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Biodiesel is a promising alternative for conventional diesel fuel due to the 
unsustainable feature of the resources and unstable price of the fuels. 
However, the production cost is higher compared to the conventional ones 
and is significantly contributed from the feedstock. Realizing that a large 
portion of used cooking oil (UCO) is generated daily, this review aims to 
investigate and explore the production of biodiesel from UCO. In the 
production reaction process, undoubtedly, the catalyst plays an important 
role. It has been shown that calcium oxide (CaO) is one of the best 
heterogeneous basic catalysts in the transesterification reaction for biodiesel 
production. However, the catalyst has a low surface area which restricts the 
active basic sites to disperse on the catalyst surface. Moreover, CaO catalyst 
faces leaching problem, poor stability, and porosity which hinder its catalytic 
activity and reusability. Therefore, in this study, it is aimed to review the 
potential of titanium as a support catalyst to modify CaO supported titanium 
with a mesoporous structure (mesoporous calcium titanate) by a sol-gel-
hydrothermal method to overcome the limitations of CaO catalyst. 
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1. Introduction 

*The global scenario of biodiesel has recently 
received intensive attention due to the fact that 
biodiesel is an alternative to diesel fuel that can 
solve issues inherent in diesel fuel. Moreover, 
biodiesel has a significant influence on reducing 
engine emissions such as carbon monoxide (CO) (44 
%), sulphur oxide (SO) (100 %), unburned 
hydrocarbons (UHCs) (68 %), polycyclic aromatic 
hydrocarbons (PAHs) (80-90 %) and particulars (40 
%) (Talebian-Kiakalaieh et al., 2013), compared to 
diesel fuel. However, the cost of the biodiesel has 
hindered the widespread application of this source 
of renewable energy (Abbaszaadeh et al., 2012). The 
circumstances of biodiesel production and trade are 
illustrated in Fig. 1. 

In general, the cost of biodiesel production could 
be broken down into feedstock or raw material costs, 
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capital costs and operating costs. Aside from that, 
feedstock costs contribute to a major portion of the 
total cost of biodiesel production. In fact, the average 
cost of feedstock is nearly 70 % of the total 
production cost (Fig. 2). As a consequence, the high 
cost of feedstock has led to the production cost of 
biodiesel to be approximately 1.5 times higher than 
that of diesel fuel (Singh and Patel, 2015). In 
addition, for biodiesel to become commercially 
successful on a large scale, it requires favorable 
economics, especially in terms of feedstock 
production and feedstock logistics (Kumar and 
Chauhan, 2013). Used cooking oil (UCO) is among 
the readily available and low cost feedstock for 
biodiesel production. UCO can be obtained from the 
domestic sector, restaurants, hotels and the food 
industry (Tsoutsos et al., 2016). Specifically, UCO 
comes from the edible oil produced through 
conventional cooking methods, such as frying. 
Therefore, considerable quantities of UCO are 
continuously available at an insignificant cost (Math 
et al., 2010). The use of UCO as a feedstock for 
biodiesel production not only helps to reduce the 
cost of production but also reduces the associated 
environmental problems. The reason for this is that 
the inappropriate disposal of UCO may cause 
possible pollution of land and water resources 
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(Pukale et al., 2015). Although UCO is a promising 
feedstock for the reduction of the overall total cost of 
production, this type of feedstock has the problem of 
containing high free fatty acids (FFA) and water 
content. The contents come from storage and 
transportation matters, in which UCO encounters 
microbes which can transform the triglycerides in 

UCO into FFA, and the acid value (AV) of the oil 
increases beyond 100 mg KOH g-1. Furthermore, in 
cooking processes, water from the food materials is 
introduced to the oil. However, the combination of 
the contents in the oil makes biodiesel production 
from UCO harder than that from refined oil (Anuar 
and Abdullah, 2016a; Fu et al., 2016). 

 

 
Fig. 1: Annually world biodiesel production and biodiesel trade (Hosseini and Wahid, 2012) 

 

 
Fig. 2: General cost analysis of biodiesel production (Lim and Teong, 2010; Lin et al., 2011; Math et al., 2010) 

 

As this oil encounters impurities that can lead to a 
decrease in the yield of biodiesel production caused 
by undesirable side reactions such as salt formation 
(soap) or esters saponification and hydrolysis, 
catalyst selection during the reaction of biodiesel 
production should be made wisely. Detailed work is 
worthy to be carried out to design a suitable catalytic 
reaction system that could address the contents at 
UCO. A heterogeneous catalytic reaction system has 
received great attention among researchers for 

biodiesel production. Thus, it is vital to develop a 
heterogeneous catalyst that can deal with this type 
of feedstock. 

2. Biodiesel 

In general, biodiesel is defined as a mixture of 
fatty acid alkyl esters (FAAE) derived from 
renewable feedstock's such as plant oil or animal fat 
through transesterification reaction (Liu et al., 2016; 
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Singh et al., 2016). The term ‘‘bio’’ indicates the 
biological source of biodiesel, in contrast with 
conventional diesel. Biodiesel appears as a clear 
liquid with light to dark-yellow color. It has a light 
musty or soapy odor, insoluble in water and has 
stable reactivity except towards strong oxidizing 
agents (Yaakob et al., 2013). There are similarities 
between the combustion properties of biodiesel and 
diesel fuel, and this makes the former among the 
most promising alternative for renewable and 
sustainable fuel (Abbaszaadeh et al., 2012; Kumar 
and Chauhan, 2013; Lin et al., 2011). Biodiesel also 
offers a number of technical and environmental 
benefits over conventional diesel fuel. Overall, 
biodiesel can be recognized as renewable, 
biodegradable, non-toxic, environmentally friendly 
and has better lubricity and ignition properties 
compared to conventional diesel fuel (Cao et al., 
2016; Olutoye et al., 2016). 

2.1. Chemical composition of biodiesel 

Free fatty acids (FFA) is a long chain acid that is 
not conjugated or attached to anything. Generally, 
biodiesel largely corresponds to the FFA profile of its 
origin feedstock. Therefore, biodiesel may be said to 
be a conversion of FFA with a different composition 
and values caused by the different parent oil or fat to 

the respective fatty acid alkyl esters (FAAE) (Abedin 
et al., 2016; Atabani et al., 2013; Kumar and 
Chauhan, 2013; Mardhiah et al., 2017; Sajjadi et al., 
2016). 

Since methanol is the favored alcohol to be used 
during the production reaction (Syazwani et al., 
2017), all biodiesel composition is normally 
provided based on fatty acid methyl esters (FAME). 
Table 1 presents the straight chain hydrocarbons of 
FAME typically from C12 to C24 in biodiesel. FAME 
can further be grouped into two categories, which 
are the saturated and unsaturated ones. The 
saturated FAME comprises of single carbon bond, 
whereas the unsaturated FAME comprises of one or 
more carbon-carbon double bonds. 

Generally, biodiesel with a higher unsaturated 
FAME content results in better fuel properties 
compared to biodiesel with high saturated FAME 
content. The unsaturated FAME is further divided to 
monosaturated and polysaturated FAME. By 
knowing the percentage of monosaturated and 
polysaturated FAME, the quality of the reaction 
conversion can be measured through the degree of 
unsaturation. Besides, the details of FAME are also 
important in determining the properties of biodiesel 
(Akbar et al., 2009; Ramos et al., 2009). 

