Volume 6, Issue 9 (September 2019), Pages: 58-63
----------------------------------------------
Original Research Paper
Title: On paranorm I-convergent double sequence spaces defined by a compact operator
Author(s): Vakeel A. Khan 1, Hira Fatima 1, *, Mohammad Faisal Khan 2, Mohd. Imran Idrisi 1
Affiliation(s):
1Department of Mathematics, Aligarh Muslim University, Aligarh, India
2College of Science and Theoretical Studies, Saudi Electronic University, Riyadh, Saudi Arabia
Full Text - PDF XML
* Corresponding Author.
Corresponding author's ORCID profile: https://orcid.org/0000-0002-4132-0954
Digital Object Identifier:
https://doi.org/10.21833/ijaas.2019.09.009
Abstract:
In this paper, we extend the concept of ideal convergence of sequences in metric spaces. Recently, the concept of ideal convergent double sequence spaces defined by a compact operator. Motivated by this, we introduce some ideal convergent double sequence spaces with the help of compact operator T on the real space ℝ and a bounded double sequence of positive real numbers. We examine some basic properties and prove some inclusions relations on these new defined sequence spaces.
© 2019 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Compact operator, I-convergence, Sequence algebra, Convergence free space, Paranorm
Article History: Received 26 February 2019, Received in revised form 5 July 2019, Accepted 7 July 2019
Acknowledgement:
The authors would like to record their gratitude to the reviewer for his/her careful reading and making some useful corrections which improved the presentation of the paper.
Compliance with ethical standards
Conflict of interest: The authors declare that they have no conflict of interest.
Citation:
Khan VA, Fatima H, and Khan MF et al. (2019). On paranorm I-convergent double sequence spaces defined by a compact operator. International Journal of Advanced and Applied Sciences, 6(9): 58-63
Permanent Link to this page
Figures
No Figure
Tables
No Table
----------------------------------------------
References (27)
- Başar F and Altay B (2003). On the space of sequences of p-bounded variation and related matrix mappings. Ukrainian Mathematical Journal, 55(1): 136-147. https://doi.org/10.1023/A:1025080820961 [Google Scholar]
- Buck RC (1953). Generalized asymptotic density. American Journal of Mathematics, 75(2): 335-346. https://doi.org/10.2307/2372456 [Google Scholar]
- Demirci K (2001). I-limit superior and limit inferior. Mathematical Communications, 6(2): 165-172. [Google Scholar]
- Fast H (1951). Sur la convergence statistique. Colloquium Mathematicae, 2(3-4): 241-244. https://doi.org/10.4064/cm-2-3-4-241-244 [Google Scholar]
- Fridy JA (1985). On statistical convergence. Analysis, 5(4): 301-314. https://doi.org/10.1524/anly.1985.5.4.301 [Google Scholar]
- Gürdal M and Sahiner A (2008). Ideal convergence in n-normal spaces and some new sequence spaces via n-norm. Malaysian Journal of Fundamental and Applied Sciences, 4(1): 233-244. https://doi.org/10.11113/mjfas.v4n1.32 [Google Scholar]
- Khan VA and Tabassum S (2011). The strongly summable generalized difference double sequence spaces in 2-normed spaces defined by Orlicz functions. Journal of Mathematical Notes, 7(2): 45-58. [Google Scholar]
- Khan VA, Ebadullah K, Esi A, and Shafiq M (2015). On some Zeweir I-convergent sequence spaces defined by a modulus function. Afrika Matematika, 26(1-2): 115-125. https://doi.org/10.1007/s13370-013-0186-y [Google Scholar]
- Khan VA, Fatima H, Abdullah SA, and Alshlool KM (2017). On some new i-convergent double sequence spaces of invariant means defined by ideal and modulus function. Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisi, 35(4): 695-706. [Google Scholar]
- Khan VA, Shafiq M, and Ebadullah K (2014). On paranormed i-convergent sequence spaces of interval numbers. Journal of Nonlinear Analysis and Optimization: Theory and Applications, 5(1): 103-114. [Google Scholar]
- Kostyrko P, Máčaj M, Šalát T, and Sleziak M (2005). I-convergence and extremal I-limit points. Mathematica Slovaca, 55(4): 443-464. [Google Scholar]
- Kostyrko P, Wilczyński W, and Šalát T (2000). I-convergence. Real Analysis Exchange, 26(2): 669-686. [Google Scholar]
- Kreyszig E (1978). Introductory functional analysis with applications. John Wiley and Sons, Hoboken, USA. [Google Scholar]
- Lascarides CG (1971). A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer. Pacific Journal of Mathematics, 38(2): 487-500. https://doi.org/10.2140/pjm.1971.38.487 [Google Scholar]
- Lascarides CG (1983). On the equivalence of certain sets of sequences. Indian Journal of Mathematics, 25(1): 41-52. [Google Scholar]
- Maddox IJ (1969). Some properties of paranormed sequence spaces. Journal of the London Mathematical Society, 2(1): 316-322. https://doi.org/10.1112/jlms/s2-1.1.316 [Google Scholar]
- Maddox IJ (1986). Sequence spaces defined by a modulus. Mathematical Proceedings of the Cambridge Philosophical Society, 100(1): 161-166. https://doi.org/10.1017/S0305004100065968 [Google Scholar]
- Nabiev A, Pehlivan S, and Gürdal M (2007). On I-Cauchy sequences. Taiwanese Journal of Mathematics, 11(2): 569-576. https://doi.org/10.11650/twjm/1500404709 [Google Scholar]
- Sahiner A, Gürdal M, and Yiğit T (2011). Ideal convergence characterization of the completion of linear n-normed spaces. Computers and Mathematics with Applications, 61(3): 683-689. [Google Scholar]
- Sahiner A, Gürdal M, Saltan S, and Gunawan H (2007). Ideal convergence in 2-normed spaces. Taiwanese Journal of Mathematics, 11(15): 1477-1484. https://doi.org/10.11650/twjm/1500404879 [Google Scholar]
- Šalát T (1980). On statistically convergent sequences of real numbers. Mathematica Slovaca, 30(2): 139-150. [Google Scholar]
- Šalát T, Tripathy BC, and Ziman M (2004). On some properties of I-convergence. Tatra Mountains Mathematical Publications, 28(5): 279-286. [Google Scholar]
- Šalát T, Tripathy BC, and Ziman M (2005). On I-convergence field. Italian Journal of Pure and Applied Mathematics, 17(5): 1-8. [Google Scholar]
- Schoenberg IJ (1959). The integrability of certain functions and related summability methods. The American Mathematical Monthly, 66(5): 361-775. https://doi.org/10.1080/00029890.1959.11989303 [Google Scholar]
- Şengönül M (2007). On the Zweier sequence space. Demonstratio Mathematica, 40(1): 181-196. https://doi.org/10.1515/dema-2007-0119 [Google Scholar]
- Tripathy B and Hazarika B (2009). Paranorm I-convergent sequence spaces. Mathematica Slovaca, 59(4): 485-494. https://doi.org/10.2478/s12175-009-0141-4 [Google Scholar]
- Tripathy BC and Hazarika B (2011). Some I-convergent sequence spaces defined by Orlicz functions. Acta Mathematicae Applicatae Sinica, English Series, 27(1): 149-154. https://doi.org/10.1007/s10255-011-0048-z [Google Scholar]
|