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In this paper, we extend the concept of ideal convergence of sequences in 
metric spaces. Recently, the concept of ideal convergent double sequence 
spaces defined by a compact operator. Motivated by this, we introduce some 
ideal convergent double sequence spaces with the help of compact operator 
T on the real space ℝ and a bounded double sequence 𝑝 = (𝑝𝑖𝑗) of positive 

real numbers. We examine some basic properties and prove some inclusions 
relations on these new defined sequence spaces. 
 

Keywords: 
Compact operator 
I-convergence 
Sequence algebra 
Convergence free space 
Paranorm 

© 2019 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction 

*Let ℕ, ℝ, ℂ be the sets of all natural, real, and 
complex numbers respectively. We denote  2𝜔 
showing the space of all real or complex double 
sequences.The  2𝑙∞,  2c and  2𝑐0 be denoted the 
Banach spaces of bounded, convergent and null 
double sequences of reals, respectively with the 
norm  

 
∥ 𝑥 ∥= sup

𝑖𝑗
|𝑥𝑖𝑗|. 

 
As a generalization of usual convergence, the 

concept of statistical convergent was first introduced 
by Fast (1951) and also independently by Buck 
(1953) and Schoenberg (1959) for real and complex 
sequences. Later on, it was further investigated from 
a sequence space point of view and linked with the 
summability theory by Fridy (1985), Šalát (1980), 
and many other authors. After that, the notion of 
ideal convergence (I-convergence) was introduced 
and studied by Kostyrko et al. (2000, 2005). Later 
on, it was studied by Šalát et al. (2004, 2005), 
Tripathy and Hazarika (2009, 2011), Khan et al. 
(2014, 2015, 2017), Demirci (2001), Gürdal and 
Sahiner (2008), Nabiev et al. (2007), Sahiner et al. 
(2007, 2011), and the references therein. 
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Definition 1.1: Let 𝑋 and 𝑌 be two normed linear 
spaces. An operator 𝑇: 𝑋 → 𝑌  is said to be a compact 
linear operator (or completely continuous linear 
operator), if: 
 
1. T is linear  
2. T maps every bounded sequence (𝑥𝑘) in 𝑋 onto a 
sequence 𝑇(𝑥𝑘) in 𝑌 which has a convergent 
subsequence.  
 

The set of all compact linear operator 𝒞(X, Y) is a 
closed subspace of ℬ(X, Y) and 𝒞(X, Y) is a Banach 
space if 𝑌 is a Banach space (Kreyszig, 1978). 
Following Başar and Altay (2003) and Şengönül 
(2007) were introduce the double sequence spaces 
 2𝑆 and  2𝑆0 with the help of compact operator T on ℝ 
as follows:  
 
 2𝑆 = {𝑥 = (𝑥𝑖𝑗) ∈  2𝑙∞: 𝑇(𝑥) ∈  2𝑐} 
 2𝑆0 = {𝑥 = (𝑥𝑖𝑗) ∈  2𝑙∞: 𝑇(𝑥) ∈  2𝑐0}. 

 
Here we give some preliminaries about the notion of 
I-convergence. 

 
Definition 1.2: Let ℕ × ℕ be a non empty set. Then, 
a family of sets 𝐼 ⊆ 2ℕ×ℕ is said to be an ideal in X if 
 
1. ∅ ∈ 𝐼;  
2. I is additive; that is, 𝐴, 𝐵 ∈ 𝐼 ⇒ 𝐴 ∪ 𝐵 ∈ 𝐼;  
3. I is hereditary that is, 𝐴 ∈ 𝐼, 𝐵 ⊆ 𝐴 ⇒ 𝐵 ∈ 𝐼.  
 
An Ideal 𝐼 ⊆ 2ℕ×ℕ is called non trivial if 𝐼 ≠ 2ℕ×ℕ. A 
non trivial ideal 𝐼 ⊆ 2ℕ×ℕ is called admissible if: 
 
{{𝑥}: 𝑥 ∈ ℕ × ℕ} ⊆ 𝐼. 
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A non-trivial ideal I is maximal if there cannot exist 
any non-trivial ideal 𝐽 ≠ 𝐼 containing I as a subset. 
 
Definition 1.3: A non-empty family of sets ℱ ⊆ 2ℕ×ℕ 
is said to be filter on X if and only if 
 
1. ∅ ∉ ℱ;  
2. for, A, B ∈ ℱ we have 𝐴 ∩ 𝐵 ∈ ℱ;  
3. for each A∈ ℱ and 𝐴 ⊆ 𝐵 implies 𝐵 ∈ ℱ.  
 
