International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 6, Issue 8 (August 2019), Pages: 53-64

----------------------------------------------

 Original Research Paper

 Title: Applications of He's semi-inverse variational method and ITEM to the nonlinear long-short wave interaction system

 Author(s): Ramin Mehdizad Tekiyeh 1, Jalil Manafian 2, *, Haci Mehmet Baskonus 3, Faruk Düşünceli 4

 Affiliation(s):

 1Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
 2Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
 3Department of Mathematics and Science Education, Faculty of Education, Harran University, Sanliurfa, Turkey
 4Faculty of Architecture and Engineering, Mardin Artuklu University, Mardin, Turkey

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-7201-6667

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2019.08.008

 Abstract:

This work deals with exact soliton solutions of the nonlinear long-short wave interaction system, utilizing two analytical methods. The system of coupled long-short wave interaction equations is studied by two analytical methods, namely, the generalized tan (ϕ/2)-expansion method and He’s semi-inverse variational method, based upon the integration tools. Moreover, in this paper, we generalize two aforementioned methods which give new soliton wave solutions. Abundant exact traveling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play an important role in engineering and physics fields. By using these methods, exact solutions including the hyperbolic function solution, traveling wave solution, soliton solution, rational function solution, and periodic wave solution of this equation have been obtained. In addition, by using Matlab, some graphical simulations were done to see the behavior of these solutions. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: He’s semi-inverse variational principle method, Improved tan (ϕ/2)-expansion method, Nonlinear long-short wave interaction system

 Article History: Received 14 September 2018, Received in revised form 9 March 2019, Accepted 10 June 2019

 Acknowledgement:

No Acknowledgement.

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

 Tekiyeh RM, Manafian J, and Baskonus HM et al. (2019). Applications of He's semi-inverse variational method and ITEM to the nonlinear long-short wave interaction system. International Journal of Advanced and Applied Sciences, 6(8): 53-64

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 

 Tables

 No Table

----------------------------------------------

 References (51) 

