719-724. https://doi.org/10.1016/j.fuel.2012.07.058   [Google Scholar]
  70. Kiss FE, Micic RD, Tomić MD, Nikolić-Djorić EB, and Simikić MĐ (2014). Supercritical transesterification: Impact of different types of alcohol on biodiesel yield and LCA results. The Journal of Supercritical Fluids, 86: 23-32. https://doi.org/10.1016/j.supflu.2013.11.015   [Google Scholar]
  71. Koh MY and Ghazi TIM (2011). A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews, 15(5): 2240-2251. https://doi.org/10.1016/j.rser.2011.02.013   [Google Scholar]
  72. Konwar LJ, Wärnå J, Mäki-Arvela P, Kumar N, and Mikkola JP (2016). Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst. Fuel, 166: 1-11. https://doi.org/10.1016/j.fuel.2015.10.102   [Google Scholar]
  73. Korkut I and Bayramoglu M (2016). Ultrasound assisted biodiesel production in presence of dolomite catalyst. Fuel, 180: 624-629. https://doi.org/10.1016/j.fuel.2016.04.101   [Google Scholar]
  74. Kostić MD, Bazargan A, Stamenković OS, Veljković VB, and McKay G (2016). Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar. Fuel, 163: 304-313. https://doi.org/10.1016/j.fuel.2015.09.042   [Google Scholar]
  75. Kouzu M and Hidaka JS (2012). Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review. Fuel, 93: 1-12. https://doi.org/10.1016/j.fuel.2011.09.015   [Google Scholar]
  76. Kouzu M, Kajita A, and Fujimori A (2016). Catalytic activity of calcined scallop shell for rapeseed oil transesterification to produce biodiesel. Fuel, 182: 220-226. https://doi.org/10.1016/j.fuel.2016.05.111   [Google Scholar]
  77. Kumar N and Chauhan SR (2013). Performance and emission characteristics of biodiesel from different origins: A review. Renewable and Sustainable Energy Reviews, 21: 633-658. https://doi.org/10.1016/j.rser.2013.01.006   [Google Scholar]
  78. Kumar N, Hazarika SN, Limbu S, Boruah R, Deb P, Namsa ND, and Das SK (2015). Hydrothermal synthesis of anatase titanium dioxide mesoporous microspheres and their antimicrobial activity. Microporous and Mesoporous Materials, 213: 181-187. https://doi.org/10.1016/j.micromeso.2015.02.047   [Google Scholar]
  79. Lam MK, Lee KT, and Mohamed AR (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4): 500-518. https://doi.org/10.1016/j.biotechadv.2010.03.002   [Google Scholar] PMid:20362044
  80. Lee HV and Taufiq-Yap YH (2015). Optimization study of binary metal oxides catalyzed transesterification system for biodiesel production. Process Safety and Environmental Protection, 94: 430-440. https://doi.org/10.1016/j.psep.2014.10.001   [Google Scholar]
  81. Léon CIS, Song D, Su F, An S, Liu H, Gao J, and Leng J (2015). Propylsulfonic acid and methyl bifunctionalized TiSBA-15 silica as an efficient heterogeneous acid catalyst for esterification and transesterification. Microporous and Mesoporous Materials, 204: 218-225. https://doi.org/10.1016/j.micromeso.2014.11.018   [Google Scholar]
  82. León-Reina L, Cabeza A, Rius J, Maireles-Torres P, Alba-Rubio AC, and Granados ML (2013). Structural and surface study of calcium glyceroxide, an active phase for biodiesel production under heterogeneous catalysis. Journal of Catalysis, 300: 30-36. https://doi.org/10.1016/j.jcat.2012.12.016   [Google Scholar]
  83. Lertpanyapornchai B and Ngamcharussrivichai C (2015). Mesostructured Sr and Ti mixed oxides as heterogeneous base catalysts for transesterification of palm kernel oil with methanol. Chemical Engineering Journal, 264: 789-796. https://doi.org/10.1016/j.cej.2014.12.031   [Google Scholar]
