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This work deals with exact soliton solutions of the nonlinear long-short wave 
interaction system, utilizing two analytical methods. The system of coupled 
long-short wave interaction equations is studied by two analytical methods, 
namely, the generalized tan (ϕ/2)-expansion method and He’s semi-inverse 
variational method, based upon the integration tools. Moreover, in this 
paper, we generalize two aforementioned methods which give new soliton 
wave solutions. Abundant exact traveling wave solutions including solitons, 
kink, periodic and rational solutions have been found. These solutions might 
play an important role in engineering and physics fields. By using these 
methods, exact solutions including the hyperbolic function solution, traveling 
wave solution, soliton solution, rational function solution, and periodic wave 
solution of this equation have been obtained. In addition, by using Matlab, 
some graphical simulations were done to see the behavior of these solutions. 
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1. Introduction 

*In this paper, we consider the nonlinear long-
short wave interaction system (Bekir et al., 2013) as 
follows: 
 
𝑖𝑢𝑡 + 𝑢𝑥𝑥 − 𝑢𝑣 = 0,                        (1.1) 
𝑣𝑡 + 𝑣𝑥 + (|𝑢|2)𝑥 = 0.  

 
The nonlinear long-short wave interaction 

systems with considering a general theory for 
interactions between short and long waves first 
introduced by Benney (1977). Describes of the 
nonlinear resonance interaction of multiple short 
waves with a long wave in two spatial dimension by 
considering a general multi-component (2 + 1)-
dimensional long-wave-shortwave resonance 
interaction system with arbitrary nonlinearity 
coefficients have been investigated by Sakkaravarthi 
et al. (2014) by applying the Hirota (1985) 
bilinearization method. The entangled mapping 
approach based on the general reduction theory was 
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investigated by Dai and Liu (2012), in which they 
have derived new type of variable separation 
solution for the (2 + 1)-dimensional long wave short 
wave interaction model. By utilizing the first integral 
method obtained one-soliton solutions and also by 
help aforesaid method is used to construct exact 
solutions of the nonlinear long-short wave 
resonance equations (Jafari et al., 2015). Apart from 
this, study on the long-short-wave interaction 
system by utilizing (G′/G)-expansion method was 
also carried out in Bekir et al. (2013). Triki et al. 
(2015) studied the long-wave short-wave interaction 
equation by help the simplest equation approach 
also obtained soliton solutions as well as other 
solutions such as singular periodic solutions and 
plane waves. Later on, the nonlinear long-short wave 
interaction system was studied by investigating the 
transverse linear instability of one-dimensional 
solitary wave solution (Erbay and Erbay, 2012). Dias 
et al. (2010), proof of the global existence and 
uniqueness of the solution of the Cauchy problem 
and also proof of the convergence of the whole 
sequence of solutions have been studied. Finally, by 
applying the new modified exp (−Ω (ξ))-expansion 
method sets of solutions including, hyperbolic, 
complex, and dark soliton solutions have obtained in 
Baskonus et al. (2017). 

It has been discovered that many models in 
mathematics and physics are described by nonlinear 
Partial differential equations. Indeed modeling 
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physical problems using partial differential 
equations with the exact parameters is not always 
easy but also impossible in the real problems. For 
this purpose, one way is using integration methods 
for finding the exact solutions. One of the most 
recent approaches is using numerical methods 
including the multiresolution analysis (Seyedi et al., 
2015), the multi-scale analysis (Seyedi et al., 2018), 
semi-analytical methods (Dehghan and Manafian, 
2009; Dehghan et al., 2010; Rashidi et al., 2013) or 
analytical methods (Manafian, 2015; 2016; 2018; 
Foroutan et al., 2018; Sendi et al., 2019; Dehghan et 
al., 2011a; 2011b; Manafian and Lakestani, 2015a; 
2015b; 2015c; Biswas, 2009; Bekir and Aksoy, 2012; 
Manafian and Lakestani, 2016a; 2016b; 2016c; 
Manafian et al., 2016a; 2016b; Aghdaei and 
Manafian, 2016). Also, of applied methods for solving 
nonlinear partial differential equation is He’s semi-
inverse variational principle, introduced by He 
(2006). For further information see references Kohl 
et al. (2009), Zhang (2007), Biswas et al. (2012a, 
2012b), Sassaman et al. (2010). So instead of using 
current models of partial differential equations, we 
can transfer PDEs to ordinary differential equations. 
Hence there occurs a need to use solitary wave 
variable that would appropriately transforms PDEs 
to ODEs and solve them. In recent decade, exact 
solutions of nonlinear differential equations have 
been attracted attention from all over the world. 
Therefore, some newly published papers can be 
pointed to new exact solutions in new works in 
which given in Refs. (Cattani et al., 2018a; 2018b; 
Sulaiman et al., 2018; Baskonus et al., 2018b; Ciancio 
et al., 2018; Baskonus, 2016; 2017; Baskonus and 
Cattani, 2018). 

In this paper, a novel and high accuracy method 
based on the classical Galerkin method proposed by 
Seyedi et al. (2018).  They used Alpert Wavelet basis 
in the spectral methods and could solve the nano-
fluid problems with high accuracy. Using the 
integration methods, we construct two analytical 
methods for Eq. 1.1, give corresponding algebraic 
equations, and show the efficiency of these schemes 
by the applied equation. Compared with some 
existed results, these methods are especially well 
designed for the solution of PDEs as particular the 
nonlinear long-short wave interaction system. The 
aim of this paper is to obtain analytical solutions of 
the aforementioned equation, and to determine the 
accuracy of these methods in solving this equation. 
The rest of the Paper is organized as follows: In 
Section 2, we present the He’s semi-inverse 
variational principle method and the improved tan 
(ϕ/2)-expansion method. In Section 3, we use 
transformations for converting the nonlinear 
longshort wave interaction system to an ODE form. 
In Section 4, by help of methods applied in section 2 
we drive new soliton wave solutions for the 
nonlinear long-short wave interaction system. 
Moreover, in Section 5, we give the simulation and 
discussion of the solutions with depicting figures. 
Also conclusion is given in Section 6. 

2. Methodology 

2.1. The He's semi-inverse variational principle 
method 

We describe the He’s semi-inverse variational 
principle method for the given partial differential 
equation. First we give a description of this method, 
by noting the following steps: 

 
Step 1: We suppose that given nonlinear partial 
differential equation for u(x, t) to be in the form 
 
𝑁(𝑢, 𝑢𝑥, 𝑢𝑡 , 𝑢𝑥𝑥, 𝑢𝑡𝑡, … ) = 0,                  (2.1) 

 
which can be converted to an ODE 
 
𝑄(𝑢, 𝑘𝑢′, 𝑤𝑢′, 𝑘2𝑢′′, 𝑤2𝑢′′, … )                    (2.2) 

 
by the transformation ξ = kx + wt, as wave variable. 
Also, μ is constant to be determined later. 

 
Step 2: According to He’s semi-inverse method, we 
construct the following trial-functional 
 
𝐽(𝑈) = ∫ 𝐿𝑑𝜉                       (2.3) 

 
where L is an unknown function of U and its 
derivatives. 
 