  1. Aghdaei MF and Manafian J (2016). Optical soliton wave solutions to the resonant Davey–Stewartson system. Optical and Quantum Electronics, 48(8): 413-446. https://doi.org/10.1007/s11082-016-0681-0   [Google Scholar]
  2. Baskonus HM (2016). New acoustic wave behaviors to the Davey–Stewartson equation with power-law nonlinearity arising in fluid dynamics. Nonlinear Dynamics, 86(1): 177-183. https://doi.org/10.1007/s11071-016-2880-4   [Google Scholar]
  3. Baskonus HM (2017). New complex and hyperbolic function solutions to the generalized double combined Sinh-Cosh-Gordon equation. In the AIP Conference Proceedings, AIP Publishing, 1798(1): 020018. https://doi.org/10.1063/1.4972610   [Google Scholar]
  4. Baskonus HM and Bulut H (2016). Exponential prototype structures for (2+ 1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics. Waves in Random and Complex Media, 26(2): 189-196. https://doi.org/10.1080/17455030.2015.1132860   [Google Scholar]
  5. Baskonus HM and Cattani C (2018). Nonlinear dynamical model for DNA. In the ITM Web of Conferences: The 3rd International Conference on Computational Mathematics and Engineering Sciences, EDP Sciences, Girne, Cyprus.   [Google Scholar]
  6. Baskonus HM, Bulut H, and Belgacem FBM (2017). Analytical solutions for nonlinear long–short wave interaction systems with highly complex structure. Journal of Computational and Applied Mathematics, 312: 257-266. https://doi.org/10.1016/j.cam.2016.05.035   [Google Scholar]
  7. Baskonus HM, Sulaiman TA, and Bulut H (2018a). On the exact solitary wave solutions to the long-short wave interaction system. In the ITM Web of Conferences: The 3rd International Conference on Computational Mathematics and Engineering Sciences, EDP Sciences, Girne, Cyprus, 22: 01063. https://doi.org/10.1051/itmconf/20182201063   [Google Scholar]
  8. Baskonus HM, Sulaiman TA, and Bulut H (2018b). Dark, bright and other optical solitons to the decoupled nonlinear Schrödinger equation arising in dual-core optical fibers. Optical and Quantum Electronics, 50(4): 165-177. https://doi.org/10.1007/s11082-018-1433-0   [Google Scholar]
  9. Bekir A and Aksoy E (2012). Exact solutions of shallow water wave equations by using the-expansion method. Waves in Random and Complex Media, 22(3): 317-331. https://doi.org/10.1080/17455030.2012.683890   [Google Scholar]
  10. Bekir A, Ayhan B, and Özer MN (2013). Explicit solutions of nonlinear wave equation systems. Chinese Physics B, 22(1): 010202. https://doi.org/10.1088/1674-1056/22/1/010202   [Google Scholar]
  11. Benney DJ (1977). A general theory for interactions between short and long waves. Studies in Applied Mathematics, 56(1): 81-94. https://doi.org/10.1002/sapm197756181   [Google Scholar]
  12. Biswas A (2009). 1-soliton solution of the generalized Zakharov–Kuznetsov modified equal width equation. Applied Mathematics Letters, 22(11): 1775-1777. https://doi.org/10.1016/j.aml.2009.06.015   [Google Scholar]
  13. Biswas A, Johnson S, Fessak M, Siercke B, Zerrad E, and Konar S (2012a). Dispersive optical solitons by the semi-inverse variational principle. Journal of Modern Optics, 59(3): 213-217. https://doi.org/10.1080/09500340.2011.620185   [Google Scholar]
  14. Biswas A, Milovic D, Savescu M, Mahmood MF, Khan KR, and Kohl R (2012b). Optical soliton perturbation in nanofibers with improved nonlinear Schrödinger's equation by semi-inverse variational principle. Journal of Nonlinear Optical Physics and Materials, 21(04): 1250054. https://doi.org/10.1142/S0218863512500543   [Google Scholar]
  15. Cattani C, Sulaiman TA, Baskonus HM, and Bulut H (2018a). Solitons in an inhomogeneous Murnaghan’s rod. The European Physical Journal Plus, 133(6): 228-240. https://doi.org/10.1140/epjp/i2018-12085-y   [Google Scholar]
  16. Cattani C, Sulaiman TA, Baskonus HM, and Bulut H (2018b). On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems. Optical and Quantum Electronics, 50(3): 138. https://doi.org/10.1007/s11082-018-1406-3   [Google Scholar]
  17. Ciancio A, Baskonus HM, Sulaiman TA, and Bulut H (2018). New structural dynamics of isolated waves via the coupled nonlinear Maccari’s system with complex structure. Indian Journal of Physics, 92(10): 1281–1290. https://doi.org/10.1007/s12648-018-1204-6   [Google Scholar]