  84. Li FJ, Li HQ, Wang LG, and Cao Y (2015). Waste carbide slag as a solid base catalyst for effective synthesis of biodiesel via transesterification of soybean oil with methanol. Fuel Processing Technology, 131: 421-429. https://doi.org/10.1016/j.fuproc.2014.12.018   [Google Scholar]
  85. Li H, Niu S, Lu C, and Li J (2016). Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production. Fuel, 176: 63-71. https://doi.org/10.1016/j.fuel.2016.02.067   [Google Scholar]
  86. Lim S and Teong LK (2010). Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews, 14(3): 938-954. https://doi.org/10.1016/j.rser.2009.10.027   [Google Scholar]
  87. Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, and Mingdong D (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88(4): 1020-1031. https://doi.org/10.1016/j.apenergy.2010.09.029   [Google Scholar]
  88. Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, and García-Martínez J (2014). Mesoporous materials for clean energy technologies. Chemical Society Reviews, 43(22): 7681-7717. https://doi.org/10.1039/C3CS60435G   [Google Scholar] PMid:24699503
  89. Liu H, Shuang Guo H, Jing Wang X, Zhong Jiang J, Lin H, Han S, and Peng Pei S (2016). Mixed and ground KBr-impregnated calcined snail shell and kaolin as solid base catalysts for biodiesel production. Renewable Energy, 93: 648-657. https://doi.org/10.1016/j.renene.2016.03.017   [Google Scholar]
  90. Liu H, Su L, Shao Y, and Zou L (2012). Biodiesel production catalyzed by cinder supported CaO/KF particle catalyst. Fuel, 97: 651-657. https://doi.org/10.1016/j.fuel.2012.02.002   [Google Scholar]
  91. Liu L, Wen Z, and Cui G (2015). Preparation of Ca/Zr mixed oxide catalysts through a birch-templating route for the synthesis of biodiesel via transesterification. Fuel, 158: 176-182. https://doi.org/10.1016/j.fuel.2015.05.025   [Google Scholar]
  92. Ma Y, Wang Q, Gao Z, Sun X, Wang N, Niu R, and Ma H (2016). Transesterification of waste cooking oil using FeCl3-modified resin catalyst and the research of catalytic mechanism. Renewable Energy, 86: 643-650. https://doi.org/10.1016/j.renene.2015.08.079   [Google Scholar]
  93. Madhu D, Chavan SB, Singh V, Singh B, and Sharma YC (2016). An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst. Bioresource Technology, 214: 210-217. https://doi.org/10.1016/j.biortech.2016.04.055   [Google Scholar] PMid:27136607
  94. Madhuvilakku R and Piraman S (2013). Biodiesel synthesis by TiO2–ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresource Technology, 150: 55-59. https://doi.org/10.1016/j.biortech.2013.09.087   [Google Scholar] PMid:24148858
  95. Mahesh SE, Ramanathan A, Begum KMS, and Narayanan A (2015). Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Conversion and Management, 91: 442-450. https://doi.org/10.1016/j.enconman.2014.12.031   [Google Scholar]
  96. Malins K, Kampars V, Brinks J, Neibolte I, and Murnieks R (2015). Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation. Applied Catalysis B: Environmental, 176: 553-558. https://doi.org/10.1016/j.apcatb.2015.04.043   [Google Scholar]
  97. Mallakpour S and Dinari M (2012). Fabrication of polyimide/titania nanocomposites containing benzimidazole side groups via sol–gel process. Progress in Organic Coatings, 75(4): 373-378. https://doi.org/10.1016/j.porgcoat.2012.07.012   [Google Scholar]
  98. Maneerung T, Kawi S, Dai Y, and Wang CH (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management, 123: 487-497. https://doi.org/10.1016/j.enconman.2016.06.071   [Google Scholar]