For each ideal 𝐼, there is a filter ℱ(𝐼) corresponding 
to 𝐼. That is,  
 
ℱ(𝐼) = {𝐾 ⊆ ℕ × ℕ: 𝐾𝑐 ∈ 𝐼, 𝑤ℎ𝑒𝑟𝑒   𝐾𝑐 = ℕ × ℕ − 𝐾}.   (1) 
 
Definition 1.4: A double sequence 𝑥 = (𝑥𝑖𝑗) ∈ 2𝜔 is 

said to be I-convergent to a number L if for every 𝜖 >
0, we have  
 
{(𝑖, 𝑗) ∈ ℕ × ℕ: |𝑥𝑖𝑗 − 𝐿| ≥ 𝜖} ∈ 𝐼.                                        (2) 

 
In this case, we write 𝐼 − lim𝑥𝑖𝑗 = 𝐿. 

 
Definition 1.5: A double sequence 𝑥 = (𝑥𝑖𝑗) ∈ 2𝜔 is 

said to be I - null if L=0. In this case, we write  
 
𝐼 − lim𝑥𝑖𝑗 = 0.                                                                        (3) 

 
Definition 1.6: A double sequence 𝑥 = (𝑥𝑖𝑗) ∈ 2𝜔 is 

said to be I-Cauchy if for every 𝜖 > 0 there exists 
numbers 𝑚 = 𝑚(𝜖), 𝑛 = 𝑛(𝜖) such that  
 
{(𝑖, 𝑗) ∈ ℕ × ℕ: |𝑥𝑖𝑗 − 𝑥𝑚𝑛| ≥ 𝜖} ∈ 𝐼.                                   (4) 

 
Definition 1.7: A double sequence 𝑥 = (𝑥𝑖𝑗) ∈ 2𝜔 is 

said to be I-bounded if there exists 𝑀 > 0 such that  
 
{(𝑖, 𝑗) ∈ ℕ × ℕ: |𝑥𝑖𝑗| > 𝑀} ∈ 𝐼.                                             (5) 

 
Definition 1.8: A double sequence space E is said to 
be solid or normal if (𝑥𝑖𝑗) ∈ 𝐸 implies that (𝛼𝑖𝑗𝑥𝑖𝑗) ∈

𝐸 for all sequence of scalars (𝛼𝑖𝑗) with |𝛼𝑖𝑗| < 1 for 

all (𝑖, 𝑗) ∈ ℕ × ℕ. 
 
Definition 1.9: A double sequence space E is said to 
be symmetric if (𝑥𝜋(𝑖,𝑗)) ∈ 𝐸 whenever (𝑥𝑖𝑗) ∈ 𝐸, 

where 𝜋(𝑖, 𝑗) is a permutation on ℕ × ℕ. 
 
Definition 1.10: A double sequence space E is said 
to be sequence algebra if (𝑥𝑖𝑗 . 𝑦𝑖𝑗) ∈ 𝐸 whenever 

(𝑥𝑖𝑗), (𝑦𝑖𝑗) ∈ 𝐸. 

 
Definition 1.11: A double sequence space E is said 
to be convergence free if (𝑦𝑖𝑗) ∈ 𝐸 whenever (𝑥𝑖𝑗) ∈

𝐸 and 𝑥𝑖𝑗 = 0 implies 𝑦𝑖𝑗 = 0, for all (𝑖, 𝑗) ∈ ℕ × ℕ. 

 
Definition 1.12: Let 𝐾 = {(𝑛𝑖, 𝑘𝑗): (𝑖, 𝑗): 𝑛1 < 𝑛2 <

𝑛3 <. . . . 𝑎𝑛𝑑 𝑘1 < 𝑘2 < 𝑘3 <. . . . } ⊆ ℕ × ℕ and E be a 
double sequence space. A K-step space of E is a 
sequence space  
 

𝜆𝐾
𝐸 = {(𝛼𝑖𝑗𝑥𝑖𝑗): (𝑥𝑖𝑗) ∈ 𝐸}. 

 
where (𝛼𝑖𝑗) be double sequence of scalars. 

 
Definition 1.13: A canonical preimage of a sequence 
(𝑎𝑛𝑖𝑘𝑗

) ∈ 𝜆𝐾
𝐸  is a sequence (𝑏𝑛𝑘) ∈ 𝐸 defined as 

follows: 
 

𝑏𝑛𝑘 = {
𝑎𝑛𝑘 ,       𝑓𝑜𝑟  𝑛  , 𝑘   ∈ 𝐾
0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

  

 
Definition 1.14: A sequence space E is said to be 
monotone if it contains the canonical preimages of 
all its step-spaces. 
 
Definition 1.15: Let 𝐼 = 𝐼𝑓 , the class of all finite 

subsets of ℕ. Then I is an admissible ideal in ℕ and 𝐼𝑓  

convergence coincides with the usual convergence 
(Kostyrko et al., 2000, 2005). 
 