  18. Dai CQ and Liu CY (2012). Interaction behaviors between solitons for the (2+ 1)-dimensional long wave short wave interaction model. Applied Mathematics and Computation, 219(5): 2658-2667. https://doi.org/10.1016/j.amc.2012.08.098   [Google Scholar]
  19. Dehghan M and Manafian J (2009). The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method. Zeitschrift für Naturforschung A, 64(7-8): 420-430. https://doi.org/10.1515/zna-2009-7-803   [Google Scholar]
  20. Dehghan M, Heris JM, and Saadatmandi A (2010). Application of semi‐analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses. Mathematical Methods in the Applied Sciences, 33(11): 1384-1398. https://doi.org/10.1002/mma.1329   [Google Scholar]
  21. Dehghan M, Manafian Heris J, and Saadatmandi A (2011a). Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics. International Journal of Numerical Methods for Heat and Fluid Flow, 21(6): 736-753. https://doi.org/10.1108/09615531111148482   [Google Scholar]
  22. Dehghan M, Manafian J, and Saadatmandi A (2011b). Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method. International Journal of Modern Physics B, 25(22): 2965-2981. https://doi.org/10.1142/S021797921110148X   [Google Scholar]
  23. Dias JP, Figueira M, and Frid H (2010). Vanishing viscosity with short wave–long wave interactions for systems of conservation laws. Archive for Rational Mechanics and Analysis, 196(3): 981-1010. https://doi.org/10.1007/s00205-009-0273-2   [Google Scholar]
  24. Erbay HA and Erbay S (2012). Transverse linear instability of solitary waves for coupled long-wave–short-wave interaction equations. Applied Mathematics Letters, 25(12): 2402-2406. https://doi.org/10.1016/j.aml.2012.07.012   [Google Scholar]
  25. Foroutan M, Manafian J, and Ranjbaran A (2018). Lump solution and its interaction to (3+ 1)-D potential-YTSF equation. Nonlinear Dynamics, 92(4): 2077-2092. https://doi.org/10.1007/s11071-018-4182-5   [Google Scholar]
  26. He JH (2006). Some asymptotic methods for strongly nonlinear equations. International journal of Modern Physics B, 20(10): 1141-1199. https://doi.org/10.1142/S0217979206033796   [Google Scholar]
  27. Hirota R (1985). Classical Boussinesq equation is a reduction of the modified KP equation. Journal of the Physical Society of Japan, 54(7): 2409-2415. https://doi.org/10.1143/JPSJ.54.2409   [Google Scholar]
  28. Jafari H, Soltani R, Khalique CM, and Baleanu D (2015). On the exact solutions of nonlinear long-short wave resonance equations. Romanian Reports in Physics, 67(3): 762-772.   [Google Scholar]
  29. Khater AH, Hassan MM, and Callebaut DK (2010). Travelling wave solutions to some important equations of mathematical physics. Reports on Mathematical Physics, 66(1): 1-19. https://doi.org/10.1016/S0034-4877(10)00020-0   [Google Scholar]
  30. Kohl R, Milovic D, Zerrad E, and Biswas A (2009). Optical solitons by He’s variational principle in a non-Kerr law media. Journal of Infrared, Millimeter, and Terahertz Waves, 30(5): 526-537. https://doi.org/10.1007/s10762-009-9467-9   [Google Scholar]
  31. Manafian J (2015). On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities. The European Physical Journal Plus, 130(12): 255-275. https://doi.org/10.1140/epjp/i2015-15255-5   [Google Scholar]
  32. Manafian J (2016). Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan (Φ (ξ)/2)-expansion method. Optik-International Journal for Light and Electron Optics, 127(10): 4222-4245. https://doi.org/10.1016/j.ijleo.2016.01.078   [Google Scholar]
  33. Manafian J (2018). Novel solitary wave solutions for the (3+ 1)-dimensional extended Jimbo–Miwa equations. Computers and Mathematics with Applications, 76(5): 1246-1260. https://doi.org/10.1016/j.camwa.2018.06.018   [Google Scholar]
  34. Manafian J and Lakestani M (2015a). Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity. The European Physical Journal Plus, 130(4): 61-72. https://doi.org/10.1140/epjp/i2015-15061-1   [Google Scholar]
  35. Manafian J and Lakestani M (2015b). Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G′/G)-expansion method. Pramana, 85(1): 31-52. https://doi.org/10.1007/s12043-014-0887-2   [Google Scholar]