 
Table 1: Chemical composition of biodiesel (Banković-Ilić et al., 2014; Gardy et al., 2016; Lam et al., 2010; Taufiqurrahmi et 

al., 2011) 

Common Name Chemical Structure Carbon Structure 
Methyl laurate CH3(CH2)10CO2CH3 C12:0 

Methyl myristate CH3(CH2)12CO2CH3 C14:0 
Methyl palmitate CH3(CH2)14CO2CH3 C16:0 

Methyl palmitoleate CH3(CH2)5CH=CH(CH2)7CO2CH3 C16:1 
Methyl stearate CH3(CH2)16CO2CH3 C18:0 
Methyl oleate CH3(CH2)7CH=CH(CH2)7CO2CH3 C18:1 

Methyl linoleate CH3(CH2)4CH=CHCH2CH=CH(CH2)7CO2CH3 C18:2 
Methyl linolenate C2H5CH=CHCH2CH=CHCH2CH=CH(CH2)7CO2CH3 C18:3 
Methyl arachidate CH3(CH2)18CO2CH3 C20:0 
Methyl icosanoate CH3(CH2)9CH=CH(CH2)7CO2CH3 C20:1 
Methyl behenate CH3(CH2)20CO2CH3 C22:0 
Methyl erucate CH3(CH2)7CH=CH(CH2)11CO2CH3 C22:1 

Methyl lignocerate CH3(CH2)22CO2CH3 C24:0 
Methyl nervonate CH3(CH2)7CH=CH(CH2)13CO2CH3 C24:1 

 

2.2. Properties of biodiesel 

Knowing the properties of biodiesel is very 
important in evaluating the viability of the product 
towards its application as a fuel. Previous studies 
reported that the properties of biodiesel may vary 
significantly. This depends on their chemical 
compositions, which give a very measurable effect 
on engine performance and emissions (Issariyakul 
and Dalai, 2014; Sorate and Bhale, 2015; Yusuf et al., 
2011). Therefore, its properties shall be measured 
when considering a specific. The properties of 
biodiesel which are commonly considered include 
density, acid value, saponification value, iodine 
value, kinematic viscosity, cetane number, calorific 
value, flash point, pour point, cloud point, cloud filter 
plugging point, free glycerol content, total glycerol 
content, ash sulphur content, sulphur content, 

phosphorus content, copper strip corrosion, 
oxidation stability, water and sediment content and 
carbon residue. 

2.3. The quality standard of biodiesel 

Quality standards of biodiesel are important to 
maintain the quality of the product and also to meet 
the consumers’ expectations. At present, the ASTM 
D6751 (American Society for Testing and Materials) 
and EN 14214 (European Committee for 
Standardization) are the most referred standards 
(Syazwani et al., 2017; Abedin et al., 2016; Anuar and 
Abdullah, 2016b; Bokhari et al., 2016; Maneerung et 
al., 2016; Musa, 2016). Table 2 shows the properties 
of biodiesel with their limits. 
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Table 2: Physical and chemical properties of biodiesel with limits of US and EU standards (Asikin-mijan et al., 2015; Hajjari et 
al., 2017; Hassan and Kalam, 2013; Ho et al., 2014; Kostić et al., 2016; Mofijur et al., 2013; Mohamad et al., 2017) 

Properties (Unit) US (ASTM D6751) EU (EN 14214) 
Density (kg m-3) 860-894 860-900 

Acid value (mg KOH g-1) 0.50 max 0.50 max 
Saponification value (mg KOH g-1) 180-200 N.I 

Iodine value N.I 120 max 
Kinematic viscosity at 40 °C (mm2 s-1) 1.9-6 3.5-5 

Cetane number 47 min 51 min 
Calorific value (MJ kg-1) 42-46 35 

Flash point (°C) 130 min >110 min 
Pour point (°C) -15 to -16 N.I 
Cloud point (°C) -3 to -12 N.I 

Cloud filter plugging point (°C) 19 5 max 
Free glycerol content (mass %) 0.02 max 0.02 max 
Total glycerol content (mass %) 0.24 max 0.25 max 
Ash sulphur content (mass %) 0.02 max 0.02 max 

Sulphur content (ppm) 0.05 10 
Phosphorus content (ppm) 10 10 

Copper strip corrosion (3 h, 50 °C) Class 3 max Class 1 
Oxidation stability (h) 3 6 

Water and sediment content (vol %) 0.05 max N.I 
Carbon residue (wt. %) 0.05 max N.I 

N.I-Not Include; Max-Maximum; Min-Minimum 

 

2.4. Feedstock for biodiesel 

One of the advantages of producing biodiesel as 
an alternative fuel lies in its wide range of available 
feedstock. The feedstock for biodiesel can be 
different from one country to another depending on 
their geographical locations and agricultural 
practices. Selecting the best feedstock is essential to 
ensure a low production cost. Feedstock supply and 
price alone covers more than 75 % of the overall 
production cost (Wu et al., 2014; Yin et al., 2016). To 
remain competitive compared to diesel fuel, the 
feedstock for biodiesel should be available at the 
lowest possible price and in aplenty. Other desirable 
properties for biodiesel feedstock include high oil 
content, favorable FFA composition, low agriculture 
inputs (water, fertilizers, soils, and pesticides), 
controllable growth and harvesting season, 
consistent seeds maturity rates and potential market 
for agricultural by-products. In addition, the 
biodiesel feedstock are edible oils (such as rapeseed, 
soybean, sunflower, palm and coconut oil), non-
edible oils (such as jatropha, karanja, sea mango, 
algae and halophytes), microalgae, animal fats (for 
example tallow, yellow grease, chicken fat and by-
products from fish oil) and used or recycled oil. 

2.5. Used cooking oil 

UCO is regarded as a promising low cost 
feedstock for biodiesel production (Gardy et al., 
2016). This is due to the availability and 
considerable quantities of UCO all over the world. 
UCO is generated from the domestic sector, 
restaurants, hotels and food industry, and those 
existing in edible oil. In general, UCOs are usually 
produced through conventional cooking methods, 
such as frying, which are discarded after multiple 
uses. However, it should be noted that UCO contains 
a large amount of FFA, water content and other 
impurities. Nevertheless, the amount and the 
composition of FFA, water and other impurities 

content in UCO depend on the origin of the oil and 
cooking conditions. The high content of FFA in the oil 
is due to the presence of heat during the cooking 
process (Enweremadu and Mbarawa, 2009; Wong 
and Devi, 2014). Besides that, UCO comes into 
contact with microbes during storage and 
transportation, which can transform the 
triglycerides in UCO into FFA, and the AV of the oil 
can increase over 100 mg KOH g-1. In addition, water 
from the food materials, and metal ions such as Na+ 
and Fe3+ from cooking equipment, are both 
introduced to the oil. Further, during the cooking 
process, toxic compounds such as hydroperoxides, 
alkoxy radicals, and PAHs, are produced through 
oxidation or pyrolysis of oil molecules (Fu et al., 
2016). All these limit UCO’s wide application as a 
biodiesel feedstock. Moreover, an upper limit on the 
FFAs content in UCO can cause engine damage due to 
deposit formation (Haigh et al., 2013). In contrast, 
the application of UCO as a biodiesel feedstock may 
solve the problem of waste oil disposal as most of 
UCO is thrown as waste, that are then discharged to 
surface waters, leading to water pollution (Math et 
al., 2010; Tsoutsos et al., 2016). Table 3 shows the 
general chemical and physical properties of a UCO 
sample collected by various researchers (Kiss et al., 
2014; Pukale et al., 2015; Yaakob et al., 2013). 

3. Transesterification of oil 

Transesterification or alcoholysis is a chemical 
reaction involving triglycerides (in which the fatty 
acids group attached to the backbone of 
triglycerides) and alcohol in the presence or without 
the presence of a catalyst to form fatty acid alkyl 
esters (FAAE) and glycerol (Poosumas et al., 2016). 
It involves three consecutive reversible reactions 
that starts from the conversion of triglycerides to 
diglycerides, which are then converted to 
monoglycerides. Then, the monoglycerides are 
converted to glycerol, giving one alkyl ester in each 
step. Different types of alcohols such as methanol, 
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ethanol, propanol, and butanol can be used to 
produce biodiesel. However, methanol and ethanol 
are the most widely used. Nonetheless, comparing 
both methanol and ethanol, methanol is the most 
commonly used due to its low cost and industrial 
availability (Syazwani et al., 2017). 