Step 3: By the Ritz method, we can obtain different 
forms of solitary wave solutions, such as 
 
𝑈(𝜉) = 𝐴𝑠𝑒𝑐ℎ(𝐵𝜉),    𝑈(𝜉) = 𝐴𝑐𝑠𝑐ℎ(𝐵𝜉),    𝑈(𝜉) =
𝐴𝑡𝑎𝑛ℎ(𝐵𝜉),     𝑈(𝜉) = 𝐴𝑐𝑜𝑡ℎ(𝐵𝜉),                  (2.4) 

 

and so on. For example in this paper, we search a 
soliton solution in the form 
 
𝑈(𝜉) = 𝐴𝑠𝑒𝑐ℎ(𝐵𝜉),                   (2.5) 
𝑈(𝜉) = 𝐴𝑡𝑎𝑛ℎ(𝐵𝜉),                    (2.6) 

 
where A and B are constants to be further 
determined. Substituting Eqs. 2.5 or 2.6 into Eq. 2.3 
and making J stationary with respect to A and B 
results in 
 
𝜕𝐽

𝜕𝐴
= 0,                                     (2.7) 

𝜕𝐽

𝜕𝐵
= 0.                                     (2.8) 

 
Solving Eqs. (2.7) and (2.8), we obtain A and B. 

Hence the soliton solutions (2.5) or (2.6) are well 
determined. 

2.2. Description of the ITEM 

The ITEM is well-known analytical method which 
was improved and developed by Sendi et al. (2019). 

 
Step 1: We suppose that given nonlinear partial 
differential equation for u(x, t) to be in the form 
 
𝑁(𝑢, 𝑢𝑥, 𝑢𝑡 , 𝑢𝑥𝑥, 𝑢𝑡𝑡, … ) = 0,                    (2.9) 
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which can be converted to an ODE 
 
𝑄(𝑢, 𝑘𝑢′, 𝑤𝑢′, 𝑘2𝑢′′, 𝑤2𝑢′′, … )                            (2.10) 
 

by the transformation ξ = kx + wt is the wave 
variable. Also, μ is constant to be determined later. 

 
Step 2: Suppose the traveling wave solution of Eq. 
2.10 can be expressed as follows: 

 
𝑢(𝜉) = 𝑆(𝜙) = ∑ 𝐴𝑘[𝑝 + tan (𝜙/2)]𝑘𝑚

𝑘=−𝑚                     (2.11) 

 
where Ak(0 ≤ k ≤ m) and A−k = Bk(1 ≤ k ≤ m) are 
constants to be determined, such that Am ̸= 0,Bm ̸= 0 
and ϕ = ϕ(ξ) satisfies the following ordinary 
differential equation: 
 
𝜙′(𝜉) = 𝑎 sin(𝜙(𝜉)) + 𝑏 cos(𝜙(𝜉)) + 𝑐.                          (2.12) 

 

We will consider the following special solutions 
of Eq. 2.12: 

 
Family 1: When   Δ = 𝑎2 + 𝑏2 − 𝑐2 < 0    and    𝑏 − 𝑐 ≠ 0,    

then   𝜙(𝜉) = 2 tan−1 [
𝑎

𝑏−𝑐
−

√−Δ

𝑏−𝑐
 tan (

√−Δ

2
𝜉̅)]. 

Family 2: When   Δ = 𝑎2 + 𝑏2 − 𝑐2 > 0    and    𝑏 − 𝑐 ≠ 0,    

then   𝜙(𝜉) = 2 tan−1 [
𝑎

𝑏−𝑐
+

√Δ

𝑏−𝑐
 tanh (

√Δ

2
𝜉̅)]. 

Family 3: When   Δ = 𝑎2 + 𝑏2 − 𝑐2 > 0,      𝑏 ≠ 0   and   𝑐 =

0,    then   𝜙(𝜉) = 2 tan−1 [
𝑎

𝑏
+

√𝑏2+𝑎2

𝑏
 tanh (

√𝑏2+𝑎2

2
𝜉̅)]. 

Family 4: When   Δ = 𝑎2 + 𝑏2 − 𝑐2 < 0,    𝑐 ≠ 0   and   𝑏 =

0,    then   𝜙(𝜉) = 2 tan−1 [−
𝑎

𝑐
+

√𝑐2−𝑎2

𝑐
 tan (

√𝑐2−𝑎2

2
𝜉̅)]. 

Family 5: When   Δ = 𝑎2 + 𝑏2 − 𝑐2 > 0,    𝑏 − 𝑐 ≠ 0   and   

𝑎 = 0,    then   𝜙(𝜉) = 2 tan−1 [√
𝑏+𝑐

𝑏−𝑐
 tanh (

√𝑏2−𝑐2

2
𝜉̅)]. 

Family 6: When   𝑎 = 0    and    𝑐 = 0,       then   𝜙(𝜉) =

tan−1 [
𝑒2𝑏�̅�−1

𝑒2𝑏�̅�+1
 ,

2𝑒𝑏�̅�

𝑒2𝑏�̅�+1
]. 

Family 7: When   𝑏 = 0    and    𝑐 = 0,       then   𝜙(𝜉) =

tan−1 [
2𝑒𝑎�̅�

𝑒2𝑎�̅�+1
 ,

𝑒2𝑎�̅�−1

𝑒2𝑎�̅�+1
]. 

Family 8: When   𝑎2 + 𝑏2 = 𝑐2,      then   𝜙(𝜉) =

2 tan−1 [
𝑎�̅�+2

(𝑏−𝑐)�̅�
 ]. 

Family 9: When   𝑎 = 𝑏 = 𝑐 = 𝑘𝑎,      then   𝜙(𝜉) =

2 tan−1[𝑒𝑘𝑎�̅� − 1 ]. 

Family 10: When   𝑎 = 𝑐 = 𝑘𝑎    and    𝑏 = −𝑘𝑎,    then   

𝜙(𝜉) = −2 tan−1 [
𝑒𝑘𝑎�̅�

−1+𝑒𝑘𝑎�̅�
 ]. 

Family 11: When   𝑐 = 𝑎,    then   𝜙(𝜉) =

−2 tan−1 [
(𝑎+𝑏) 𝑒𝑏�̅�−1

(𝑎−𝑏) 𝑒𝑏�̅�−1
 ]. 

Family 12: When   𝑎 = 𝑐,    then   𝜙(𝜉) =

2 tan−1 [
(𝑏+𝑐) 𝑒𝑏�̅�+1

(𝑏−𝑐) 𝑒𝑏�̅�−1
 ]. 

Family 13: When   𝑐 = −𝑎,    then   𝜙(𝜉) =

2 tan−1 [
 𝑒𝑏�̅�+𝑏−𝑎

𝑒𝑏�̅�−𝑏−𝑎
 ]. 

Family 14: When   𝑏 = −𝑐,    then   𝜙(𝜉) = 2 tan−1 [
 𝑎𝑒𝑎�̅�

1−𝑐𝑒𝑎�̅�
 ]. 