  99. Marciniuk LL, Hammer P, Pastore HO, Schuchardt U, and Cardoso D (2014). Sodium titanate as basic catalyst in transesterification reactions. Fuel, 118: 48-54. https://doi.org/10.1016/j.fuel.2013.10.036   [Google Scholar]
  100. Mardhiah HH, Ong HC, Masjuki HH, Lim S, and Lee HV (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews, 67: 1225-1236. https://doi.org/10.1016/j.rser.2016.09.036   [Google Scholar]
  101. Marinković DM, Stanković MV, Veličković AV, Avramović JM, Miladinović MR, Stamenković OO, and Jovanović DM (2016). Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews, 56: 1387-1408. https://doi.org/10.1016/j.rser.2015.12.007   [Google Scholar]
  102. Math MC, Kumar SP, and Chetty SV (2010). Technologies for biodiesel production from used cooking oil: A review. Energy for Sustainable Development, 14(4): 339-345. https://doi.org/10.1016/j.esd.2010.08.001   [Google Scholar]
  103. Mathiarasi R and Partha N (2016). Optimization, kinetics and thermodynamic studies on oil extraction from Daturametel Linn oil seed for biodiesel production. Renewable Energy, 96: 583-590. https://doi.org/10.1016/j.renene.2016.04.078   [Google Scholar]
  104. Mguni LL, Mukenga M, Jalama K, and Meijboom R (2013). Effect of calcination temperature and MgO crystallite size on MgO/TiO2 catalyst system for soybean oil transesterification. Catalysis Communications, 34: 52-57. https://doi.org/10.1016/j.catcom.2013.01.009   [Google Scholar]
  105. Mofijur M, Masjuki HH, Kalam MA, Atabani AE, Shahabuddin M, Palash SM, and Hazrat MA (2013). Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review. Renewable and Sustainable Energy Reviews, 28: 441-455. https://doi.org/10.1016/j.rser.2013.07.051   [Google Scholar]
  106. Mohamad M, Ngadi N, Wong SL, Jusoh M, and Yahya NY (2017). Prediction of biodiesel yield during transesterification process using response surface methodology. Fuel, 190: 104-112. https://doi.org/10.1016/j.fuel.2016.10.123   [Google Scholar]
  107. Mongkolbovornkij P, Champreda V, Sutthisripok W, and Laosiripojana N (2010). Esterification of industrial-grade palm fatty acid distillate over modified ZrO2 (with WO3–, SO4–and TiO2–): Effects of co-solvent adding and water removal. Fuel Processing Technology, 91(11): 1510-1516. https://doi.org/10.1016/j.fuproc.2010.05.030   [Google Scholar]
  108. Muciño GG, Romero R, Ramírez A, Martínez SL, Baeza-Jiménez R, and Natividad R (2014). Biodiesel production from used cooking oil and sea sand as heterogeneous catalyst. Fuel, 138: 143-148. https://doi.org/10.1016/j.fuel.2014.07.053   [Google Scholar]
  109. Musa IA (2016). The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum, 25(1): 21-31. https://doi.org/10.1016/j.ejpe.2015.06.007   [Google Scholar]
  110. Mutreja V, Singh S, and Ali A (2014). Potassium impregnated nanocrystalline mixed oxides of La and Mg as heterogeneous catalysts for transesterification. Renewable Energy, 62: 226-233. https://doi.org/10.1016/j.renene.2013.07.015   [Google Scholar]
  111. Narkhede N, Brahmkhatri V, and Patel A (2014). Efficient synthesis of biodiesel from waste cooking oil using solid acid catalyst comprising 12-tungstosilicic acid and SBA-15. Fuel, 135: 253-261. https://doi.org/10.1016/j.fuel.2014.06.062   [Google Scholar]
  112. Nasreen S, Liu H, Skala D, Waseem A, and Wan L (2015). Preparation of biodiesel from soybean oil using La/Mn oxide catalyst. Fuel Processing Technology, 131: 290-296. https://doi.org/10.1016/j.fuproc.2014.11.029   [Google Scholar]