 

Table 3: Chemical and physical properties of UCO 

Properties 
 Value  

Sample 
1 

Sample 
2 

Sample 
3 

Fatty acid composition (%)    
Myristic (C14:0) 0.076 N.I N.I 
Palmitic (C16:0) 4.75 6.7 8.5 
Stearic (C18:0) 1.496 1.6 3.1 
Oleic (C18:1) 66.96 18.3 21.2 

Linoleic (C18:2) 
Linolenic (C18:3) 

Others 

16.79 
7.8 

2.13 

73.4 
N.I 
N.I 

55.2 
5.9 
4.2 

    
Density (g/cm3) 0.91 0.93 0.91 

Viscosity (mm2/s) 32.11 96.55 4.2 
Calorific value (MJ/kg) N.I N.I N.I 
Acid value (mg KOH/g) 2.91 3.75 3.6 

Water content (%) 0.01 0.7 1.9 
Saponification value (mg 

KOH/g) 
N.I 207.7 207 

Peroxide value (meq/Kg) N.I N.I 23.1 
N.I-Not Include 

 

Commonly, transesterification reaction with the 
presence of a catalyst is more preferable compared 
to the absence of one. A catalyst is usually used to 
improve and enhance the rate of the reaction so that 
the reaction can be completed in shorter reaction 
time (Baskar and Aiswarya, 2016; Koh and Ghazi, 
2011; Ramachandran et al., 2013). Numerous 
catalysts have been studied for transesterification 
reaction by many researchers. These include basic 

and acid types for both homogeneous and 
heterogeneous catalysts, as well as enzymes 
(Mutreja et al., 2014). However, it should be noted 
that the selection of suitable types of catalysts is very 
pivotal for the reaction because it significantly deals 
with the type of feedstock and quantity and quality 
of the outcome which corresponds to the 
performance of catalytic activity during the reaction 
(Issariyakul and Dalai, 2014). Fig. 3 shows the types 
of transesterification approaches. 

3.1. Heterogeneous catalytic transesterification 
reaction for biodiesel production 

The catalytic transesterification reaction is the 
most commonly used method for transesterification 
of oil to produce biodiesel as it is simple and has 
been widely studied and industrially used to convert 
edible, non-edible oil, microalgae, animal fats or UCO 
into biodiesel. Catalytic transesterification is the 
reaction of triglyceride molecules that are present in 
the feedstock with an alcohol in the presence of a 
catalyst to form alkyl esters (biodiesel) and glycerol 
(Doğan, 2016). Fig. 4 shows the catalytic 
transesterification reaction process of biodiesel 
production. Generally, the stoichiometry between 
the alcohol and the oil is a 3:1 molar ratio. However, 
excess alcohol is usually needed as the reaction is 
reversible to enhance biodiesel production. 
Generally, the production performance depends on 
the reaction process parameters such as alcohol to 
oil molar ratio, type of catalyst, amount of catalyst 
loading, reaction time, reaction temperature, FFA 
and water contents in the feedstock. 

 

 
Fig. 3: Types of the transesterification reaction process 
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Fig. 4: Catalytic transesterification reaction (Poosumas et al., 2016) 

 

3.2. Heterogeneous catalyst 

Heterogeneous catalysts, which were proposed to 
solve the homogeneous catalysts problems, have 
aroused great interest among researchers in the 
transesterification reaction for biodiesel production 
(Guldhe et al., 2017; Farooq et al., 2015; Li et al., 
2015; Nasreen et al., 2015). These catalysts are 
considered for the improvement of the current 
biodiesel production process. The use of 
heterogeneous catalysts would result in a simpler 
and cheaper separation process, including reduction 
of the water effluent load and capital and energy 
costs. Besides that, heterogeneous catalysts can be 
reused and would not have to be continuously 
added. Heterogeneous systems operate in a 
continuous mode and are designed to give a longer 
lifetime and lowering associated costs (Deshmane 
and Adewuyi, 2013). Furthermore, heterogeneous 
catalysts are also claimed to be eco-friendly 
(Madhuvilakku and Piraman, 2013). However, this 
type of catalyst is restricted due to its complexity in 
the preparation process (Ma et al., 2016). 

3.3. Heterogeneous acid catalyst 

Heterogeneous acid catalysts have received 
considerable attention as a potential substitute for 
homogeneous acid catalysts because the former can 
be separated and reused and exhibit less corrosion, 
toxicity, and environmental problems than the latter 
(Cheng et al., 2016). Nevertheless, similar to 

homogeneous acid catalysts, heterogeneous acid 
catalysts may perform well in a high amount of FFA 
in the feedstock during the transesterification 
reaction in a high reaction temperature (Islam et al., 
2014). But, this type of catalyst is commended for 
high methanol to oil molar ratio and amount of 
catalyst loading to obtained high catalytic activity 
performance (Wan and Hameed, 2014). Aside from 
that, Sharma et al. (2014) stated that heterogeneous 
acid catalysts suffer from a poor reusability 
performance compared to heterogeneous basic 
catalysts. The catalytic activity of recent studies of 
the heterogeneous acid catalysts in 
transesterification reaction are tabulated in Table 4 
and Table 5 shows recent heterogeneous basic 
catalysts studied by researchers. 

3.4. Heterogeneous basic catalyst 

A basic catalyst in the heterogeneous form aims 
to overcome the constraints associated with the use 
of a homogeneous base catalyst, including the 
separation of product and by product and 
reusability. These catalysts have mostly shown high 
catalytic activity in the transesterification reaction 
under mild conditions (Mardhiah et al., 2017; 
Nayebzadeh et al., 2016). These catalysts are more 
preferable compared to the heterogeneous acid 
catalysts too, as they have non-corrosive and 
environmentally benign properties (Ofori-Boateng 
and Lee, 2013).   

 

Table 4: Recent heterogeneous acid catalysts for transesterification reaction 

Catalyst 
Reaction conditions 

Yield 
(%) 

Reusability References Methanol to oil 
molar ratio 

Catalyst 
loading (wt. %) 

Reaction 
time (h) 

Reaction 
temperature (°C) 

S2O82-/ZrO2 20:1 3 4 110 100 4 (Wang et al., 2016) 
Sulfated zirconia 20:1 3 6 150 100 N.I (Shi et al., 2016) 

HZSM-5 5:1 1 3 200 74 5 (Alaba et al., 2016) 

SO3H-ZnAl2O4 9:1 1 1 120 94.7 8 
(Soltani et al., 

2016) 

Carbon cryogel 20:1 5 5 65 91.3 N.I 
(Zainol et al., 

2015) 

HZ/1.0/60 45:1 10 4 100 N.I N.I 
(Vieira et al., 

2015) 
(PW11)3/MCM-

41 
8:1 7 16 65 90 4 

(Singh and Patel, 
2015) 

SO42-/C/Ce4+ 12:1 1 5 66 N.I 6 (Shu et al., 2015) 

ACPhSO3H 20:1 10 2 65 N.I 7 
(Malins et al., 

2015) 
TiSBA-15-Me-

PrSO3H 
90:1 5 9 65 71 3 

(Léon et al., 2015) 

Ce/ZrO2-
TiO2/SO42- 

6:1 5 1 65 N.I 5 
(Kaur and Ali, 

2015a) 
N.I-Not Include 
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Table 5: Recent heterogeneous basic catalysts for transesterification reaction 

Catalyst 

Reaction conditions 

Yield (%) Reusability References 
Methanol 

to oil 
molar ratio 

Catalyst 
loading (wt. %) 

Reaction 
time (h) 

Reaction 
temperatur

e (°C) 

Cs-Na2ZrO3 30:1 1 0.25 65 98.8 9 
(Torres-Rodríguez et al., 

2016) 
40K/PA-550 12:1 5 3.5 65 97 8 (Shan et al., 2016) 

35KOH/ZSM5 12:1 18 8 60 93.8 4 (Saba et al., 2016) 
Sodium silicate 12:1 2.5 0.5 65 97 4 (Roschat et al., 2016a) 

MgO/MgAl2O4 12:1 3 3 110 N.I 6 
(Vahid and Haghighi, 

2016) 
KOH/calcium 

aluminate 
12:1 3.5 4 65 96.7 3 

(Nayebzadeh et al., 2016) 

La/Mn oxide 12:1 3 1.5 180 N.I 11 (Nasreen et al., 2015) 
20-Li/ZrO2-700 12:1 5 1.25 65 99 10 (Kaur and Ali, 2015b) 

N.I-Not Include 

 

The disadvantageous feature of heterogeneous 
basic catalysts is its high affinity to moisture during 
storage and high FFA content in the feedstock 
(Issariyakul and Dalai, 2014). The high FFA 
feedstock would easily lead to saponification in the 
presence of a basic catalyst, which generates soap 
that will consume the catalyst and affecting the 
biodiesel yield.  