Family 15: When   𝑏 = 0,    and    𝑎 = 𝑐,      then   𝜙(𝜉) =

−2 tan−1 [
 𝑐�̅�+2

𝑐�̅�
 ]. 

Family 16: When   𝑎 = 0,    and    𝑏 = 𝑐,      then   𝜙(𝜉) =

2 tan−1[𝑐𝜉̅ ]. 

Family 17: When   𝑎 = 0,    and    𝑏 = −𝑐,      then   𝜙(𝜉) =

−2 tan−1 [
1

𝑐�̅�
 ]. 

Family 18: When   𝑎 = 0,    and    𝑏 = 0,      then   𝜙(𝜉) =
𝑐𝜉 + 𝐶. 

Family 19: When   𝑏 = 𝑐,    then   𝜙(𝜉) = 2 tan−1 [
 𝑒𝑎�̅�−𝑐

𝑎
 ]. 

 
where ξ = ξ + C, p,A0,Ak,Bk(k = 1, 2, ...,m), a, b and c 
are constants to be determined later. 

 
Step 3: Determine m. This, usually, can be 
accomplished by balancing the linear term(s) of 
highest order with the highest-order nonlinear 
term(s) in Eq. 2.10. But, the positive integer m can be 
determined by considering the homogeneous 
balance between the highest order derivatives and 
nonlinear terms appearing in Eq. 2.10. If m = q/p 
(where m = q/p be a fraction in the lowest terms), we 
let 
 
𝑢(𝜉) = 𝑣𝑞 𝑝⁄ (𝜉),                      (2.13) 

 
then substitute Eq. 2.13 into Eq. 2.10 and then 
determine the value of m in new Eq. 2.10. If m be a 
negative integer, we let 
 
𝑢(𝜉) = 𝑣𝑚(𝜉),                        (2.14) 

 
then substitute Eq. 2.14 into Eq. 2.10. Then we 
determine the new value of m in obtained equation. 

 
Step 4: Substituting (2.11) into Eq. 2.10 with the 
value of m obtained in Step 2. Collecting the 
coefficients of tan (ϕ/2)k, cot (ϕ/2)k(k = 0, 1, 2, ...), 
then setting each coefficient to zero, we can get a set 
of over-determined equations for A0,Ak,Bk(k = 1, 2, 
...,m) a, b, c and p with the aid of symbolic 
computation Maple. 

 
Step 5: Solving the algebraic equations in Step 3, 
then substituting A0, A1, B1, ..., Am, Bm, μ, p in (2.11). 

3. The LSWI systems 

In this paper, we consider the nonlinear long-
short wave interaction systems (Baskonus et al., 
2017; 2018a) in the form 
 
𝑖𝑢𝑡 + 𝑢𝑥𝑥 − 𝑢𝑣 = 0,                       (3.1) 
𝑣𝑡 + 𝑣𝑥 + (|𝑢|2)𝑥 = 0.  
 

Combine the real variables x and t by a compound 
variable ξ 
 
𝑢(𝑥, 𝑡) = exp(𝑖𝜂) 𝑈(𝜉),        𝜂 = 𝛼𝑥 + 𝛽𝑡,                            (3.2) 
𝑣(𝑥, 𝑡) = 𝑉(𝜉),        𝜉 = 𝑘𝑥 + 𝑤𝑡,  
 

If we take the necessary derivations of Eq. 3.2 for 
Eq. 3.1, then we get the following nonlinear ODEs, 

 
(𝑤 + 2𝛼𝑘)𝑖𝑈′ − (𝛼2 + 𝛽)𝑈 + 𝑘2𝑈′′ − 𝑈𝑉 = 0,               (3.3) 
(𝑘 + 𝑤)𝑉′ + 𝑘(𝑈2)′ = 0.                     (3.4) 
 

Consider the complex part of Eq. 3.3 to zero, will 
obtain 
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𝑤 = −2𝛼𝑘.                    (3.5) 

 
By integrating Eq. 3.4 and considering Eq. 3.5, we 

get to 
 

𝑉 =
−𝑘

𝑘+𝑤
𝑈2 =

−𝑘

𝑘−2𝛼𝑘
𝑈2 =

−1

1−2𝛼
𝑈2.                       (3.6) 

 
Now, when we substitute Eqs. 3.5 and 3.6 into Eq. 

3.3, we obtain the NODE as 
 

𝑘2𝑈′′ − (𝛼2 + 𝛽)𝑈 +
1

1−2𝛼
𝑈3 = 0,                   (3.7) 

4. Test problems 

4.1. Applying section 2.1 for the LSWI systems 

By He’s semi-inverse principle (He, 2006; Kohl et 
al., 2009; Zhang, 2007), we can obtain the following 
variational formulation by using of the Eq. 3.7 

 

𝐽 = ∫ [
1

2
𝑘2(𝑈′)2 −

1

2
(𝛼2 + 𝛽)𝑈2 +

1

4(1−2𝛼)
𝑈4] 𝑑𝜉

∞

0
.       (4.1) 

 
By a Ritz-like method, we search a soliton 

solution in the form 
 

𝑈(𝜉) = 𝐴 sech(𝐵𝜉),                      (4.2) 

 
where A and B are unknown constants to be further 
determined. Substituting Eq. 4.2 into Eq. 4.1, we have 
 

𝐽 = ∫ [
1

2
𝑘2𝐴2𝐵2𝑠𝑒𝑐ℎ2(𝐵𝜉)𝑡𝑎𝑛ℎ2(𝐵𝜉) −

1

2
(𝛼2 +

∞

0

𝛽)𝐴2𝑠𝑒𝑐ℎ2(𝐵𝜉) +
1

4(1−2𝛼)
𝐴4𝑠𝑒𝑐ℎ4(𝐵𝜉)] 𝑑𝜉.                      (4.3) 

 

Making J stationary with A and B yields 
 

𝐽 =
1

6
𝑘2𝐴2𝐵 −

1

2𝐵
(𝛼2 + 𝛽)𝐴2 +

1

6(1−2𝛼)
𝐴4.  

𝜕𝐽(𝐴,𝐵)

𝜕𝐴
=

1

3
𝑘2𝐴𝐵 −

1

𝐵
(𝛼2 + 𝛽)𝐴 +

2

3(1−2𝛼)
𝐴3 = 0,           (4.4) 

𝜕𝐽(𝐴,𝐵)

𝜕𝐵
=

1

6
𝑘2𝐴2 +

1

2𝐵2
(𝛼2 + 𝛽)𝐴2 −

1

6(1−2𝛼)𝐵2 𝐴4 = 0.   (4.5) 

 
Solving Eqs. 4.4 and 4.5, we obtain 

 

𝐴 = ±√2(1 − 2𝛼)(𝛼2 + 𝛽),      𝐵 = ±
1

𝑘
√−(𝛽 + 𝛼2).    (4.6) 

 

By utilizing the transformations (3.2) and (3.6), 
we will have 

 
𝑢(𝑥, 𝑡) =

±√2(1 − 2𝛼)(𝛼2 + 𝛽) sech (±
1

𝑘
√−(𝛽 + 𝛼2)(𝑘𝑥 −

2𝛼𝑘𝑡)) 𝑒𝑖(𝛼𝑥+𝛽𝑡),     (4.7) 

𝑣(𝑥, 𝑡) = 2(𝛼2 + 𝛽) 𝑠𝑒𝑐ℎ2  (±
1

𝑘
√−(𝛽 + 𝛼2)(𝑘𝑥 − 2𝛼𝑘𝑡)).