  113. Nautiyal P, Subramanian KA, and Dastidar MG (2014). Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction–transesterification process. Fuel, 135: 228-234. https://doi.org/10.1016/j.fuel.2014.06.063   [Google Scholar]
  114. Nayebzadeh H, Saghatoleslami N, and Tabasizadeh M (2016). Optimization of the activity of KOH/calcium aluminate nanocatalyst for biodiesel production using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 68: 379-386. https://doi.org/10.1016/j.jtice.2016.09.041   [Google Scholar]
  115. Niu S, Zhou Y, Li H, Lu C, and Liu L (2015). An investigation on the catalytic capability of the modified white mud after activation in transesterification and kinetic calculation. Energy, 89: 982-989. https://doi.org/10.1016/j.energy.2015.06.034   [Google Scholar]
  116. Ofori-Boateng C and Lee KT (2013). The potential of using cocoa pod husks as green solid base catalysts for the transesterification of soybean oil into biodiesel: Effects of biodiesel on engine performance. Chemical Engineering Journal, 220: 395-401. https://doi.org/10.1016/j.cej.2013.01.046   [Google Scholar]
  117. Olsen RE, Bartholomew CH, Huang B, Simmons C, and Woodfield BF (2014). Synthesis and characterization of pure and stabilized mesoporous anatase titanias. Microporous and Mesoporous Materials, 184: 7-14. https://doi.org/10.1016/j.micromeso.2013.09.030   [Google Scholar]
  118. Olutoye MA, Wong SW, Chin LH, Amani H, Asif M, and Hameed BH (2016). Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renewable Energy, 86: 392-398. https://doi.org/10.1016/j.renene.2015.08.016   [Google Scholar]
  119. Parthiban KS and Perumalsamy M (2016). Kinetic studies on oil extraction and biodiesel production from underutilized Annona squamosa seeds. Fuel, 180: 211-217. https://doi.org/10.1016/j.fuel.2016.04.020   [Google Scholar]
  120. Patel A and Brahmkhatri V (2013). Kinetic study of oleic acid esterification over 12-tungstophosphoric acid catalyst anchored to different mesoporous silica supports. Fuel Processing Technology, 113: 141-149. https://doi.org/10.1016/j.fuproc.2013.03.022   [Google Scholar]
  121. Poosumas J, Ngaosuwan K, Quitain AT, and Assabumrungrat S (2016). Role of ultrasonic irradiation on transesterification of palm oil using calcium oxide as a solid base catalyst. Energy Conversion and Management, 120: 62-70. https://doi.org/10.1016/j.enconman.2016.04.063   [Google Scholar]
  122. Pukale DD, Maddikeri GL, Gogate PR, Pandit AB, and Pratap AP (2015). Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst. Ultrasonics Sonochemistry, 22: 278-286. https://doi.org/10.1016/j.ultsonch.2014.05.020   [Google Scholar] PMid:24935026
  123. Qiu F, Li Y, Yang D, Li X, and Sun P (2011). Biodiesel production from mixed soybean oil and rapeseed oil. Applied Energy, 88(6): 2050-2055. https://doi.org/10.1016/j.apenergy.2010.12.070   [Google Scholar]
  124. Ramachandran K, Suganya T, Gandhi NN, and Renganathan S (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review. Renewable and Sustainable Energy Reviews, 22: 410-418. https://doi.org/10.1016/j.rser.2013.01.057   [Google Scholar]
  125. Ramos MJ, Fernández CM, Casas A, Rodríguez L, and Pérez Á (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1): 261-268. https://doi.org/10.1016/j.biortech.2008.06.039   [Google Scholar] PMid:18693011
  126. Ren Y, Ma Z, and Bruce PG (2012). Ordered mesoporous metal oxides: Synthesis and applications. Chemical Society Reviews, 41(14): 4909-4927. https://doi.org/10.1039/c2cs35086f   [Google Scholar] PMid:22653082