3.5. Parameters in a heterogeneous catalytic 
transesterification reaction 

Several parameters are generally considered 
during the transesterification reaction which will 
affect the quantity and quality of biodiesel 
production (Lee and Taufiq-Yap, 2015). The 
optimum value of each parameter will differ for each 
study due to the reaction factors such as the type of 
feedstock and catalyst used during the reaction. 

3.5.1. Methanol to oil molar ratio 

One of the most important variables affecting the 
percentage of biodiesel yield during 
transesterification is the methanol to oil molar ratio 
of methanol to triglycerides molar ratio as defined 
by some researchers. During transesterification, the 
required stoichiometric ratio is three moles of 
methanol and one mole of oil to yield three moles of 
FAME and one mole of glycerol. However, in practice, 
a higher feed mole ratio is employed to shift the 
transesterification reaction to the desired product 
(Tariq et al., 2012). Salinas et al. (2012) stated that 
the catalytic activity steadily increased with higher 
methanol to oil molar ratio. During the 
heterogeneous catalytic transesterification reaction, 
the higher amount of methanol facilitates the 
suspension of the catalyst which may eliminate the 
problem of mass transfer.  

The lower methanol to oil molar ratio results in 
poor suspension of the slurry in the reaction 
solution, which possibly induces mass transfer 
problems, thus resulting in lower catalytic activity. 
Therefore, an excess of the methanol favors the 
formation of the products. Tariq et al. (2012) also 
claimed that higher methanol to oil molar ratio 
results in greater product conversion in a shorter 
time. In contrast, higher consumption of methanol 

also increases the solubility of glycerol, and as a 
result, decreases the yield of biodiesel as some 
glycerol will remain in the FAME phase. Therefore, 
the ideal methanol to oil molar ratio needs to be 
established empirically according to the reaction 
system used. 

3.5.2. Amount of catalyst loading 

Heterogeneous catalyst influences the reaction by 
providing active surface sites for it to occur, whereby 
the increase of catalyst amount would increase the 
available catalytic sites. The ideal amount of catalyst 
loading will accelerate the reaction. However, an 
excess amount of catalyst loading can cause 
saponification which usually occurs to the 
homogeneous and heterogeneous basic catalysts 
(Silitonga et al., 2013). Besides that, Salinas et al. 
(2012) reported that an excess amount of catalyst 
can create catalyst accumulation on the wall of the 
reactor. This will possibly contribute to the 
diffusional problems during the reaction, which 
explains the lower catalytic activity. Furthermore, 
with an excess amount of catalyst, the slurry (a 
mixture of reactants and catalyst) becomes too 
viscous, which then gives rise to a problem of mixing 
and a demand of higher power consumption for 
adequate stirring (Qiu et al., 2011). Generally, the 
amount of catalyst loading pays respect to the 
amount of feedstock. The amount of catalyst loading 
will be expressed in the form of weight percentage 
(wt. %) based on the weight of the feedstock used. 

3.5.3. Reaction time 

On the other hand, reaction time would also affect 
the transesterification reaction process. Tariq et al. 
(2012) stated that the conversion rate increases with 
reaction time. In the heterogeneous catalytic system, 
a mass transfer limitation exists between the three 
different phases of oil-methanol-catalyst for the 
diffusion of molecules. Longer reaction time would 
allow sufficient contact time between the reactants 
and the catalyst surface (Wan and Hameed, 2014). In 
general, the reaction catalyzed through the 
heterogeneous catalyst requires a relatively long 
time compared to the homogeneous catalyst due to 
diffusion of reactants through the external surface 
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film and intra-particle pores (Lertpanyapornchai and 
Ngamcharussrivichai, 2015). 

3.5.4. Reaction temperature 

Transesterification reaction can occur at different 
temperatures, depending on the type of alcohol used 
during the reaction (Amani et al., 2014). The reaction 
temperature must be less than the boiling point of 
alcohol to ensure minimum vaporization (Tariq et 
al., 2012). Vaporization of alcohol will lessen product 
yield. Usually, the ideal reaction temperature ranges 
from 60 °C to 65 °C (if methanol is used as the 
alcohol). However, in several cases, high 
temperature is more favorable as it increases the 
solubility of oil in methanol and improves the 
methanol to oil contact. Besides that, the higher 
reaction temperatures speed up the reaction and 
shorten the reaction time. The increase in 
temperature causes the reactants molecule to gain 
more kinetic energy for collisions to occur and 
successfully react to form the product. Beyond the 
ideal reaction temperature, it may cause side 
reactions such as polymerization of fatty acid 
molecules which reduces the amount of reactants 
available (Wan and Hameed, 2014). 

3.5.5. Free fatty acid content 

The FFA content is a key parameter to determine 
the viability of the oil for the transesterification 
reaction. The acid value is an indicator of FFA 
content in the triglycerides (Hayyan et al., 2014), 
where a higher acid value shows that the feedstock 
contains a higher percentage of FFA. Numerous 
studies have been conducted to investigate the effect 
of FFA in the transesterification reaction. 
Theoretically, high FFA content will hinder the 
reaction with the basic catalysts through a 
saponification reaction (Talebian-Kiakalaieh et al., 
2013). This situation results in a low yield of 
biodiesel and conversion of FAME (Verma and 
Sharma, 2016). Therefore, a pre-treatment step is 
needed to trans esterify the FFA before triglycerides 
can be converted into FAME. 

3.5.6. Water content 

Water content is a more critical variable in the 
transesterification reaction than FFA content (Tariq 
et al., 2012). All materials involved in the 
transesterification process should be waterless as 
water leads to hydrolysis of triglycerides and FAME 
which simultaneously contributes to the formation 
of soap which then increases the viscosity of the 
reaction mixture leading to the formation of a stable 
emulsion. This makes the separation process 
difficult. Additionally, Amani et al. (2016) stated that 
water contains in the feedstock for 
transesterification reaction affects the yield as it 
reduces the catalytic activity. 

3.6. Mechanism of heterogeneous catalytic 
transesterification reaction 

The study of mechanism in catalytic 
transesterification reaction is very critical in 
controlling reaction and designing the reactor to 
improve the biodiesel production process. 
Theoretically, the mechanism of heterogeneous 
catalytic transesterification follows the same 
principles to those of homogeneous catalytic 
transesterification as shown in Fig. 5. Generally, the 
mechanism of heterogeneous acid catalytic 
transesterification will start with the protonation of 
the carbonyl group, followed by a nucleophilic attack 
of alcohol which produces tetrahedral intermediate. 
Finally, the proton migration and the tetrahedral 
intermediate breakdown will omit glycerol to create 
a new ester and reforms the catalyst. 