Definition 1.16: Let X be a linear space. A function 
𝑔: 𝑋 → 𝑅 is called paranorm, if for all 𝑥, 𝑦 ∈ 𝑋, 
 
1. 𝑔(𝑥) = 0 𝑖𝑓 𝑥 = 𝜃,  
2. 𝑔(−𝑥) = 𝑔(𝑥),  
3. 𝑔(𝑥 + 𝑦) ≤ 𝑔(𝑥) + 𝑔(𝑦),  
4. If (𝜆𝑛) is a sequence of scalars with 𝜆𝑛 → 𝜆(𝑛 →
∞) and 𝑥𝑛, 𝑎 ∈ 𝑋 with 𝑥𝑛 → 𝑎(𝑛 → ∞) in the sense 
that: 
 
𝑔(𝑥𝑛 − 𝑎) → 0(𝑛 → ∞) , then  𝑔(𝜆𝑛𝑥𝑛 − 𝜆𝑎) →
0(𝑛 → ∞).  
 

We used the following lemmas for establishing 
some results of this article. 

 
Lemma 1.1: Every solid space is monotone 
(Tripathy and Hazarika, 2011). 
 
Lemma 1.2: Let 𝐾 ∈ ℱ(𝐼) and 𝑀 ⊆ 𝑁. If 𝑀 ∉ 𝐼, then 
𝑀 ∩ 𝐾 ∉ 𝐼. 
 
Lemma 1.3: If 𝐼 ⊆ 2𝑁 and 𝑀 ⊆ 𝑁. If 𝑀 ∉ 𝐼, then 𝑀 ∩
𝑁 ∉ 𝐼. 

 
The following subspaces  
 

𝑙(𝑝), 𝑙∞(𝑝), 𝑐(𝑝) 𝑎𝑛𝑑 𝑐0(𝑝)  
 
where 𝑝 = (𝑝𝑘) is a sequence of positive real 
numbers which were first introduced and discussed 
by Maddox (1969, 1986). After then, Lascarides 
(1971, 1983) defined the above sequence spaces in 
different manner. 

The following inequalities (Khan and Tabassum, 
2011) will be used throughout the paper. Let 𝑝 =
(𝑝𝑖𝑗) be a double sequence of positive real numbers. 

For any complex 𝜆, with 0 < 𝑝𝑖𝑗 ≤ sup
𝑖𝑗

𝑝𝑖𝑗 = 𝐻 <

∞, we have:  
 

|𝜆|𝑝𝑖𝑗 ≤ max(1, |𝜆|𝐻). 
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Let 𝐶 = max(1, 2𝐻−1), then for the factorable 
sequences (𝑎𝑖𝑗) and (𝑏𝑖𝑗) in the complex plane, we 

have: 
 

|𝑎𝑖𝑗 + 𝑏𝑖𝑗|𝑝𝑖𝑗 ≤ 𝐶(|𝑎𝑖𝑗|𝑝𝑖𝑗 + |𝑏𝑖𝑗|𝑝𝑖𝑗 ). 

2. Main results 

In this article, we introduce the following classes 
of double sequence spaces which are given as 
follows:  
 
 2𝒮𝐼(𝑝) = {𝑥 = (𝑥𝑖𝑗) ∈  2𝑙∞: {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗) − 𝐿|𝑝𝑖𝑗 ≥ 𝜖} ∈

𝐼, 𝑓𝑜𝑟  𝑠𝑜𝑚𝑒  𝐿 ∈ ℂ}                                                              (6) 
 2𝒮0

𝐼(𝑝) = {𝑥 = (𝑥𝑖𝑗) ∈  2𝑙∞: {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗)|𝑝𝑖𝑗 ≥ 𝜖} ∈

𝐼};                                                                                               (7) 
 2𝒮∞

𝐼 (𝑝) = {𝑥 = (𝑥𝑖𝑗) ∈  2𝑙∞: ∃𝐾 >

0 𝑠. 𝑡. {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗)|𝑝𝑖𝑗 ≥ 𝐾} ∈ 𝐼};                                       (8) 
 2𝒮∞(𝑝) = {𝑥 = (𝑥𝑖𝑗) ∈  2𝑙∞: sup

𝑖𝑗
(|𝑇(𝑥𝑖𝑗)|)𝑝𝑖𝑗 < ∞}.         (9) 

 
We also denote, 

 
 2ℳ𝑆

𝐼(𝑝) =  2𝒮𝐼(𝑝) ∩  2𝒮∞(𝑝) 
 2ℳ𝑆0

𝐼 (𝑝) =  2𝒮0
𝐼(𝑝) ∩  2𝒮∞(𝑝). 

 
where, 𝑝 = (𝑝𝑖𝑗) is a bounded double sequence of 

positive real numbers. 
 