                   (4.8) 

 
Also, we search a soliton solution in the form 
 

𝑈(𝜉) = 𝐴 tanh(𝐵𝜉),                    (4.9) 
 

where A and B are unknown constants to be further 
determined. Substituting Eq. 4.9 into Eq. 4.1, we have 

 

𝐽 = ∫ [
1

2
𝑘2𝐴2𝐵2𝑠𝑒𝑐ℎ4(𝐵𝜉) −

1

2
(𝛼2 + 𝛽)𝐴2𝑡𝑎𝑛ℎ2(𝐵𝜉) +

∞

0
1

4(1−2𝛼)
𝐴4𝑡𝑎𝑛ℎ4(𝐵𝜉)] 𝑑𝜉    (4.10) 

=
1

3
𝑘2𝐴2𝐵 +

1

2𝐵
(𝛼2 + 𝛽)𝐴2 −

1

3(1−2𝛼)𝐵
𝐴4.  

 
Making J stationary with A and B yields 

 
𝜕𝐽(𝐴,𝐵)

𝜕𝐴
=

2

3
𝑘2𝐴𝐵 −

1

𝐵
(𝛼2 + 𝛽)𝐴 −

4

3(1−2𝛼)𝐵
𝐴3 = 0,       (4.11) 

𝜕𝐽(𝐴,𝐵)

𝜕𝐵
=

1

3
𝑘2𝐴2 −

1

2𝐵2
(𝛼2 + 𝛽)𝐴2 +

1

3(1−2𝛼)𝐵2 𝐴4 = 0. (4.12) 

 
Solving Eqs. 4.11 and 4.12, we obtain 

 

𝐴 = ±√(1 − 2𝛼)(𝛼2 + 𝛽),        𝐵 = ±
1

𝑘
√

𝛽+𝛼2

2
               (4.13) 

𝑢(𝑥, 𝑡) = ±√(1 − 2𝛼)(𝛼2 + 𝛽) tanh (±
1

𝑘
√

𝛽+𝛼2

2
(𝑘𝑥 −

2𝛼𝑘𝑡)) 𝑒𝑖(𝛼𝑥+𝛽𝑡),                   (4.14) 

 

By utilizing the transformations (3.2) and (3.6), 
we will have 

 

𝑣(𝑥, 𝑡) = (𝛼2 + 𝛽) 𝑡𝑎𝑛ℎ2  (±
1

𝑘
√

𝛽+𝛼2

2
(𝑘𝑥 − 2𝛼𝑘𝑡)).  (4.15) 

 
Likewise, we search another soliton solution in 

the form 
 

𝑈(𝜉) = 𝐴 csch(𝐵𝜉),        (4.16) 

 
where A and B are unknown constants to be further 
determined. Substituting Eq. 4.16 into Eq. 4.1, we 
have 
 

𝐽 = ∫ [
1

2
𝑘2𝐴2𝐵2𝑐𝑠𝑐ℎ2(𝐵𝜉) 𝑐𝑜𝑡ℎ2(𝐵𝜉) −

1

2
(𝛼2 +

∞

0

𝛽)𝐴2𝑐𝑠𝑐ℎ2(𝐵𝜉) +
1

4(1−2𝛼)
𝐴4𝑐𝑠𝑐ℎ4(𝐵𝜉)] 𝑑𝜉                     (4.17) 

= −
1

6
𝑘2𝐴2𝐵 +

1

2𝐵
(𝛼2 + 𝛽)𝐴2 +

1

6(1−2𝛼)𝐵
𝐴4.  

 

Making J stationary with A and B yields 
 
𝜕𝐽(𝐴,𝐵)

𝜕𝐴
= −

1

3
𝑘2𝐴𝐵 +

1

𝐵
(𝛼2 + 𝛽)𝐴 +

2

3(1−2𝛼)𝐵
𝐴3 = 0,   (4.18) 

𝜕𝐽(𝐴,𝐵)

𝜕𝐵
= −

1

6
𝑘2𝐴2 −

1

2𝐵2
(𝛼2 + 𝛽)𝐴2 −

1

6(1−2𝛼)𝐵2
𝐴4 = 0.  

                             (4.19) 
 

Solving Eqs. 4.18 and 4.19, we obtain 
 

𝐴 = ±√2(1 − 2𝛼)(𝛼2 + 𝛽),        𝐵 = ±
1

𝑘
√−(𝛽 + 𝛼2).  

                                 (4.20) 

 
By using the transformations (3.2) and (3.6), we 

will have 
 
𝑢(𝑥, 𝑡) =

±√−2(1 − 2𝛼)(𝛼2 + 𝛽) 𝑐𝑠𝑐ℎ (±
1

𝑘
√−(𝛽 + 𝛼2)(𝑘𝑥 −

2𝛼𝑘𝑡)) 𝑒𝑖(𝛼𝑥+𝛽𝑡),                   (4.21) 

𝑣(𝑥, 𝑡) = −2(𝛼2 + 𝛽) 𝑐𝑠𝑐ℎ2  (±
1

𝑘
√−(𝛽 + 𝛼2)(𝑘𝑥 −

2𝛼𝑘𝑡)).                   (4.22) 
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As last example, we search a soliton solution in 
the form 

 
𝑈(𝜉) = 𝐴𝑐𝑜𝑡 ℎ(𝐵𝜉),                 (4.23) 

 
where A and B are unknown constants to be further 
determined. Substituting Eq. 4.23 into Eq. 4.1, we 
have 
 

𝐽 = ∫ [
1

2
𝑘2𝐴2𝐵2𝑐𝑠𝑐ℎ4(𝐵𝜉)  −

1

2
(𝛼2 + 𝛽)𝐴2𝑐𝑜𝑡ℎ2(𝐵𝜉) +

∞

0
1

4(1−2𝛼)
𝐴4𝑐𝑜𝑡ℎ4(𝐵𝜉)] 𝑑𝜉                                                        (4.24) 

=
1

3
𝑘2𝐴2𝐵 +

1

2𝐵
(𝛼2 + 𝛽)𝐴2 +

1

3(1−2𝛼)𝐵
𝐴4.  