Fig. 6 shows the general reaction mechanism of 
heterogeneous acid catalytic transesterification. On 
the other hand, the heterogeneous basic catalyst 
transesterification mechanism deals with the 
formation of the alkoxide ion and then directly acts 
as a strong nucleophile (Fig. 7). Heterogeneous basic 
catalysis has a direct route compared to 
heterogeneous acid catalysis. The main difference 
between both catalysts’ catalytic activity in 
transesterification reaction is the formation of 
electrophilic species versus stronger nucleophile 
formation (Talebian-Kiakalaieh et al., 2013). 

Consequently, the mechanism of heterogeneous 
catalytic transesterification moves further to the 
adsorption of reactants and desorption of products 
that takes place on the surface of the catalyst (Wu et 
al., 2017). Recently, the most widely used 
mechanism models in heterogeneous acid and basic 
catalysts are Eley-Rideal and Langmuir-Hinshelwood 
mechanisms (León-Reina et al., 2013). According to 
the Eley-Rideal mechanism, the reaction is 
performed by a direct pickup of species from the 
surface by a liquid phase molecule, whereas in the 
Langmuir-Hinshelwood mechanism the reactants are 
first adsorbs on the catalyst surface and then reacts, 
follows by the product desorption (Dange et al., 
2014; Davison et al., 2013; Marinković et al., 2016). 
Table 6 demonstrates the difference in the Eley-
Rideal and Langmuir-Hinshelwood mechanism in 
general. 

3.7. Kinetic study in the catalytic 
transesterification reaction 

Initially, when conducting a kinetic study for 
catalytic transesterification reaction, it is important 
to calculate the reaction rate constant (k) for the 
reaction. Usually, the rate constant is sensitive to 
temperature, which increases with the increase in 
reaction temperature for elementary reactions. This 
may be due to the enhancement of the energy 
required to induce the reactants to actively 
participate in the transesterification reaction 
(Parthiban and Perumalsamy, 2016). The reaction 
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rate constant is obtained from the slope of the linear plot of reaction temperature and time intervals. 
 

 
Fig. 5: General mechanism of heterogeneous catalytic transesterification reaction (Avhad and Marchetti, 2015) 

 

 
Fig. 6: General reaction mechanism of heterogeneous acid catalytic transesterification (Talebian-Kiakalaieh et al., 2013) 
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Fig. 7: General reaction mechanism of heterogeneous basic catalytic transesterification (Talebian-Kiakalaieh et al., 2013) 

 
Table 6: General mechanism of Eley-Rideal and Langmuir-

Hinshelwood (Ilgen and Akin, 2012) 
Eley-Rideal mechanism Langmuir-Hinshelwood mechanism 

M + S ⇔ M .S 
TG + M .S ⇔ DG + E .S 
DG + M .S ⇔ MG + E .S 
MG + M .S ⇔ G + E .S 

E .S ⇔ E + S 

M + S ⇔ M .S 
TG + S ⇔ TG .S 

TG + M .S ⇔ DG + E .S 
DG + M .S ⇔ MG + E .S 
MG + M .S ⇔ G + E .S 

E .S ⇔ E + S 
TG-triglyceride; M-methanol; DG-diglyceride; MG-monoglyceride; G-

glycerine; E-ester; S-catalytic surface 
 
One of the useful parameters to understand the 

reaction is activation energy (Ea), which is defined as 
the amount of energy required for reactants to be 
overcome for the reaction to occur. Table 7 
summarizes the previous activation energy from the 
kinetic studies on catalytic transesterification 
reaction using various feedstock for biodiesel 
production. Usually, lower activation energy is 
preferred during the reaction. This is to obtain less 
energy required to overcome the activation barrier 
for reaction completion, besides accelerating the 
rates of reaction. It is also important to understand 
whether the reaction rate is diffusion limited or mass 
transfer limited or is truly governed by the chemical 

step where the catalyst is being used to its maximum 
capacity. If the reaction rate is diffusion limited or 
mass transfer limited, the activation energy is 
usually as low as 10 to 25 kJ mol-1. However, for 
reactions which rate are governed by a truly 
chemical step, the activation energy will show an 
excess of 25 kJ mol-1 (Patel and Brahmkhatri, 2013). 

In addition, kinetic of various orders of the 
catalytic transesterification reaction can be 
described through the relationship between reaction 
temperature and time, which depends on the rate of 
reaction (Gurunathan and Ravi, 2015). Kinetic order 
is important in confirming and clarifying the reaction 
rate constant and the activation energy obtained 
from the reaction. Generally, in catalytic 
transesterification reaction, zero, first, pseudo-first 
and second order kinetic models will be determined 
to treat all the kinetic data for the reaction. 

3.8. Thermodynamic study in the catalytic 
transesterification reaction 

Commonly, thermodynamic parameters of 
catalytic transesterification reaction are studied 
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based on transition state theory and calculated using 
the Eyring-Polanyi equation based on the reaction 
rate constants from various temperatures 
(Mathiarasi and Partha, 2016; Wu et al., 2016). From 
the equation, the value of the changes in enthalpy, 
ΔH and entropy, ΔS of activation for the reaction 
system can be obtained. Usually, the value of ΔH is 
positive and the value of ΔS is negative. However, 
both parameters can be obtained in vice versa (Feyzi 
et al., 2017; Feyzi and Shahbazi, 2017). A positive 
value of ΔH shows that heat input is required to 
bring the reactants to the transition state to form the 
products.  A negative value of ΔS indicates that the 

degree of ordered geometry or alignment of the 
transition state is better than reactants in the ground 
state (Nautiyal et al., 2014). Another parameter that 
needs to be considered during the thermodynamic 
study is the Gibbs free energy, ΔG, where a positive 
value indicates that the reaction is unspontaneous 
and endergonic in nature (Wu et al., 2016) and a 
negative value indicates that the reaction 
equilibrium constant is big. That in itself is the 
evidence of further progress of the reaction towards 
the products. ΔG will be more negative with the 
increase of reaction temperature and that with the 
increasing of the equilibrium constant. 

 
Table 7: Summary of activation energy and order of reaction of the catalytic transesterification reaction 

Feedstock Catalyst Activation energy, Ea (kJ mol-1) Order of reaction Reference 
Karanja oil KOH 20.2 First (Verma et al., 2017) 

Sunflower oil CaO-based PKSB 108.8 Pseudo first (Kostić et al., 2016) 
Palm oil CaO 121.1 Pseudo first (Roschat et al., 2016b) 

Waste cooking oil CaO 78.8 Pseudo first (Maneerung et al., 2016) 
Bitter almond oil PA/AC 56.7 First (Fadhil et al., 2016) 

Soybean oil NaOH 31 Pseudo first (Wu et al., 2016) 
Nannochloropsis oculata oil Ca(OCH3)2 58.6 Pseudo first (Teo et al., 2016) 

Kusum oil Ba(OH)2 21.8 Second (Sarve et al., 2016) 
Rapeseed oil KOH 21.9 Pseudo first (Encinar et al., 2016) 

Waste cooking oil (PW11)3/MCM-41 64.1 First (Singh and Patel, 2015) 
Peanut oil MWM-700 66.8 First (Niu et al., 2015) 
Neem oil CZO 233.9 First (Gurunathan and Ravi, 2015) 

Jatropha oil Zr/CaO 29.8 Pseudo first (Kaur and Ali, 2014) 
N.I-Not Include 

 

4. Calcium oxide as a catalyst in the 
transesterification reaction 

CaO catalyst is one of the most promising 
heterogeneous catalyst used in transesterification 
reaction for biodiesel production. It has good 
availability and causes less impact on environment, 
besides being non-toxic, low cost and easy to be 
handled (Bet-Moushoul et al., 2016; Esipovich et al., 
2014; Ho et al., 2014; Joshi et al., 2015; Kouzu et al., 
2016; Li et al., 2016; Liu et al., 2016). Thus, this 
catalyst has undergone a continuation study in the 
transesterification reaction for biodiesel production 
until the present. 