Theorem 2.1: The classes of double 
sequences 2𝒮0

𝐼(𝑝),  2𝒮𝐼(𝑝),  2ℳ𝑆0
𝐼 (𝑝), and  2ℳ𝑆

𝐼(𝑝) are 

linear spaces. 
 

Proof: Let 𝑥 = (𝑥𝑖𝑗), 𝑦 = (𝑦𝑖𝑗) ∈  2𝒮𝐼(𝑝) be any two 

arbitrary elements and let 𝛼, 𝛽 be scalars. Then, for a 
given 𝜖 > 0, we have: 

 
{(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗) − 𝐿1|𝑝𝑖𝑗 ≥

𝜖

2𝑀1
}, 𝑓𝑜𝑟  𝑠𝑜𝑚𝑒 𝐿1 ∈ ℂ} ∈ 𝐼     (10) 

 
and, 
 
{(𝑖, 𝑗): |𝑇(𝑦𝑖𝑗) − 𝐿2|𝑝𝑖𝑗 ≥

𝜖

2𝑀2
}, 𝑓𝑜𝑟  𝑠𝑜𝑚𝑒 𝐿2 ∈ ℂ} ∈ 𝐼     (11) 

 
where, 
 
𝑀1 = 𝐷. max{1, sup

𝑖𝑗
|𝛼|𝑝𝑖𝑗}  

𝑀2 = 𝐷. max{1, sup
𝑖𝑗

|𝛽|𝑝𝑖𝑗}  

 
and, 
 
𝐷 = max{1, 2𝐻−1} 𝑤ℎ𝑒𝑟𝑒 𝐻 = sup

𝑖𝑗
𝑝𝑖𝑗 ≥ 0.  

 
Let, 
 
𝐴1 = {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗) − 𝐿1|𝑝𝑖𝑗 <

𝜖

2𝑀1
, 𝑓𝑜𝑟  𝑠𝑜𝑚𝑒 𝐿1 ∈ ℂ} ∈

ℱ(𝐼),                                                                                      (12) 
 
𝐴2 = {(𝑖, 𝑗): |𝑇(𝑦𝑖𝑗) − 𝐿2|𝑝𝑖𝑗 <

𝜖

2𝑀2
, 𝑓𝑜𝑟  𝑠𝑜𝑚𝑒 𝐿2 ∈ ℂ} ∈

ℱ(𝐼),                                                                                      (13) 
 

be such that 𝐴1
𝑐 ,  𝐴2

𝑐 ∈ 𝐼. 
Then, 

 
𝐴3 = {(𝑖, 𝑗): |(𝛼𝑇(𝑥𝑖𝑗) + 𝛽𝑇(𝑦𝑖𝑗)) − (𝛼𝐿1 + 𝛽𝐿2)|𝑝𝑖𝑗 < 𝜖}  

⊇ [{(𝑖, 𝑗): |𝛼|𝑝𝑖𝑗|𝑇(𝑥𝑖𝑗) − 𝐿1|𝑝𝑖𝑗 <
𝜖

2𝑀1
|𝛼|𝑝𝑖𝑗 . 𝐷}  

∩ {(𝑖, 𝑗): |𝛽|𝑝𝑖𝑗|𝑇(𝑦𝑖𝑗) − 𝐿2|𝑝𝑖𝑗 <
𝜖

2𝑀2
|𝛼|𝑝𝑖𝑗 . 𝐷}],  

 
implies that 𝐴3 ∈ ℱ(𝐼). Thus 𝐴3

𝑐 = 𝐴1
𝑐 ∪ 𝐴2

𝑐 ∈ 𝐼. 
Therefore, 𝛼(𝑥𝑖𝑗) + 𝛽(𝑦𝑖𝑗) ∈  2𝒮𝐼(𝑝), for all scalars 

𝛼, 𝛽 and (𝑥𝑖𝑗), (𝑦𝑖𝑗) ∈  2𝒮𝐼(𝑝). Hence  2𝒮𝐼(𝑝) is a 

linear space and the proof of others follow similarly. 
 

Theorem 2.2: The classes of double 
sequences 2ℳ𝑆

𝐼(𝑝) and  2ℳ𝑆
𝐼(𝑝) are paranormed  

spaces, paranormed by,  
 

𝑔(𝑥𝑖𝑗) = sup
𝑖𝑗

|𝑇(𝑥𝑖𝑗)|
𝑝𝑖𝑗

𝑀 ,     𝑤ℎ𝑒𝑟𝑒 𝑀 = max{1, sup
𝑖𝑗

𝑝𝑖𝑗}.  