 

Making J stationary with A and B yields 
 

𝜕𝐽(𝐴,𝐵)

𝜕𝐴
=

2

3
𝑘2𝐴𝐵 +

1

𝐵
(𝛼2 + 𝛽)𝐴 −

4

3(1−2𝛼)𝐵
𝐴3 = 0,       (4.25) 

𝜕𝐽(𝐴,𝐵)

𝜕𝐵
=

1

3
𝑘2𝐴2 −

1

2𝐵2
(𝛼2 + 𝛽)𝐴2 +

1

3(1−2𝛼)𝐵2
𝐴4 = 0. (4.26) 

 
Solving Eqs. 4.25 and 4.26, we obtain 
 

𝐴 = ±√(1 − 2𝛼)(𝛼2 + 𝛽),        𝐵 = ±
1

𝑘
√

𝛽+𝛼2

2
.              (4.27) 

 
By utilizing the transformations (3.2) and (3.6), 

we will have 
 

𝑢(𝑥, 𝑡) = ±√(1 − 2𝛼)(𝛼2 + 𝛽) 𝑐𝑜𝑡ℎ (±
1

𝑘
√

𝛽+𝛼2

2
(𝑘𝑥 −

2𝛼𝑘𝑡)) 𝑒𝑖(𝛼𝑥+𝛽𝑡),                 (4.28) 

𝑣(𝑥, 𝑡) = (𝛼2 + 𝛽) 𝑐𝑜𝑡ℎ2  (±
1

𝑘
√

𝛽+𝛼2

2
(𝑘𝑥 − 2𝛼𝑘𝑡)).   (4.29) 

4.2. Applying section 2.2 for the LSWI systems 

By considering Eq. 3.7, and balancing the terms 
U′′ and U3 by using homogenous principle, we get 

 
𝑚 + 2 = 3𝑚, ⟹    𝑚 = 1.                 (4.30) 

 
To get a closed form solution, we use the 

transformation as 
 
𝑈(𝜉) = 𝐴0 + 𝐴1[𝑝 + tan(𝜙/2)] + 𝐵1[𝑝 + tan(𝜙/2)]−1.  
                (4.31) 
 

By substituting (4.31) into Eq. 3.7 and collecting 
all terms with the same order of tan (Φ(ξ)/2) 
together, the left hand side of (4.31) are converted 
into polynomial in tan (Φ(ξ)/2). Setting each 
coefficient of each polynomial to zero, we derive a 
set of algebraic equations for a, b, c, μ, α, β, k,w,A0,A1, 
and B1. Solving the obtained algebraic equations, we 
have the following sets of coefficients for the 
solutions of (3.1) as given below: 
 

Case 1: 
𝑝 = −

𝑎

𝑏−𝑐
,   𝑏 = 𝑏,    𝑐 = 𝑐,   Δ = 𝑎2 + 𝑏2 − 𝑐2,    𝑘 =

𝑘,    Ω = (𝑏 − 𝑐)𝑝2 + 𝑏 + 𝑐,   𝛼 =
1

2
+

𝐵1
2

𝑘2Ω2,                      (4.32) 

𝛽 = −
1

2
(𝑏 − 𝑐 + 1) −

𝐵1
2

𝑘2Ω2 ,     𝐴0 = 0,    𝐴1 = 0,    𝐵1 = 𝐵1  

By using of transformations of (3.1) and (4.32), 
we can obtain the following complex dark solutions 
for Eq. 3.1 as 

 
Case 1.1: Family 1 
𝑢1(𝑥, 𝑡) =

−𝐵1

√−Δ
cot  (

√−Δ

2
 𝜉(𝑥, 𝑡)) 𝑒

𝑖[(
1

2
+

𝐵1
2

𝑘2Ω2)𝑥−(
1

2
(𝑏−𝑐+1)+

𝐵1
2

𝑘2Ω2)𝑡]
,     (4.33) 

𝑣1(𝑥, 𝑡) = −
𝑘2Ω2(𝑏−𝑐)2

2Δ
cot2  (

√−Δ

2
 𝜉(𝑥, 𝑡))  ,      𝜉(𝑥, 𝑡) =

𝑘𝑥 − 𝑘 (1 +
2𝐵1

2

𝑘2Ω2) 𝑡.  

 

Case 1.2: Family 2 
𝑢2(𝑥, 𝑡) =

𝐵1(𝑏−𝑐)

√Δ
coth  (

√Δ

2
 𝜉(𝑥, 𝑡)) 𝑒

𝑖[(
1

2
+

𝐵1
2

𝑘2Ω2)𝑥−(
1

2
(𝑏−𝑐+1)+

𝐵1
2

𝑘2Ω2)𝑡]
,  

           (4.34) 

𝑣2(𝑥, 𝑡) = −
𝑘2Ω2(𝑏−𝑐)2

2Δ
coth2  (

√Δ

2
 𝜉(𝑥, 𝑡))  ,      𝜉(𝑥, 𝑡) =

𝑘𝑥 − 𝑘 (1 +
2𝐵1

2

𝑘2Ω2
) 𝑡.  

 

Case 1.3: Family 6 

𝑢3(𝑥, 𝑡) = 𝐵1 cot (
1

2
arctan [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
])     

𝑒
𝑖[(

1

2
+

𝐵1
2

𝑘2b2)𝑥−(
1

2
(𝑏+1)+

𝐵1
2

𝑘2b2)𝑡]
                                                     (4.35) 

𝑣3(𝑥, 𝑡) =
𝑘2𝑏2

2
cot2 (

1

2
arctan [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
])  ,      𝜉(𝑥, 𝑡) = 𝑘𝑥 −

𝑘 (1 +
2𝐵1

2

𝑘2b2) 𝑡.  

 

Case 1.4: Family 11 
𝑢4(𝑥, 𝑡) =

−𝐵1
𝑏𝑒𝑏𝜉(𝑥,𝑡)−(1−𝑝)

(3𝑝−1)𝑏𝑒𝑏𝜉(𝑥,𝑡)−(1−𝑝)2  𝑒
𝑖[(

1

2
+

𝐵1
2

𝑘2Ω2)𝑥−(
1

2
(𝑏−𝑎+1)+

𝐵1
2

𝑘2Ω2)𝑡]
,  

                (4.36) 

𝑣4(𝑥, 𝑡) =
𝑘2Ω2

2
(

𝑏𝑒𝑏𝜉(𝑥,𝑡)−(1−𝑝)

(3𝑝−1)𝑏𝑒𝑏𝜉(𝑥,𝑡)−(1−𝑝)2)
2

,      𝜉(𝑥, 𝑡) = 𝑘𝑥 −

𝑘 (1 +
2𝐵1

2

𝑘2Ω2) 𝑡.   

 

Case 1.5: Family 16 

𝑢5(𝑥, 𝑡) = 𝐵1 (
1

𝑝+𝑐𝜉(𝑥,𝑡)
) 𝑒

𝑖[(
1

2
+

𝐵1
2

4𝑘2c2)𝑥−(
1

2
+

𝐵1
2

4𝑘2c2)𝑡]
,            (4.37) 

𝑣5(𝑥, 𝑡) = 2𝑘2c2 (
1

𝑝+𝑐𝜉(𝑥,𝑡)
)

2
,      𝜉(𝑥, 𝑡) = 𝑘𝑥 −

𝑘 (1 +
𝐵1

2

2𝑘2c2) 𝑡.  