4.1. Properties of calcium oxide 

CaO is an alkaline earth metal oxide. CaO occurs 
through thermal decomposition of minerals such as 
limestone and calcite or from natural resources such 
as sea- and eggshells that contain calcium carbonate 
(CaCO3) (de Sousa et al., 2016). The general physical 
and chemical properties of CaO are listed in Table 8. 
CaO has a very weak Lewis acidity of metal cation 
due to its small electronegativity (Kouzu and Hidaka, 
2012). Hence, the conjugate anion (oxygen) displays 
strong basic properties for CaO (Bazargan et al., 
2015). The basicity of CaO, as well as its other 
structural and textural characteristics, depends on 
the activation procedure and the starting precursor 
used. In addition, CaO is not stable in which its basic 
sites on the surface will spontaneously react with 
water and CO2 from the surrounding to form calcium 
hydroxide (Ca(OH)2) and CaCO3. 

 

Table 8: General physical and chemical properties of CaO 
(Marinković et al., 2016) 

Properties Description 
Chemical structure CaO 

Molar mass (g mol-1) 56.08 
Density (kg m-3) 3.34 

Boiling point (°C) 2850 
Melting point (°C) 2613 

Color White 
Odor Odorless 

4.2. Catalytic activity of calcium oxide in the 
transesterification reaction 

CaO is used in transesterification due to its high 
basicity, low solubility in methanol and biodiesel and 
excellence in biodiesel produced yield (Feyzi and 
Norouzi, 2016; Korkut and Bayramoglu, 2016). The 
catalytic activity of CaO in the transesterification 
reaction is based on the existence of basic active 
sites in the catalyst surface. The main advantage of 
this catalyst is its ability to perform in a mild 
transesterification reaction conditions as compared 
to heterogeneous acid catalyst. There are a number 
of previous and current studies of the catalytic 
activity performance of CaO in transesterification 
reaction for biodiesel production. Table 9 presents 
the catalytic activity performance of CaO in 
transesterification reaction at optimum reaction 
conditions from various CaO sources. 

4.3. Modification of calcium oxide for 
transesterification reaction 

CaO is superior to other heterogeneous basic 
catalysts in the catalytic performance for the 
transesterification reaction for biodiesel production 
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(Mahesh et al., 2015). However, this heterogeneous 
catalyst exhibits a much lower catalytic activity than 
the homogeneous catalytic activity which is applied 
to the existing biodiesel production (Chen et al., 
2016a). This is due to the low surface area of CaO 
catalyst which lowers the amount of exposed active 
sites during the reaction (Asikin-mijan et al., 2015; 
Degirmenbasi et al., 2015). Therefore, a higher 
amount of catalysts and longer reaction time are 
often required, which would then increase the 
biodiesel production cost. Therefore, many 
researchers who take interest in utilizing CaO 
catalyst for biodiesel production strive towards 
raising the catalytic activity. 

Furthermore, it is important to enhance the 
stability of the catalyst with high tolerance to the 
ambient water and CO2, which poisons the 
catalytically basic sites. The poisoning may 
deactivate the active basic sites of the catalyst. 
Furthermore, the low stability of the catalyst also 
contributes to the leaching problem (Ezzah-
Mahmudah et al., 2016; Liu et al., 2015; Reyero et al., 
2016; Wong et al., 2015; Yan et al., 2016). 
Additionally, the bulky structure of CaO makes it a 
non-porous catalyst. This structure has limited the 
catalytic activity of CaO to catalyze a large 
triglycerides molecule. Thus, it increases the 
diffusion limitation of the reactant molecules. 

In addition to the abovementioned problems, 
there are efforts on the modification of CaO to 
overcome the problems with excellent catalytic 
activity performance. According to the numerous 
studies on the use of this catalyst in 
transesterification reaction for biodiesel production, 
CaO can be modified through four different methods. 
Firstly, the modification of CaO can be done by 
enlarging the surface area and increasing the 
stability of the catalyst by doping CaO with active 
ingredients which are alkali and organic compounds. 
The final modified catalyst is denoted as the doped 
CaO catalyst. Most frequently, doping of CaO is 
prepared by incipient wetness, co-precipitation and 
impregnation method. 

Besides that, the characteristic properties of CaO 
catalyst (especially surface area and stability) can 
also be improved by incorporation of this catalyst 
into various catalyst supports including metals, 
metal oxides, transition metal oxides, and non-
metals. The synthesis of the catalyst frequently 
includes the deposition of CaO from precursor salts 
onto the catalyst support through precipitation, co-
precipitation, wet impregnation or sol-gel method 
followed by calcination step which additionally 
defined as loaded or supported CaO catalyst. 
Furthermore, it should be noted that the amount of 
CaO used is higher than the modifier during that 
modification preparation (Abdulkareem-Alsultan et 
al., 2016; Witoon et al., 2014; Liu et al., 2012).  

On the other hand, the properties and the 
catalytic activity of CaO catalyst can be enhanced by 
mixing the catalyst with metal oxides and transition 
metal oxides. A mixed oxide is an oxide with cations 
of more than one chemical element or with a single 

element in several states of oxidation. Mixed oxides-
CaO is usually synthesized through solid state 
reaction, incipient wetness impregnation and co-
precipitation, followed by thermal decomposition. In 
addition, CaO can be modified to porous (micro-, 
meso- or macro-) and nano-sized catalysts. These 
can be done by thermal activation treatment 
(calcination), varying the precursor salt (such as 
CaCO3, Ca(OH)2, etc.) and pre-treatment with 
methanol. 

Based on previous studies, it can be concluded 
that the modification of CaO catalysts has increased 
the catalytic activity of CaO. Those modified CaO 
catalysts had achieved a high percentage of biodiesel 
yield which was higher than 90 %. However, those 
studies have shown that the catalysts still need a 
high reaction condition to achieve such a great 
catalytic activity performance. 

In parallel, an ongoing study is still running 
actively as many areas need to be explored to 
enhance the performance of CaO with mild reaction 
conditions. Besides, the catalyst preparation method 
was mostly complicated and not cost effective. 
Finally, there is an increasing interest in using a 
large amount of FFA and water content feedstock. 
Therefore, the main challenge for the modified CaO 
catalyst will be how to achieve a good catalytic 
activity performance for that particular type of 
biodiesel feedstock during the reaction.  

The reason is due to the saponification side 
reaction caused by the use of a basic catalyst which 
consumes the catalyst and can form an emulsion that 
makes separating the products difficult and reduces 
biodiesel yield. Therefore, it is expected that more 
emphasis will be given to the modification of CaO in 
the future. Despite those difficulties that remain to 
be solved, there is still a need for a study to modify 
CaO to perform in mild reaction conditions which 
uses simple and practical modification preparation 
methods, and that can tolerate well with a low grade 
of biodiesel feedstock. 

5. Titanium as catalyst support in the 
transesterification reaction 

The catalyst support is an important aspect to be 
considered in catalysis as it may give a significant 
effect on the performance of the catalyst such as 
providing larger surface area for better distribution 
of the active sites of catalyst and enhancing stability 
and durability of the catalyst as compared to the 
unsupported catalyst. To date, there has been an 
increasing study on titanium as catalyst support 
during transesterification reaction for biodiesel 
production. Titanium is well known to be a cheap, 
readily available and non-toxic element (Dai et al., 
2017; Mallakpour and Dinari, 2012). Titanium 
possesses other unique combination of properties, 
such as tunable porous surface structure, relatively 
high surface area, high stability and with an available 
surface for adsorbing, dissociating and reacting 
which makes it an attractive potential catalyst 
support for transesterification reaction (Feyzi and 
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Shahbazi, 2015; Bagheri et al., 2014; Ye et al., 2013; 
Mallakpour and Dinari, 2012). 