 
Proof: Let 𝑥 = (𝑥𝑖𝑗), 𝑦 = (𝑦𝑖𝑗) ∈  2ℳ𝑆

𝐼(𝑝).  (𝑃1) It is 

clear that 𝑔(𝑥) = 0 if and only if 𝑥 = 𝜃. (𝑃2) 𝑔(−𝑥) =

𝑔(𝑥) is obvious. (𝑃3) Since 
𝑝𝑖𝑗

𝑀
≤ 1 and 𝑀 > 1, using 

Minkowski’s inequality, we have: 
 

𝑔(𝑥𝑖𝑗 + 𝑦𝑖𝑗) = sup
𝑖𝑗

|𝑇(𝑥𝑖𝑗 + 𝑦𝑖𝑗)|
𝑝𝑖𝑗

𝑀   

= sup
𝑖𝑗

|𝑇(𝑥𝑖𝑗) + 𝑇(𝑦𝑖𝑗)|
𝑝𝑖𝑗

𝑀   

≤ sup
𝑖𝑗

|𝑇(𝑥𝑖𝑗)|
𝑝𝑖𝑗

𝑀 + sup
𝑖𝑗

|𝑇(𝑦𝑖𝑗)|
𝑝𝑖𝑗

𝑀   

= 𝑔(𝑥) + 𝑔(𝑦).  
 

Therefore, 
 
𝑔(𝑥 + 𝑦) ≤ 𝑔(𝑥) + 𝑔(𝑦)   

 
(𝑃4) Let (𝜆𝑖𝑗) be a double sequence of scalars with 

(𝜆𝑖𝑗) → 𝜆(𝑖, 𝑗 → ∞) and (𝑥𝑖𝑗), 𝐿 ∈  2ℳ𝑆
𝐼(𝑝) such that,  

 
𝑥𝑖𝑗 → 𝐿(𝑖, 𝑗 → ∞),  

 
in the sense that, 
 
𝑔(𝑥𝑖𝑗 − 𝐿) → 0(𝑖, 𝑗 → ∞). 

 
Then, since the inequality 𝑔(𝑥𝑖𝑗) ≤ 𝑔(𝑥𝑖𝑗 − 𝐿) +

𝑔(𝐿) holds by subadditivity of g, the sequence 𝑔(𝑥𝑖𝑗) 

is bounded. Therefore,  
 
𝑔[(𝜆𝑖𝑗𝑥𝑖𝑗 − 𝜆𝐿)] = 𝑔[(𝜆𝑖𝑗𝑥𝑖𝑗 − 𝜆𝑥𝑖𝑗 + 𝜆𝑥𝑖𝑗 − 𝜆𝐿)]  
= 𝑔[(𝜆𝑖𝑗 − 𝜆)𝑥𝑖𝑗 + 𝜆(𝑥𝑖𝑗 − 𝐿)]  
≤ 𝑔[(𝜆𝑖𝑗 − 𝜆)𝑥𝑖𝑗] + 𝑔[𝜆(𝑥𝑖𝑗 − 𝐿)]  

≤ |(𝜆𝑖𝑗 − 𝜆)|
𝑝𝑖𝑗

𝑀 𝑔(𝑥𝑖𝑗) + |𝜆|
𝑝𝑖𝑗

𝑀 𝑔(𝑥𝑖𝑗 − 𝐿) → 0,  

 
as (𝑖, 𝑗 → ∞). That implies that the scalar 
multiplication is continuous. Hence  2ℳ𝑆

𝐼(𝑝) is a 
paranormed space. For the another space  2ℳ𝑆0

𝐼 (𝑝), 

the proof is similar. 
 

Theorem 2.3: The set  2ℳ𝑆
𝐼(𝑝) is closed subspace of 

 2𝒮∞(𝑝). 
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Proof: Let (𝑥𝑖𝑗
(𝑝𝑞)

) be a Cauchy double sequence in 

 2ℳ𝑆
𝐼(𝑝) such that 𝑥(𝑝𝑞) → 𝑥. We show that 𝑥 ∈

 2ℳ𝑆
𝐼(𝑝). Since (𝑥𝑖𝑗

(𝑝𝑞)
) ∈  2ℳ𝑆

𝐼(𝑝), then there exists 

(𝑎𝑝𝑞), and for every 𝜖 > 0 such that {(𝑖, 𝑗): |𝑥𝑖𝑗
(𝑝𝑞)

−

𝑎𝑝𝑞|𝑝𝑖𝑗 ≥ 𝜖} ∈ 𝐼. We need to show that: 

 
1. (𝑎𝑝𝑞) converges to 𝑎, where 𝑎 is some scalar. 