  127. Reyero I, Moral A, Bimbela F, Radosevic J, Sanz O, Montes M, and Gandía LM (2016). Metallic monolithic catalysts based on calcium and cerium for the production of biodiesel. Fuel, 182: 668-676. https://doi.org/10.1016/j.fuel.2016.06.043   [Google Scholar]
  128. Roschat W, Siritanon T, Yoosuk B, and Promarak V (2016a). Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production. Energy Conversion and Management, 119: 453-462. https://doi.org/10.1016/j.enconman.2016.04.071   [Google Scholar]
  129. Roschat W, Siritanon T, Yoosuk B, and Promarak V (2016b). Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Conversion and Management, 108: 459-467. https://doi.org/10.1016/j.enconman.2015.11.036   [Google Scholar]
  130. Saba T, Estephane J, El Khoury B, El Khoury M, Khazma M, El Zakhem H, and Aouad S (2016). Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts. Renewable Energy, 90: 301-306. https://doi.org/10.1016/j.renene.2016.01.009   [Google Scholar]
  131. Sahu DR, Hong LY, Wang SC, and Huang JL (2009). Synthesis, analysis and characterization of ordered mesoporous TiO2/SBA-15 matrix: Effect of calcination temperature. Microporous and Mesoporous Materials, 117(3): 640-649. https://doi.org/10.1016/j.micromeso.2008.08.013   [Google Scholar]
  132. Sajjadi B, Raman AAA, and Arandiyan H (2016). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63: 62-92. https://doi.org/10.1016/j.rser.2016.05.035   [Google Scholar]
  133. Salinas D, Araya P, and Guerrero S (2012). Study of potassium-supported TiO2 catalysts for the production of biodiesel. Applied Catalysis B: Environmental, 117: 260-267. https://doi.org/10.1016/j.apcatb.2012.01.016   [Google Scholar]
  134. Salinas D, Guerrero S, Cross A, Araya P, and Wolf EE (2016). Potassium titanate for the production of biodiesel. Fuel, 166: 237-244. https://doi.org/10.1016/j.fuel.2015.10.127   [Google Scholar]
  135. Sani YM, Alaba PA, Raji-Yahya AO, Aziz AA, and Daud WMAW (2016). Facile synthesis of sulfated mesoporous Zr/ZSM-5 with improved Brønsted acidity and superior activity over SZr/Ag, SZr/Ti, and SZr/W in transforming UFO into biodiesel. Journal of the Taiwan Institute of Chemical Engineers, 60: 247-257. https://doi.org/10.1016/j.jtice.2015.10.010   [Google Scholar]
  136. Sankaranarayanan S, Antonyraj CA, and Kannan S (2012). Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts. Bioresource Technology, 109: 57-62. https://doi.org/10.1016/j.biortech.2012.01.022   [Google Scholar] PMid:22305480
  137. Sarve AN, Varma MN, and Sonawane SS (2016). Ultrasound assisted two-stage biodiesel synthesis from non-edible Schleichera triguga oil using heterogeneous catalyst: Kinetics and thermodynamic analysis. Ultrasonics Sonochemistry, 29: 288-298. https://doi.org/10.1016/j.ultsonch.2015.09.016   [Google Scholar] PMid:26585009
  138. Schmit F, Bois L, Chiriac R, Toche F, Chassagneux F, Besson M, and Khrouz L (2015). Synthesis of manganese oxide supported on mesoporous titanium oxide: Influence of the block copolymer. Journal of Solid State Chemistry, 221: 291-301. https://doi.org/10.1016/j.jssc.2014.10.010   [Google Scholar]
  139. Shan R, Shi J, Yan B, Chen G, Yao J, and Liu C (2016). Transesterification of palm oil to fatty acids methyl ester using K2CO3/palygorskite catalyst. Energy Conversion and Management, 116: 142-149. https://doi.org/10.1016/j.enconman.2016.02.084   [Google Scholar]
  140. Sharma RV, Baroi C, and Dalai AK (2014). Production of biodiesel from unrefined canola oil using mesoporous sulfated Ti-SBA-15 catalyst. Catalysis Today, 237: 3-12. https://doi.org/10.1016/j.cattod.2014.07.005   [Google Scholar]