Various recent studies have shown that titanium 
owns an excellent performance as a catalyst support 
in the transesterification reaction for biodiesel 
production. Most recently, Dai et al. (2017) reported 
the use of titanium loaded lithium as a base catalyst 
for biodiesel production. The obtained catalyst 
proved to be more stable and the interaction 
between titanium and lithium was strong enough to 
have good recyclability of the catalyst with excellent 
catalytic activity performance. Besides that, 
potassium has been supported by titanium and 
shown remarkable performance towards the 
production of biodiesel from canola oil by the 
presence of highly strong basic sites associated with 
the interaction of both catalyst and catalyst support 
structure formed on the synthesized catalyst (Salinas 
et al., 2016). 

In another study conducted by Chen et al., 
(2016b), a carbonaceous Ti-SBA-15 catalyst for 
transesterification of jatropha oil with methanol was 
successfully developed. The result showed that the 
catalyst gave excellent activity and durability in the 
synthesis of high-quality jatropha biodiesel, which 
fulfills the specification of international fuel 
standard. Kaur and Ali (2015c) have modified the 
titanium with sulfate group immobilization for the 
esterification of fatty acids. The catalyst was able to 
convert >98 % free fatty acids into respective esters. 
A study by Feyzi and Shahbazi (2015) demonstrated 
that Cs-Ca/TiO2-SiO2 catalyst was able to achieve a 
maximum biodiesel yield of 98 % under optimal 
reaction conditions. It is reported that effective 
factors on the catalytic activity are specific surface 
area, pore diameter, pore volume and active site 
concentration on the surface of the catalyst. 

 

Table 9: Catalytic activity of calcium oxide from various resources in the transesterification reaction 

Resource 
Reaction conditions 

Yield(%) Reusability References Methanol to oil 
molar ratio 

Catalyst loading 
(wt. %) 

Reaction 
time (h) 

Reaction 
temperature (°C) 

Waste venus clam 
shell 

15:1 5 6 65 97 5 
(Syazwani et al., 

2017) 
Duck eggshell 10:1 10 1.33 60 94.6 8 (Yin et al., 2016) 

Hydrated lime 15:1 6 2 65 97 5 
(Roschat et al., 

2016a) 

Chicken manure 15:1 7.5 N.I 65 90 4 
(Maneerung et 

al., 2016) 

Crab shell 8:1 2.5 2 65 94 5 
(Madhu et al., 

2016) 

Palm kernel shell 9:1 3 4 65 99 3 
(Kostić et al., 

2016) 

Chicken bones 15:1 5 4 65 89.3 4 
(Farooq et al., 

2015) 
Waste carbide slag 9:1 1 0.5 65 91.3 3 (Li et al., 2015) 

Snail shell 6.03:1 2 7 60 87.3 N.I 
(Birla et al., 

2012) 
Waste freshwater 

mussel shell 
12:1 5 1.5 70 97.5 7 (Hu et al., 2011) 

N.I-Not Include 

 
Lertpanyapornchai and Ngamcharussrivichai 

(2015) and Sharma et al. (2014) included titanium as 
a catalyst support or promoter of their catalyst in 
preparing biodiesel through a transesterification 
reaction. Their study shows a good catalytic 
performance towards the production of this 
renewable fuel. Another study regarding the 
titanium as catalyst support was conducted by 
Takase et al. (2014) whereby the modified 
C4H4O6HK catalyst with the presence of titanium 
had granular and porous structures with high 
basicity and superior catalytic performance of 90.1 
% of biodiesel yield at 30 minutes of reaction. 
Marciniuk et al. (2014) meanwhile prepared sodium 
titanate catalyst for the transesterification reaction 
under mild conditions. The study offers better light 
regarding titanium as catalyst support in the 
transesterification reaction. 

There are many other studies that shows the 
ability and potential of titanium as a catalyst support 
or promoters for support catalyst in 
transesterification reaction for biodiesel production 
(Sani et al., 2016; Hernández-Hipólito et al., 2015; 

Chen et al., 2013; Madhuvilakku and Piraman, 2013; 
Mguni et al., 2013; Yu et al., 2013; Mongkolbovornkij 
et al., 2010; Wen et al., 2010). This further 
strengthens the fact that the study of titanium as a 
catalyst support has a big potential especially in 
transesterification reaction for biodiesel production. 

 

6. Mesoporous catalyst in the transesterification 
reaction 

The introduction of porous materials in catalytic 
systems improves the overall life of the systems 
process and the yields of the reactions. attracting the 
interest of researchers to stimulate an intense 
activity aimed at the preparation of the materials. 
Specifically, porous materials are of great interest 
because of their ability to interact with atoms, ions, 
molecules, and nanoparticles, not only at their 
surfaces but also throughout the bulk of the 
materials. Therefore, the presence of pores in the 
structured materials can greatly promote their 
physical and chemical properties, as well as 
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extending their potential during the catalytic activity 
(Linares et al., 2014). 

Among the available porous materials use for 
catalysis, mesoporous materials have attracted 
growing interest, owing to their fascinating 
properties such as tunable large pore sizes, large 
pore volumes, alternative pore shapes, high surface 
areas and controllable framework compositions 
(Feinle et al., 2015; Schmit et al., 2015; Yu et al., 
2015). According to International Union of Pure and 
Applied Chemistry (IUPAC), mesoporous materials 
are materials possessing pore dimensions between 2 
to 50 nm, that is between micro- pores and macro- 
pores in size. Taking into account the diffusional 
limitations when dealing with high molecular weight 
reactants, mesoporous materials may be 
advantageous over microporous materials because 
the mass transfer resistance and diffusion limitations 
can be significantly reduced (Tao et al., 2013). 

Despite the attractive properties of mesoporous 
materials, consequently, a new mesoporous catalyst 
is required to be designed to provide a higher 
available active surface which results in an 
enhancement in catalytic activity (Endo et al., 2015; 
Kumar et al., 2015). As for biodiesel production, the 
development of mesoporous catalysts has exhibited 
good catalytic activities during the 
transesterification reaction. The catalysts have 
allowed the catalytic activity to tolerate with high 
FFA content feedstock at mild reaction conditions 
during the reaction. Furthermore, the limitation of 
loading larger reactants molecules can be overcome 
and obtain the improvement of the catalytic activity 
performance. There are a number of mesoporous 
catalysts that have been developed to be used in the 
transesterification reaction for biodiesel production. 

Alaba et al. (2016) have synthesized a promising 
solid catalyst for biodiesel production through 
desilication of conventional ZSM-5 with an aqueous 
solution of NaOH. The synthesized hierarchical 
mesoporous HZSM-5 catalyst attained an optimum 
biodiesel yield of 82.12 % using 1 wt. % of catalyst 
loading. The excellent performance of the catalyst 
was attributed to the matrix area, pore size, and 
mesopore volume of the catalyst. Helwani et al. 
(2016) had investigated mesoporous hydrotalcite as 
a catalyst for the transesterification of jatropha oil 
with methanol to produce biodiesel. The catalyst was 
capable of achieving high FAME yield (91.2 %) 
within a few hours of reaction time with relatively 
low methanol to oil molar ratio. 

Studies by Léon et al. (2015) have demonstrated 
that mesoporous TiSBA-15-Me-PrSO3H organic-
inorganic hybrid catalyst is successfully prepared 
through a direct P123-assisted sol-gel co-
condensation-hydrothermal treatment route. It is 
reported that strong Brönsted and Lewis acidity, 
excellent porosity properties and hydrophobic 
surface have contributed to the high catalytic activity 
of the catalyst.  In another study conducted by Xie et 
al. (2015), a novel heterogeneous base catalyst was 
prepared by anchoring 1,3-dicyclohexyl-2-
octylguanidine (DCOD) onto the mesoporous SBA-15 

silica. The DCOG-functionalized SBA-15 material 
(SBA-15-pr-DCOG) was demonstrated to be an 
efficient and recyclable heterogeneous catalyst for 
the transesterification of soybean oil with methanol. 
This heterogeneous base catalyst could be easily 
recovered and reused for several runs with a 
negligible loss of activity. 