2. If 𝑈 = {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗) − 𝑎|𝑝𝑖𝑗 ≤ 𝜖}, then 𝑈𝑐 ∈ 𝐼. 

 

Since (𝑥𝑖𝑗
(𝑝𝑞)

) be a Cauchy double sequence in 

 2ℳ𝑆
𝐼(𝑝) then for a given 𝜖 > 0 there exists 𝑘0 ∈ ℕ 

such that sup
𝑖𝑗

|𝑇(𝑥𝑖𝑗
(𝑝𝑞)

) − 𝑇(𝑥𝑖𝑗
(𝑟𝑠)

)| <
𝜖

3
,

for  all 𝑝, 𝑞, 𝑟, 𝑠 ≥ 𝑘0. For a given 𝜖 > 0, we have,  
 

𝐵𝑝𝑞𝑟𝑠 = {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑝𝑞)

) − 𝑇(𝑥𝑖𝑗
(𝑟𝑠)

)|𝑝𝑖𝑗 < (
𝜖

3
)𝑀},  

𝐵𝑝𝑞 = {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑝𝑞)

) − 𝑎𝑝𝑞|𝑝𝑖𝑗 < (
𝜖

3
)𝑀},  

𝐵𝑟𝑠 = {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑟𝑠)

) − 𝑎𝑟𝑠|𝑝𝑖𝑗 < (
𝜖

3
)𝑀}.  

 
Then 𝐵𝑝𝑞𝑟𝑠

𝑐 , 𝐵𝑝𝑞
𝑐 , 𝐵𝑟𝑠

𝑐 ∈ 𝐼. Let 𝐵𝑐 = 𝐵𝑝𝑞𝑟𝑠
𝑐 ∩ 𝐵𝑝𝑞

𝑐 ∩

𝐵𝑟𝑠
𝑐 , where 𝐵 = {(𝑖, 𝑗): |𝑎𝑝𝑞 − 𝑎𝑟𝑠|𝑝𝑖𝑗 < 𝜖}, then 𝐵𝑐 ∈

𝐼. We choose 𝑘0 ∈ 𝐵𝑐 , then for each 𝑝, 𝑞, 𝑟, 𝑠 ≥ 𝑘0, we 
have,  
 

{(𝑖, 𝑗): |𝑎𝑝𝑞 − 𝑎𝑟𝑠|𝑝𝑖𝑗 < 𝜖} ⊇ [{(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑝𝑞)

) − 𝑎𝑝𝑞|𝑝𝑖𝑗 <

(
𝜖

3
)𝑀}   

∩ {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑟𝑠)

) − 𝑇(𝑥𝑖𝑗
(𝑝𝑞)

)|𝑝𝑖𝑗 < (
𝜖

3
)𝑀}  

∩ {(𝑖, 𝑗): |𝑎𝑟𝑠 − 𝑇(𝑥𝑖𝑗
(𝑟𝑠)

)|𝑝𝑖𝑗 < (
𝜖

3
)𝑀}].  

 
Then (𝑎𝑝𝑞) is a cauchy double sequence in ℂ. So, 

there exists a scalar 𝑎 ∈ ℂ such that (𝑎𝑝𝑞) →

𝑎, 𝑎𝑠 𝑝, 𝑞 → ∞. 
For the next step, let 0 < 𝛿 < 1 be given. Then, 

we show that if: 
 

𝑈 = {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑝𝑞)

) − 𝑎|𝑝𝑖𝑗 ≤ 𝛿}  

 

then 𝑈𝑐 ∈ 𝐼. Since 𝑥𝑖𝑗
(𝑝𝑞)

→ 𝑥, then there exists 

𝑝0, 𝑞0 ∈ ℕ such that,  
 

𝑃 = {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑝0𝑞0)

) − 𝑇(𝑥)|𝑝𝑖𝑗 < (
𝛿

3𝐷
)𝑀}                     (14) 

 
implies  𝑃𝑐 ∈ 𝐼. The numbers 𝑝0, 𝑞0 can be so 
choosen that together with (14), we have: 
  

𝑄 = {(𝑖, 𝑗): |𝑎𝑝0𝑞0
− 𝑎|𝑝𝑖𝑗 < (

𝛿

3𝐷
)𝑀}  

 

such that 𝑄𝑐 ∈ 𝐼. Since (𝑥𝑖𝑗
(𝑝𝑞)

) ∈  2ℳ𝑆
𝐼(𝑝). We have  

 

{(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑝0𝑞0)

) − 𝑎𝑝0𝑞0
|𝑝𝑖𝑗 ≥ 𝛿} ∈ 𝐼.  

 
Then we have a subset S of ℕ ×  ℕ such that 𝑆𝑐 ∈

𝐼, where  
 

𝑆 = {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑝0𝑞0)

) − 𝑎𝑝0𝑞0
|𝑝𝑖𝑗 < (

𝛿

3𝐷
)𝑀}.  

 

Let 𝑈𝑐 = 𝑃𝑐 ∪ 𝑄𝑐 ∪ 𝑆𝑐, where,  
 
𝑈 = {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗) − 𝑎|𝑝𝑖𝑗 < 𝛿}.  