  141. Shi G, Yu F, Wang Y, Pan D, Wang H, and Li R (2016). A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil. Renewable Energy, 92: 22-29. https://doi.org/10.1016/j.renene.2016.01.094   [Google Scholar]
  142. Shu Q, Yuan H, Liu B, Zhu L, Zhang C, and Wang J (2015). Synthesis of biodiesel from model acidic oil catalyzed by a novel solid acid catalyst SO42−/C/Ce4+. Fuel, 143: 547-554. https://doi.org/10.1016/j.fuel.2014.11.081   [Google Scholar]
  143. Silitonga AS, Ong HC, Masjuki HH, Mahlia TMI, Chong WT, and Yusaf TF (2013). Production of biodiesel from Sterculia foetida and its process optimization. Fuel, 111: 478-484. https://doi.org/10.1016/j.fuel.2013.03.051   [Google Scholar]
  144. Singh S and Patel A (2015). Mono lacunary phosphotungstate anchored to MCM-41 as recyclable catalyst for biodiesel production via transesterification of waste cooking oil. Fuel, 159: 720-727. https://doi.org/10.1016/j.fuel.2015.07.004   [Google Scholar]
  145. Singh V, Bux F, and Sharma YC (2016). A low cost one pot synthesis of biodiesel from waste frying oil (WFO) using a novel material, β-potassium dizirconate (β-K2Zr2O5). Applied Energy, 172: 23-33. https://doi.org/10.1016/j.apenergy.2016.02.135   [Google Scholar]
  146. Soltani S, Rashid U, Yunus R, and Taufiq-Yap YH (2016). Biodiesel production in the presence of sulfonated mesoporous ZnAl2O4 catalyst via esterification of palm fatty acid distillate (PFAD). Fuel, 178: 253-262. https://doi.org/10.1016/j.fuel.2016.03.059   [Google Scholar]
  147. Sorate KA and Bhale PV (2015). Biodiesel properties and automotive system compatibility issues. Renewable and Sustainable Energy Reviews, 41: 777-798. https://doi.org/10.1016/j.rser.2014.08.079   [Google Scholar]
  148. Syazwani ON, Teo SH, Islam A, and Taufiq-Yap YH (2017). Transesterification activity and characterization of natural CaO derived from waste venus clam (Tapes belcheri S.) material for enhancement of biodiesel production. Process Safety and Environmental Protection, 105: 303-315. https://doi.org/10.1016/j.psep.2016.11.011   [Google Scholar]
  149. Takase M, Chen Y, Liu H, Zhao T, Yang L, and Wu X (2014). Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication. Ultrasonics Sonochemistry, 21(5): 1752-1762. https://doi.org/10.1016/j.ultsonch.2014.04.003   [Google Scholar] PMid:24768105
  150. Talebian-Kiakalaieh A, Amin NAS, and Mazaheri H (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104: 683-710. https://doi.org/10.1016/j.apenergy.2012.11.061   [Google Scholar]
  151. Tan YH, Abdullah MO, Nolasco-Hipolito C, and Taufiq-Yap YH (2015). Waste ostrich-and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Applied Energy, 160: 58-70. https://doi.org/10.1016/j.apenergy.2015.09.023   [Google Scholar]
  152. Tao G, Hua Z, Gao Z, Zhu Y, Chen Y, Shu Z, and Shi J (2013). KF-loaded mesoporous Mg–Fe bi-metal oxides: High performance transesterification catalysts for biodiesel production. Chemical Communications, 49(73): 8006-8008. https://doi.org/10.1039/c3cc44494e   [Google Scholar] PMid:23903203
  153. Tariq M, Ali S, and Khalid N (2012). Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renewable and Sustainable Energy Reviews, 16(8): 6303-6316. https://doi.org/10.1016/j.rser.2012.07.005   [Google Scholar]
  154. Taufiqurrahmi N, Mohamed AR, and Bhatia S (2011). Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: Process optimization studies. Bioresource Technology, 102(22): 10686-10694. https://doi.org/10.1016/j.biortech.2011.08.068   [Google Scholar] PMid:21924606