  36. Manafian J and Lakestani M (2015c). New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients. International Journal of Engineering Mathematics, 2015: Article ID 107978. https://doi.org/10.1155/2015/107978   [Google Scholar]
  37. Manafian J and Lakestani M (2016a). Application of tan (ϕ/2)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik-International Journal for Light and Electron Optics, 127(4): 2040-2054. https://doi.org/10.1016/j.ijleo.2015.11.078   [Google Scholar]
  38. Manafian J and Lakestani M (2016b). Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Optical and Quantum Electronics, 48(2): 116-148. https://doi.org/10.1007/s11082-016-0371-y   [Google Scholar]
  39. Manafian J and Lakestani M (2016c). Abundant soliton solutions for the Kundu–Eckhaus equation via tan (ϕ (ξ))-expansion method. Optik-International Journal for Light and Electron Optics, 127(14): 5543-5551. https://doi.org/10.1016/j.ijleo.2016.03.041   [Google Scholar]
  40. Manafian J, Aghdaei MF, and Zadahmad M (2016a). Analytic study of sixth-order thin-film equation by tan (ϕ/2)-expansion method. Optical and Quantum Electronics, 48(8): 410-426. https://doi.org/10.1007/s11082-016-0683-y   [Google Scholar]
  41. Manafian J, Lakestani M, and Bekir A (2016b). Study of the analytical treatment of the (2+ 1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach. International Journal of Applied and Computational Mathematics, 2(2): 243-268. https://doi.org/10.1007/s40819-015-0058-2   [Google Scholar]
  42. Rashidi MM, Hayat T, Keimanesh T, and Yousefian H (2013). A study on heat transfer in a second‐grade fluid through a porous medium with the modified differential transform method. Heat Transfer Asian Research, 42(1): 31-45. https://doi.org/10.1002/htj.21030   [Google Scholar]
  43. Sakkaravarthi K, Kanna T, Vijayajayanthi M, and Lakshmanan M (2014). Multicomponent long-wave–short-wave resonance interaction system: Bright solitons, energy-sharing collisions, and resonant solitons. Physical Review E, 90(5): 052912. https://doi.org/10.1103/PhysRevE.90.052912   [Google Scholar] PMid:25493863
  44. Sassaman R, Heidari A, and Biswas A (2010). Topological and non-topological solitons of nonlinear Klein–Gordon equations by He's semi-inverse variational principle. Journal of the Franklin Institute, 347(7): 1148-1157. https://doi.org/10.1016/j.jfranklin.2010.04.012   [Google Scholar]
  45. Sendi CT, Manafian J, Mobasseri H, Mirzazadeh M, Zhou Q, and Bekir A (2019). Application of the ITEM for solving three nonlinear evolution equations arising in fluid mechanics. Nonlinear Dynamics, 95(1): 669-684. https://doi.org/10.1007/s11071-018-4589-z   [Google Scholar]
  46. Seyedi SH, Saray BN, and Nobari MRH (2015). Using interpolation scaling functions based on Galerkin method for solving non-Newtonian fluid flow between two vertical flat plates. Applied Mathematics and Computation, 269: 488-496. https://doi.org/10.1016/j.amc.2015.07.099   [Google Scholar]
  47. Seyedi SH, Saray BN, and Ramazani A (2018). On the multiscale simulation of squeezing nanofluid flow by a highprecision scheme. Powder Technology, 340: 264-273. https://doi.org/10.1016/j.powtec.2018.08.088   [Google Scholar]
  48. Sulaiman TA, Baskonus HM, and Bulut H (2018). Optical solitons and other solutions to the conformable space–time fractional complex Ginzburg–Landau equation under Kerr law nonlinearity. Pramana, 91(4): 58-66. https://doi.org/10.1007/s12043-018-1635-9   [Google Scholar]
  49. Triki H, Mirzazadeh M, Bhrawy AH, Razborova P, and Biswas A (2015). Solitons and other solutions to long-wave short-wave interaction equation. Romanian Reports in Physics, 60(1-2): 72-86.   [Google Scholar]
  50. Weisstein EW (2002). CRC concise encyclopedia of mathematics. Chapman and Hall/CRC, Boca Raton, Florida, USA. https://doi.org/10.1201/9781420035223   [Google Scholar]
  51. Zhang J (2007). Variational approach to solitary wave solution of the generalized Zakharov equation. Computers and Mathematics with Applications, 54(7-8): 1043-1046. https://doi.org/10.1016/j.camwa.2006.12.048   [Google Scholar]