 
Therefore, for each (𝑖, 𝑗) ∈ 𝑈𝑐 , we have: 

 

{(𝑖, 𝑗): |𝑇(𝑥) − 𝑎|𝑝𝑖𝑗 < 𝛿} ⊇ [{(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑝0𝑞0)

) − 𝑇(𝑥)|𝑝𝑖𝑗 <

(
𝛿

3
)𝑀}  

∩ {(𝑖, 𝑗): |𝑎𝑝0𝑞0
− 𝑎|𝑝𝑖𝑗 < (

𝛿

3
)𝑀}  

∩ {(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗
(𝑝0𝑞0)

) − 𝑎𝑝0𝑞0
|𝑝𝑖𝑗 < (

𝛿

3
)𝑀}].  

 
Hence the result  2ℳ𝑆

𝐼(𝑝) ⊂  2𝒮∞(𝑝) follows. 
Since the inclusions  2ℳ𝑆

𝐼(𝑝) ⊂  2𝒮∞(𝑝)and 
 2ℳ𝑆0

𝐼 (𝑝) ⊂  2𝒮∞(𝑝)are strict so in view of Theorem 

(2.3) we have the following result. 
 
Theorem 2.4: The spaces  2ℳ𝑆

𝐼(𝑝) and  2ℳ𝑆0
𝐼 (𝑝) are 

nowhere dense subsets of  2𝒮∞(𝑝). 
 
Theorem 2.5: The spaces 2𝒮0

𝐼(𝑝) and  2ℳ𝑆0
𝐼 (𝑝) are 

both solid and monotone. 
 
Proof: Here we consider  2𝒮0

𝐼(𝑝) and for 2ℳ𝑆0
𝐼 (𝑝) the 

proof shall be similar. Let 𝑥 = (𝑥𝑖𝑗) ∈  2𝒮0
𝐼(𝑝) be an 

arbitrary element, then there exists 𝜖 > 0 such that, 
 
{(𝑖, 𝑗): |𝑇(𝑥𝑖𝑗)|𝑝𝑖𝑗 ≥ 𝜖} ∈ 𝐼                                                   (15) 

 
Let (𝛼𝑖𝑗) be a sequence of scalars with |𝛼𝑖𝑗| ≤ 1 for 

all 𝑖, 𝑗 ∈ ℕ. Since |𝛼|𝑝𝑖𝑗 ≤ max{1, |𝛼|𝐺} ≤ 1, for all 
𝑖, 𝑗 ∈ ℕ, where 𝐺 = sup

𝑖𝑗
𝑝𝑖𝑗 . 

 
|𝑇(𝛼𝑖𝑗𝑥𝑖𝑗)|𝑝𝑖𝑗 = |𝛼𝑖𝑗𝑇(𝑥𝑖𝑗)|𝑝𝑖𝑗 ≤ |𝑇(𝑥𝑖𝑗)|𝑝𝑖𝑗 ,   𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖, 𝑗 ∈

ℕ.  
{(𝑖, 𝑗) ∈ ℕ × ℕ: |𝑇(𝛼𝑖𝑗𝑥𝑖𝑗)|𝑝𝑖𝑗 ≥ 𝜖} ⊆ {(𝑖, 𝑗) ∈ ℕ ×

ℕ: |𝑇(𝑥𝑖𝑗)|𝑝𝑖𝑗 ≥ 𝜖}.                                                               (16) 

 
Thus we have (𝛼𝑖𝑗𝑥𝑖𝑗) ∈  2𝒮0

𝐼(𝑝) . Hence  2𝒮0
𝐼(𝑝) is 

solid sequence space this shows that  2𝒮0
𝐼(𝑝) is 

monotone sequence space. Since every solid 
sequence space is monotone. For 2ℳ𝑆0

𝐼 (𝑝) the proof 

shall be similar. 
 
Theorem 2.6: For any Orlicz function M, the space 
 2𝒮𝐼(𝑝) and  2ℳ𝑆

𝐼(𝑝) are neither solid nor monotone, 
if 𝐼 is neither maximal nor 𝐼 = 𝐼𝑓 . 

 
Proof: Here we give a counter example for 
establishment of this result. Let 𝑋 =  2𝒮𝐼 and  2ℳ𝑆

𝐼 . 
Let us consider 𝐼 = 𝐼𝛿 .  