 

Case 2: 
𝑝 = 𝑝,     𝑎 = 𝑎,    𝑏 = 𝑐,    𝑐 = 𝑐,    Δ = 𝑎2,     𝑘 = 𝑘,     𝛼 =
1

2
+

𝐴0
2

𝑘2𝑎2,                                      (4.38) 

𝛽 = −
1

2
(1 + 𝑘2𝑎2) −

𝐴0
2

𝑘2𝑎2 ,      𝐴0 = 𝐴0,     𝐴1 = 0,    𝐵1 =

−
2𝐴0(𝑎𝑝−𝑐)

𝑎
.  

 

By using of transformations of (3.1) and (4.38), 
we can obtain the following complex dark solutions 
for Eq. 3.1 as 

 
Case 2.1: Family 7 

𝑢6(𝑥, 𝑡) = [𝐴0 −
2𝐴0(𝑎𝑝−𝑐)

𝑎
 {𝑝 +

𝑡𝑎𝑛 (
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

2𝑒𝑎𝜉(𝑥,𝑡)

𝑒2𝑎𝜉(𝑥,𝑡)+1
,

𝑒𝑎𝜉(𝑥,𝑡)−1

𝑒2𝑎𝜉(𝑥,𝑡)+1
])}

−1

]   

𝑒
𝑖[(

1

2
+

𝐵1
2

𝑘2𝑎2)𝑥−(
1

2
(1+𝑘2𝑎2)+

𝐵1
2

𝑘2𝑎2)𝑡]
,             (4.39) 
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𝑣6(𝑥, 𝑡) =
𝑘2𝑎2

2𝐴0
2 [𝐴0 −

2𝐴0(𝑎𝑝−𝑐)

𝑎
 {𝑝 +

𝑡𝑎𝑛 (
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

2𝑒𝑎𝜉(𝑥,𝑡)

𝑒2𝑎𝜉(𝑥,𝑡)+1
,

𝑒𝑎𝜉(𝑥,𝑡)−1

𝑒2𝑎𝜉(𝑥,𝑡)+1
])}

−1

]

2

 ,   

 

Case 2.2: Family 19 

𝑢7(𝑥, 𝑡) = [𝐴0 −
2𝐴0(𝑎𝑝−𝑐)

𝑎
 {𝑝 +

𝑒𝑎𝜉(𝑥,𝑡)−𝑐

𝑎
}

−1

] 𝑒
𝑖[(

1

2
+

𝐵1
2

𝑘2𝑎2)𝑥−(
1

2
(1+𝑘2𝑎2)+

𝐵1
2

𝑘2𝑎2)𝑡]
,                (4.40) 

𝑣7(𝑥, 𝑡) =
𝑘2𝑎2

2𝐴0
2 [𝐴0 −

2𝐴0(𝑎𝑝−𝑐)

𝑎
 {𝑝 +

𝑒𝑎𝜉(𝑥,𝑡)−𝑐

𝑎
}

−1

]

2

,      𝜉(𝑥, 𝑡) = 𝑘𝑥 − 𝑘 (1 +
2𝐴0

2

𝑘2𝑎2
) 𝑡.  

 

Case 3: 
𝑝 = 𝑝,    𝑎 = 𝑎,    𝑏 = 𝑏,    𝑐 = 𝑐,    Δ = 𝑎2 + 𝑏2 − 𝑐2,     𝑘 =

𝑘,     𝛼 = 𝛼,    𝛽 = −𝛼 +
1

2
𝑘2(𝑐2 − 𝑎2),                              (4.41) 

𝐴0 = √
2𝛼−1

2
(𝑎 + 𝑝𝑏 − 𝑝𝑐)𝑘,     𝐴1 = 0,     𝐵1 =

−√
2𝛼−1

2
(2𝑎𝑝 + 𝑝2(𝑏 − 𝑐) − 𝑏 − 𝑐)𝑘.  

 
By using of transformations of (3.1) and (4.41), 

we can obtain the following complex dark solutions 
for Eq. 3.1 as 

 
Case 3.1: Family 1 

𝑢8(𝑥, 𝑡) = [√
2𝛼−1

2
 (𝑎 + 𝑝𝑏 − 𝑝𝑐)𝑘 −  √

2𝛼−1

2
 (2𝑎𝑝 +

𝑝2(𝑏 − 𝑐) − 𝑏 − 𝑐)𝑘 × {𝑝 +
𝑎

𝑏−𝑐
−

√−Δ

𝑏−𝑐
tan (

√−Δ

2
 𝜉(𝑥, 𝑡))}

−1

] 𝑒
𝑖[𝛼𝑥+(−𝛼+

1

2
𝑘2(𝑐2−𝑎2))𝑡]

,         (4.42) 

𝑣8(𝑥, 𝑡) =
1

2
[(𝑎 + 𝑝𝑏 − 𝑝𝑐)𝑘 − (2𝑎𝑝 + 𝑝2(𝑏 − 𝑐) − 𝑏 −

𝑐)𝑘 {𝑝 +
𝑎

𝑏−𝑐
−

√−Δ

𝑏−𝑐
tan (

√−Δ

2
 𝜉(𝑥, 𝑡))}

−1

]

2

,  

 

where ξ(x, t) = kx − 2kαt. 
 
Case 3.2: Family 2 

𝑢9(𝑥, 𝑡) = [√
2𝛼−1

2
 (𝑎 + 𝑝𝑏 − 𝑝𝑐)𝑘 − √

2𝛼−1

2
 (2𝑎𝑝 +

𝑝2(𝑏 − 𝑐) − 𝑏 − 𝑐)𝑘 × {𝑝 +
𝑎

𝑏−𝑐
+

√Δ

𝑏−𝑐
tanh (

√Δ

2
 𝜉(𝑥, 𝑡))}

−1

] 𝑒
𝑖[𝛼𝑥+(−𝛼+

1

2
𝑘2(𝑐2−𝑎2))𝑡]

,        (4.43) 

𝑣9(𝑥, 𝑡) =
1

2
[(𝑎 + 𝑝𝑏 − 𝑝𝑐)𝑘 − (2𝑎𝑝 + 𝑝2(𝑏 − 𝑐) − 𝑏 −

𝑐)𝑘 {𝑝 +
𝑎

𝑏−𝑐
+

√Δ

𝑏−𝑐
tanh (

√Δ

2
 𝜉(𝑥, 𝑡))}

−1

]

2

,   

 

where ξ(x, t) = kx − 2kαt. 
 