  155. Teo SH, Islam A, and Taufiq-Yap YH (2016). Algae derived biodiesel using nanocatalytic transesterification process. Chemical Engineering Research and Design, 111: 362-370. https://doi.org/10.1016/j.cherd.2016.04.012   [Google Scholar]
  156. Torres-Rodríguez DA, Romero-Ibarra IC, Ibarra IA, and Pfeiffer H (2016). Biodiesel production from soybean and Jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst. Renewable Energy, 93: 323-331. https://doi.org/10.1016/j.renene.2016.02.061   [Google Scholar]
  157. Tsoutsos TD, Tournaki S, Paraíba O, and Kaminaris SD (2016). The used cooking oil-to-biodiesel chain in Europe assessment of best practices and environmental performance. Renewable and Sustainable Energy Reviews, 54: 74-83. https://doi.org/10.1016/j.rser.2015.09.039   [Google Scholar]
  158. Vahid BR and Haghighi M (2016). Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance. Energy Conversion and Management, 126: 362-372. https://doi.org/10.1016/j.enconman.2016.07.050   [Google Scholar]
  159. Verma P and Sharma MP (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62: 1063-1071. https://doi.org/10.1016/j.rser.2016.04.054   [Google Scholar]
  160. Verma P, Dwivedi G, and Sharma MP (2017). Comprehensive analysis on potential factors of ethanol in Karanja biodiesel production and its kinetic studies. Fuel, 188: 586-594. https://doi.org/10.1016/j.fuel.2016.10.062   [Google Scholar]
  161. Vieira SS, Magriotis ZM, Ribeiro MF, Graça I, Fernandes A, Lopes JMF, and Saczk AA (2015). Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous and Mesoporous Materials, 201: 160-168. https://doi.org/10.1016/j.micromeso.2014.09.015   [Google Scholar]
  162. Wan Z and Hameed BH (2014). Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate. Energy Conversion and Management, 88: 669-676. https://doi.org/10.1016/j.enconman.2014.09.010   [Google Scholar]
  163. Wang HG, Shi GL, Yu F, and Li RF (2016). Mild synthesis of biofuel over a microcrystalline S2O82−/ZrO2 catalyst. Fuel Processing Technology, 145: 9-13. https://doi.org/10.1016/j.fuproc.2016.01.021   [Google Scholar]
  164. Wen Z, Yu X, Tu ST, Yan J, and Dahlquist E (2010). Biodiesel production from waste cooking oil catalyzed by TiO2–MgO mixed oxides. Bioresource Technology, 101(24): 9570-9576. https://doi.org/10.1016/j.biortech.2010.07.066   [Google Scholar] PMid:20696572
  165. Witoon T, Bumrungsalee S, Vathavanichkul P, Palitsakun S, Saisriyoot M, and Faungnawakij K (2014). Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst. Bioresource Technology, 156: 329-334. https://doi.org/10.1016/j.biortech.2014.01.076   [Google Scholar] PMid:24525218
  166. Wong YC and Devi S (2014). Biodiesel production from used cooking oil. Oriental Journal of Chemistry, 30(2): 521-528. https://doi.org/10.13005/ojc/300216   [Google Scholar]
  167. Wong YC, Tan YP, Taufiq-Yap YH, Ramli I, and Tee HS (2015). Biodiesel production via transesterification of palm oil by using CaO–CeO2 mixed oxide catalysts. Fuel, 162: 288-293. https://doi.org/10.1016/j.fuel.2015.09.012   [Google Scholar]
  168. Wu H, Zhang J, Liu Y, Zheng J, and Wei Q (2014). Biodiesel production from Jatropha oil using mesoporous molecular sieves supporting K2SiO3 as catalysts for transesterification. Fuel Processing Technology, 119: 114-120. https://doi.org/10.1016/j.fuproc.2013.10.021   [Google Scholar]