 
Let 𝑝𝑖𝑗 = 1, 𝑖𝑓   𝑘 = 𝑖 + 𝑗 is  even  and   𝑝𝑖𝑗 = 2, 𝑖𝑓 𝑘 =

𝑖 + 𝑗 is  odd . Consider, the K-step space 𝑋𝐾(𝑝) of 𝑋(𝑝) 
defined as follows. Let 𝑥 = (𝑥𝑖𝑗) ∈ 𝑋(𝑝) and 𝑦 =

(𝑦𝑖𝑗) ∈ 𝑋𝐾(𝑝) be such that,  

 

𝑦𝑖𝑗 = {
𝑥𝑖𝑗 ,       𝑖𝑓  𝑘  =   𝑖  +   𝑗  𝑖𝑠  𝑒𝑣𝑒𝑛 ,

0,                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
             (17) 
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Consider the sequence (𝑥𝑖𝑗) defined by (𝑥𝑖𝑗) = 1 

for all 𝑖, 𝑗 ∈ ℕ. Then 𝑥 = (𝑥𝑖𝑗) ∈  2𝒮𝐼(𝑝) and  2ℳ𝑆
𝐼(𝑝), 

but K-step space preimage does not belong to  2𝒮𝐼(𝑝) 
and  2ℳ𝑆

𝐼(𝑝). Thus  2𝒮𝐼(𝑝) and  2ℳ𝑆
𝐼(𝑝) are not 

monotone and hence they are not solid by Lemma 
(1.1). 
 
Theorem 2.7: Let (𝑝𝑖𝑗) and (𝑞𝑖𝑗) be two double 

sequences of positive real numbers. Then 

 2ℳ𝑆0
𝐼 (𝑝) ⊇  2ℳ𝑆0

𝐼 (𝑞) if and only if lim
𝑖,𝑗∈𝐾

inf
𝑝𝑖𝑗

𝑞𝑖𝑗
> 0, 

where 𝐾 ⊆ ℕ × ℕ such that 𝐾 ∈ ℱ(𝐼). 
 

Proof: Let lim
𝑖,𝑗∈𝐾

inf
𝑝𝑖𝑗

𝑞𝑖𝑗
> 0 and (𝑥𝑖𝑗) ∈  2ℳ𝑆0

𝐼 (𝑞). Then, 

there exists 𝛽 > 0 such that 𝑝𝑖𝑗 > 𝛽𝑞𝑖𝑗  for 

sufficiently large 𝑘 ∈ 𝐾. Since (𝑥𝑖𝑗) ∈  2ℳ𝑆0
𝐼 (𝑞). For a 

given 𝜖 > 0, we have  
 
𝐵0 = {(𝑖, 𝑗) ∈ ℕ × ℕ: |𝑇(𝑥𝑖𝑗)|𝑞𝑖𝑗 ≥ 𝜖} ∈ 𝐼.  

 
Let 𝐺0 = 𝐾𝑐 ∪ 𝐵0 . Then for all sufficiently large 

𝑘 ∈ 𝐺0. 
 
{(𝑖, 𝑗) ∈ ℕ × ℕ: |𝑇(𝑥𝑖𝑗)|𝑝𝑖𝑗 ≥ 𝜖} ⊆ {(𝑖, 𝑗) ∈ ℕ ×

ℕ: |𝑇(𝑥𝑖𝑗)|𝛽𝑞𝑖𝑗 ≥ 𝜖} ∈ 𝐼.  

 
Therefore, (𝑥𝑖𝑗) ∈  2ℳ𝑆0

𝐼 (𝑞). The converse part of 

the result follows obviously. 
 
Theorem 2.8: Let (𝑝𝑖𝑗) and (𝑞𝑖𝑗) be two double 

sequences of positive real numbers. Then 

 2ℳ𝑆0
𝐼 (𝑞) ⊇  2ℳ𝑆0

𝐼 (𝑝) if and only if lim
𝑖,𝑗∈𝐾

inf
𝑞𝑖𝑗

𝑝𝑖𝑗
> 0, 

where 𝐾 ⊆ ℕ × ℕ such that 𝐾 ∈ ℱ(𝐼). 
 
Proof: The proof follows similarly as proof Theorem 
(2.7). 
 
Theorem 2.9: Let (𝑝𝑖𝑗) and (𝑞𝑖𝑗) be two double 

sequences of positive real numbers.  
Then  2ℳ𝑆0

𝐼 (𝑞) =  2ℳ𝑆0
𝐼 (𝑝) if and only if 

lim
𝑖,𝑗∈𝐾

inf
𝑝𝑖𝑗

𝑞𝑖𝑗
> 0  

 
and 
 

lim
𝑖,𝑗∈𝐾

inf
𝑞𝑖𝑗

𝑝𝑖𝑗
> 0,  

 
where 𝐾𝑐 ⊆ ℕ × ℕ such that 𝐾 ∈ 𝐼. 
 
Proof: By combining Theorem (2.7) and Theorem 
(2.8) we get the desired result. 

3. Conclusion 

In this paper, the notions of paranorm 𝐼–
convergence of double sequence spaces defined by 
compact operator have been defined here and some 
elementary properties of these notions are obtained. 
These definitions and results provide new tools to 
deal with the convergence problems of sequences in 

the advance settings, occurring in many branches of 
science and engineering. 
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