Case 3.3: Family 6 

𝑢10(𝑥, 𝑡) = √
2𝛼−1

2
𝑏𝑘 {𝑝 − (𝑝2 − 1) {𝑝 +

𝑡𝑎𝑛 (
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
])}

−1

} 𝑒𝑖[𝛼𝑥−𝛼𝑡],      (4.44) 

𝑣10(𝑥, 𝑡) =
1

2
[𝑝𝑏𝑘 − (𝑝2 − 1)𝑏𝑘 {𝑝 +

𝑡𝑎𝑛 (
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
])}

−1

]

2

 ,      𝜉(𝑥, 𝑡) =

𝑘𝑥 − 2𝑘𝛼𝑡  

 
Case 3.4: Family 11 

𝑢11(𝑥, 𝑡) = √
2𝛼−1

2
 { (𝑎 + 𝑝𝑏 − 𝑎𝑝)𝑘 − (2𝑎𝑝 + 𝑝2(𝑏 − 𝑎) −

𝑏 − 𝑎)𝑘 [𝑝 −
(𝑎+𝑏)𝑒𝑏𝜉(𝑥,𝑡)−1

(𝑎−𝑏)𝑒𝑏𝜉(𝑥,𝑡)−1
]

−1

} 𝑒𝑖[𝛼𝑥−𝛼𝑡],                 (4.45) 

𝑣11(𝑥, 𝑡) =
1

2
{ (𝑎 + 𝑝𝑏 − 𝑎𝑝)𝑘 − (2𝑎𝑝 + 𝑝2(𝑏 − 𝑎) − 𝑏 −

𝑎)𝑘 [𝑝 −
(𝑎+𝑏)𝑒𝑏𝜉(𝑥,𝑡)−1

(𝑎−𝑏)𝑒𝑏𝜉(𝑥,𝑡)−1
]

−1

}

2

,    𝜉(𝑥, 𝑡) = 𝑘𝑥 − 2𝑘𝛼𝑡.  

 
Case 3.5: Family 16 

𝑢12(𝑥, 𝑡) = √
2𝛼−1

2
 

2𝑐𝑘

𝑝+𝑐𝜉(𝑥,𝑡)
 𝑒

𝑖[𝛼𝑥+(−𝛼+
1

2
𝑘2𝑐2)𝑡]

,    𝑣12 =

1

2
{

2𝑐𝑘

𝑝+𝑐𝜉(𝑥,𝑡)
}

2
,    𝜉(𝑥, 𝑡) = 𝑘𝑥 − 2𝑘𝛼𝑡.                (4.46) 

 

Case 4: 
𝑝 = 0,    𝑎 = 0,    𝑏 = 𝑏,    𝑐 = 𝑐,    Δ = 𝑎2 + 𝑏2 − 𝑐2,    𝑘 =
𝑘,    𝛼 = 𝑘2(𝑏2 − 𝑐2) − 𝛽,    𝛽 = 𝛽,                (4.47) 

𝐴0 = 0,    𝐴1 = √
2𝑘2(𝑏2−𝑐2)−1−2𝛽

2
 (𝑏 − 𝑐)𝑘,    𝐵1 =

−
1

2
 
2𝑘2(𝑏−𝑐)(𝑏+𝑐)2−(𝑏+𝑐)(2𝛽+1)

(𝑏−𝑐)𝐴1
. 

 
By using of transformations of (3.1) and (4.47), 

we can obtain the following complex dark solutions 
for Eq. 3.1 as 

 
Case 4.1: Family 5 
𝑢13(𝑥, 𝑡) =

[√
2𝑘2(𝑏2−𝑐2)−1−2𝛽

2
 𝑘 √𝑏2 − 𝑐2 tanh (

√𝑏2−𝑐2

2
 𝜉(𝑥, 𝑡) ) −

1

2
 
2𝑘2(𝑏−𝑐)(𝑏+𝑐)2− (𝑏+𝑐)(2𝛽+1)

√𝑏2−𝑐2  𝐴1
×

coth (
√𝑏2−𝑐2

2
 𝜉(𝑥, 𝑡))] 𝑒𝑖[((𝑏2−𝑐2)𝑘2−𝛽)𝑥+𝛽𝑡],               (4.48) 

𝑣13(𝑥, 𝑡) =
1

2𝑘2(𝑏2−𝑐2)−1−2𝛽
   

[√
2𝑘2(𝑏2−𝑐2)−1−2𝛽

2
 𝑘 √𝑏2 − 𝑐2 tanh (

√𝑏2−𝑐2

2
 𝜉(𝑥, 𝑡)) −

1

2
 
2𝑘2(𝑏−𝑐)(𝑏+𝑐)2− (𝑏+𝑐)(2𝛽+1)

√𝑏2−𝑐2  𝐴1
coth (

√𝑏2−𝑐2

2
 𝜉(𝑥, 𝑡))]

2

    

 

where ξ(x, t) = kx − 2k(−β + (b2 − c2)k2)t. 
 

Case 4.2: Family 6 
𝑢14(𝑥, 𝑡) =

[√
2𝑘2𝑏2−1−2𝛽

2
𝑘𝑏 tan (

1

2
arctan [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
]) −

1

2
 
2𝑘2𝑏2−(2𝛽+1)

𝐴1
×

cot (
1

2
arctan [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
])] 𝑒𝑖[((𝑏2−𝑐2)𝑘2−𝛽)𝑥+𝛽𝑡],  

           (4.49) 

𝑣14(𝑥, 𝑡) =
1

2𝑘2𝑏2−1−2𝛽
,  
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[√
2𝑘2𝑏2−1−2𝛽

2
𝑘𝑏 tan (

1

2
arctan [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
]) −

1

2
 
2𝑘2𝑏2−(2𝛽+1)

𝐴1
× cot (

1

2
arctan [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
])]

2

  

 

where ξ(x, t) = kx − 2k(b2k2 − β)t. 
 
Case 5: 
𝑝 = 0,    𝑎 = 0,    𝑏 = 𝑏,    𝑐 = 𝑐,    Δ = 𝑎2 + 𝑏2 − 𝑐2,    𝑘 =
𝑘,    𝛼 = 2𝑘2(𝑐2 − 𝑏2) − 𝛽,    𝛽 = 𝛽,   (4.50) 

𝐴0 = 0,    𝐴1 = √
4𝑘2(𝑐2−𝑏2)−1−2𝛽

2
 (𝑏 − 𝑐)𝑘,    𝐵1 =

−
1

2
 
4𝑘2(𝑏−𝑐)(𝑏+𝑐)2+(𝑏+𝑐)(2𝛽+1)

(𝑏−𝑐)𝐴1
  

 

By using of transformations of (3.1) and (4.50), 
we can obtain the following complex dark solutions 
for Eq. 3.1 as 
 
Case 5.1: Family 5 
𝑢13(𝑥, 𝑡) =

[√
4𝑘2(𝑐2−𝑏2)−1−2𝛽

2
 𝑘 √𝑏2 − 𝑐2 tanh (

√𝑏2−𝑐2

2
 𝜉(𝑥, 𝑡)) −

1

2
 
4𝑘2(𝑏−𝑐)(𝑏+𝑐)2+(𝑏+𝑐)(2𝛽+1)

√𝑏2−𝑐2𝐴1
 ×

coth (
√𝑏2−𝑐2

2
 𝜉(𝑥, 𝑡))] 𝑒𝑖[(2(𝑐2−𝑏2)𝑘2−𝛽)𝑥+𝛽𝑡],                  (4.51) 

𝑣13(𝑥, 𝑡) =
1

4𝑘2(𝑐2−𝑏2)−1−2𝛽
,  

[√
4𝑘2(𝑐2−𝑏2)−1−2𝛽

2
 𝑘 √𝑏2 − 𝑐2 tanh (

√𝑏2−𝑐2

2
 𝜉(𝑥, 𝑡)) −

1

2
 
4𝑘2(𝑏−𝑐)(𝑏+𝑐)2+(𝑏+𝑐)(2𝛽+1)

√𝑏2−𝑐2𝐴1
 × coth (

√𝑏2−𝑐2

2
 𝜉(𝑥, 𝑡))]

2

  

 

where ξ(x, t) = kx − 2k(−β + 2(c2 − b2)k2)t. 
 