  169. Wu L, Wei T, Lin Z, Zou Y, Tong Z, and Sun J (2016). Bentonite-enhanced biodiesel production by NaOH-catalyzed transesterification: Process optimization and kinetics and thermodynamic analysis. Fuel, 182: 920-927. https://doi.org/10.1016/j.fuel.2016.05.065   [Google Scholar]
  170. Wu W, Zhu M, and Zhang D (2017). An experimental and kinetic study of canola oil transesterification catalyzed by mesoporous alumina supported potassium. Applied Catalysis A: General, 530: 166-173. https://doi.org/10.1016/j.apcata.2016.11.029   [Google Scholar]
  171. Xia P, Liu F, Wang C, Zuo S, and Qi C (2012). Efficient mesoporous polymer based solid acid with superior catalytic activities towards transesterification to biodiesel. Catalysis Communications, 26: 140-143. https://doi.org/10.1016/j.catcom.2012.05.009   [Google Scholar]
  172. Xie W, Yang X, and Fan M (2015). Novel solid base catalyst for biodiesel production: Mesoporous SBA-15 silica immobilized with 1, 3-dicyclohexyl-2-octylguanidine. Renewable Energy, 80: 230-237. https://doi.org/10.1016/j.renene.2015.02.014   [Google Scholar]
  173. Yaakob Z, Mohammad M, Alherbawi M, Alam Z, and Sopian K (2013). Overview of the production of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews, 18: 184-193. https://doi.org/10.1016/j.rser.2012.10.016   [Google Scholar]
  174. Yan B, Zhang Y, Chen G, Shan R, Ma W, and Liu C (2016). The utilization of hydroxyapatite-supported CaO-CeO2 catalyst for biodiesel production. Energy Conversion and Management, 130: 156-164. https://doi.org/10.1016/j.enconman.2016.10.052   [Google Scholar]
  175. Yan K, Wu G, Wen J, and Chen A (2013). One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel. Catalysis Communications, 34: 58-63. https://doi.org/10.1016/j.catcom.2013.01.010   [Google Scholar]
  176. Ye M, Lu Z, Hu Y, Zhang Q, and Yin Y (2013). Mesoporous titanate-based cation exchanger for efficient removal of metal cations. Journal of Materials Chemistry A, 1(16): 5097-5104. https://doi.org/10.1039/c3ta01396k   [Google Scholar]
  177. Yin X, Duan X, You Q, Dai C, Tan Z, and Zhu X (2016). Biodiesel production from soybean oil deodorizer distillate usingcalcined duck eggshell as catalyst. Energy Conversion and Management, 112: 199-207. https://doi.org/10.1016/j.enconman.2016.01.026   [Google Scholar]
  178. Yu S, Zhang T, Xie Y, Wang Q, Gao X, Zhang R, and Su H (2015). Synthesis and characterization of iron-based catalyst on mesoporous titania for photo-thermal FT synthesis. International Journal of Hydrogen Energy, 40(1): 870-877. https://doi.org/10.1016/j.ijhydene.2014.10.121   [Google Scholar]
  179. Yu W, Wu X, Si Z, and Weng D (2013). Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5–WO3/TiO2 catalyst. Applied Surface Science, 283: 209-214. https://doi.org/10.1016/j.apsusc.2013.06.083   [Google Scholar]
  180. Yusuf NNAN, Kamarudin SK, and Yaakub Z (2011). Overview on the current trends in biodiesel production. Energy Conversion and Management, 52(7): 2741-2751. https://doi.org/10.1016/j.enconman.2010.12.004   [Google Scholar]
  181. Zainol MM, Amin NAS, and Asmadi M (2015). Synthesis and characterization of carbon cryogel microspheres from lignin–furfural mixtures for biodiesel production. Bioresource Technology, 190: 44-50. https://doi.org/10.1016/j.biortech.2015.04.067 PMid:25919936   [Google Scholar]
  182. Zhang M, Sun A, Meng Y, Wang L, Jiang H, and Li G (2015). High activity ordered mesoporous carbon-based solid acid catalyst for the esterification of free fatty acids. Microporous and Mesoporous Materials, 204: 210-217. https://doi.org/10.1016/j.micromeso.2014.11.027   [Google Scholar]