Another study regarding the mesoporous 
millimetric gamma-alumina bead supported KI (γ-
Al2O3/KI) catalyst was conducted by Islam et al. 
(2015), whereby the highest FAME yield of 98 % was 
obtained when the transesterification reaction was 
carried out under the conditions of 14:1 methanol to 
oil ratio, 4 wt. %, of catalyst loading for 4 h of 
reaction time temperature at 60 °C. Furthermore, 
there is also a report that shows the deposition of 
CaO in mesoporous silica which gave rise to 
improved catalytic activity for the transesterification 
reaction of sunflower oil and castor oil with 
methanol.  The catalyst also had shown no lixiviation 
of the active phase under the optimum reaction 
conditions, in contrast to commercial CaO (Linares et 
al., 2014). 

Besides that, Narkhede et al. (2014) have 
synthesized a mesoporous catalyst based on the 
uniform dispersion of TSA inside the hexagonal 
channels of SBA-15. The catalyst has been 
investigated in the transesterification reaction of 
WCO with methanol. The catalyst also shows the 
potential of being used as recyclable material 
without notable loss. The finding justified that this 
catalyst has good stability. Additionally, Kazemian et 
al. (2013) reported the preliminary experiments of 
various catalysts for biodiesel production from 
canola oil. The results show that mesoporous 
ordered silicate SBA-15 impregnated with 2 wt. % of 
CsNO3 has provided an excellent catalytic activity 
performance for biodiesel production. 

Despite the advantages of the mesoporous 
catalyst, this catalyst is largely time-consuming, 
complicated, expensive, and difficult to scale up, 
therefore making them less industrially viable 
(Bastakoti et al., 2014; Lertpanyapornchai and 
Ngamcharussrivichai, 2015; Olsen et al., 2014; Ren et 
al., 2012). This statement can be justified through 
the previous studies conducted by many researchers 
(Konwar et al., 2016; Sahu et al., 2009; Xia et al., 
2012; Yan et al., 2013; Zhang et al., 2015). Thus, the 
development of a novel one-step method for the 
synthesis of mesoporous catalyst is needed to make 
it an efficient yet economic catalysis system 
especially in the biodiesel production field. 

7. Previous study regarding heterogeneous 
catalytic transesterification reaction of used 
cooking oil 

Numerous studies have been conducted 
regarding the development of heterogeneous 
catalysts for the transesterification reaction of UCO 
to produce biodiesel. Both acid and basic catalysts 
have their own characteristics and catalytic activity 
performance, depending on the undesirable FFA and 
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water content at UCO. For instance, a novel, efficient 
and recyclable mesoporous TiO2/PrSO3H solid acid 
Nano-catalyst was synthesized by the post-synthetic 
grafting of propyl sulfonic acid groups onto a mixed 
phase of a TiO2 support on the biodiesel production 
from UCO. The synthesized catalyst shows that 98.3 
% of biodiesel can be obtained with 15:1 of methanol 
to oil molar ratio using 4.5 wt. % of catalyst loading 
at 60 °C of reaction temperature after 9 h of reaction 
time. It was also found that the acid strength of the 
synthesized catalyst was enhanced, providing more 
acid sites for the reactants and improving the 
accessibility of methanol to the triglycerides or FFA 
by increasing the pore volumes or sizes of the 
synthesized catalyst. Further, the solid acid nano-
catalyst can be re-used in four consecutive runs 
without significant loss of catalytic efficiency (Gardy 
et al., 2017). Gardy et al. (2016) conducted a study 
on solid acid nano-catalyst (Ti(SO4)O) used for 
biodiesel production from UCO. The study 
demonstrated 97.1 % yield of FAME can be achieved 
using the synthetized catalyst under a methanol to 
UCO ratio of 9:1, catalyst loading amount of 1.5 wt. 
%, reaction time of 3 h, at 75 °C reaction 
temperature. Other heterogeneous acid catalysts 
derived from sulfonic resins, such as Nafion NR50, 
sulfated zirconia and tungstate zirconia were 
synthesized and have characteristics such as an 
interconnected system of large pores, a moderate to 
high concentration of strong acid sites, and a 
hydrophobic surface that may catalyse well in 
transesterification reactions of UCO (Wong and Devi, 
2014). 

Besides that, the heterogeneous basic catalysts 
such as iron (III) oxide (Fe2O3) doped on natural CaO 
catalyst (Fe2O3/CaO) were prepared and utilized in 
biodiesel production from UCO. As a result, the 
optimum reaction parameters found were 15:1 
methanol to oil molar ratio, 1 wt. % of the Fe2O3/CaO 
at 65 °C and 3 h of reaction time can be achieved 
over 90 % of reactant conversion (Ezzah-Mahmudah 
et al., 2016). Another study was done using CaO 
catalyst derived from wastes of both ostrich-eggshell 
and chicken-eggshell, where the biodiesel 
production from UCO showed that 1.5 wt. % of 
catalyst, 12:1 of molar ratio of methanol to oil, 65 °C 
reaction temperature with 2 h reaction time gave the 
best results (Tan et al., 2015). Meanwhile, 
Hindryawati et al. (2014) experimented with three 
alkali metals (Li, Na, and K) supported by rice husk 
silica as basic catalysts for biodiesel production from 
UCO. The optimum conditions for the process were: 
Methanol to oil molar ratio of 9:1; catalyst loading 
amount of 3 wt. %; reaction time of 3 h and reaction 
temperature of 65 °C. Another report was done by 
Muciño et al. (2014) which shows that sea sand 
which was made a source of CaO catalyst has 
performed 95.4 % of biodiesel from UCO at mild 
reaction temperature of 60 °C, 12:1 of methanol to 
oil molar ratio yet in a high amount of catalyst 
loading of 7.5 wt. %. Additionally, finding of biodiesel 
produced from UCO in transesterification with 
methanol using calcined layered double hydroxides 

(LDHs) as heterogeneous basic catalysts were 
reported by Sankaranarayanan et al. (2012). From 
the study, CaAl2-LDH (hydrocalumite) showed the 
highest activity with >90 % yield of biodiesel using 
methanol: Oil molar ratio (<6:1) at 65 °C in 5 h. The 
activity of the catalyst was attributed to its high 
basicity of the synthesized catalyst. 

8. Summary 

The previous literature reported the importance 
of biodiesel production as an alternative to 
conventional diesel fuel. Commonly, biodiesel is 
produced from edible and non-edible oils. 
Alternatively, biodiesel can be produced from UCO. 
However, UCO contains a high level of FFA and water 
content, which hinders the reaction of biodiesel 
production. Aside from that, a review of recent 
studies reveals that the heterogeneous basic 
catalysts i.e. CaO may exhibit better properties and 
catalytic activity compared to others. Although CaO 
catalyst has been extensively studied, it may have 
several limitations related to its low surface area, 
stability and bulky structure. Therefore, those 
limitations led to the high operating conditions from 
a practical perspective. Thus, catalyst support such 
as titanium seems to be the best candidate to 
overcome the CaO limitations. The construction of 
mesoporous structure for the heterogeneous 
catalysts attracted great interest due to its ability to 
provide a high distribution of catalyst active sites in 
the catalyst surface to enhance the catalytic activity. 
Moreover, the study on the interaction of titanium 
supported CaO catalyst with a mesoporous structure 
for biodiesel production from UCO is yet to be 
reported. The properties of the catalyst are known to 
be strongly affected by the support and the 
mesoporous structure, which makes it very 
complicated to understand its catalytic activity 
during the reaction. Thus, a detailed investigation of 
this mesoporous supported CaO-based (mesoporous 
calcium titanate) catalyst for biodiesel production 
from UCO is very crucial. 
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