Case 5.2: Family 6 
𝑢14(𝑥, 𝑡) =

[√
−4𝑘2𝑐2−1−2𝛽

2
 𝑘𝑏 tan (

1

2
arctan [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
]) −

1

2
 
−4𝑘2𝑏2+(2𝛽+1)

𝐴1
×

cot (
1

2
arctan [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
])] 𝑒𝑖[(2(𝑐2−𝑏2)𝑘2−𝛽)𝑥+𝛽𝑡],   

           (4.52) 

𝑣14(𝑥, 𝑡) =
1

−4𝑘2𝑏2−1−2𝛽
,  

[√
−4𝑘2𝑏2−1−2𝛽

2
 𝑘𝑏 𝑡𝑎𝑛 (

1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
]) −

1

2
 
−4𝑘2𝑏2+(2𝛽+1)

𝐴1
× 𝑐𝑜𝑡 (

1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
])]

2

,  

 

where ξ(x, t) = kx + 2k(2b2k2 + β)t. 
 

Case 6: 
𝑝 = −

𝑎

𝑏−𝑐
,    𝑏 = 𝑏,    𝑐 = 𝑐,    Δ = 𝑎2 + 𝑏2 − 𝑐2,    𝑘 =

𝑘,    Ω = (𝑏 − 𝑐)𝑝2 + 𝑏 + 𝑐,    𝛼 = −
1

2
𝑘2Ω(𝑏 − 𝑐) − 𝛽,   

(4.53) 

𝛽 = 𝛽,    𝐴0 = 0,    𝐴1 = (𝑏 − 𝑐)𝑘√
2𝛼−1

2
,    𝐵1 = 0.  

 

By using of transformations of (3.1) and (4.53), 
we can obtain the following complex dark solutions 
for Eq. 3.1 as 

 

Case 6.1: Family 1 
𝑢15(𝑥, 𝑡) =

−𝑘√
(1−2𝛼)Δ

2
tan (

√−Δ

2
𝜉(𝑥, 𝑡)) 𝑒

𝑖[(−
1

2
 𝑘2Ω(𝑏−𝑐)−𝛽)𝑥+𝛽𝑡]

,  

           (4.54) 

𝑣15(𝑥, 𝑡) = −
𝑘2Δ

2
 𝑡𝑎𝑛2  (

√−Δ

2
𝜉(𝑥, 𝑡)) ,     𝜉(𝑥, 𝑡) = 𝑘𝑥 +

2𝑘 (
1

2
 𝑘2Ω(𝑏 − 𝑐) + 𝛽) 𝑡.  

 

Case 6.2: Family 2 
𝑢16(𝑥, 𝑡) =

𝑘√
(2𝛼−1)Δ

2
tanh (

√Δ

2
𝜉(𝑥, 𝑡)) 𝑒

𝑖[(−
1

2
 𝑘2Ω(𝑏−𝑐)−𝛽)𝑥+𝛽𝑡]

,     (4.55) 

𝑣16(𝑥, 𝑡) =
𝑘2Δ

2
 𝑡𝑎𝑛ℎ2  (

√Δ

2
𝜉(𝑥, 𝑡)) ,     𝜉(𝑥, 𝑡) = 𝑘𝑥 +

2𝑘 (
1

2
 𝑘2Ω(𝑏 − 𝑐) + 𝛽) 𝑡.  

 

Case 6.3: Family 6 

𝑢17(𝑥, 𝑡) = 𝑏𝑘√
2𝛼−1

2
𝑡𝑎𝑛 (

1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
])      

𝑒
𝑖[(−

1

2
 𝑘2𝑏2−𝛽)𝑥+𝛽𝑡]

,               (4.56) 
𝑣17(𝑥, 𝑡)

=
𝑘2𝑏2

2
𝑡𝑎𝑛2 (

1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

𝑒2𝑏𝜉(𝑥,𝑡) − 1

𝑒2𝑏𝜉(𝑥,𝑡) + 1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡) + 1
]) ,     𝜉(𝑥, 𝑡)

= 𝑘𝑥 + 2𝑘 (
1

2
 𝑘2𝑏2 + 𝛽) 𝑡. 

 

Case 6.4: Family 11 
𝑢18(𝑥, 𝑡) = −(𝑏 −

𝑎)𝑘√
2𝛼−1

2
 
(3𝑝−1)𝑏𝑒𝑏𝜉(𝑥,𝑡)−(1−𝑝)2

𝑏𝑒𝑏𝜉(𝑥,𝑡)−(1−𝑝)
 𝑒

𝑖[(−
1

2
 𝑘2Ω(𝑏−𝑎)−𝛽)𝑥+𝛽𝑡]

 ,     

           (4.57) 

𝑣18(𝑥, 𝑡) =
𝑘2(𝑏−𝑎)2

2
 (

(3𝑝−1)𝑏𝑒𝑏𝜉(𝑥,𝑡)−(1−𝑝)2

𝑏𝑒𝑏𝜉(𝑥,𝑡)−(1−𝑝)
)

2

,      𝜉(𝑥, 𝑡) =

𝑘𝑥 + 2𝑘 (
1

2
 𝑘2Ω(𝑏 − 𝑎) + 𝛽) 𝑡.  

 

Case 6.5: Family 17 

𝑢19(𝑥, 𝑡) = √
2𝛼−1

2
 (

2𝑘

𝜉(𝑥,𝑡)
) 𝑒𝑖[−𝛽𝑥+𝛽𝑡],      𝑣19(𝑥, 𝑡) =

2𝑘2

𝜉2(𝑥,𝑡)
,     𝜉(𝑥, 𝑡) = 𝑘𝑥 − 2𝑘𝛽𝑡.                (4.58) 

 

Case 7: 
𝑝 = 𝑝,    𝑎 = 𝑎,    𝑏 = 𝑏,    𝑐 = 𝑐,     Δ = 𝑎2 + 𝑏2 − 𝑐2,    𝑘 =

𝑘,    α =
1

2
+ 

𝐴1
2

𝑘2(𝑏−𝑐)2 ,    𝛽 = −𝛼 −
1

2
𝑘2Δ,   (4.59) 

𝐴0 = −
𝑎+𝑝(𝑏−𝑐)

𝑏−𝑐
𝐴1,    𝐴1 = 𝐴1,    𝐵1 = 0.  

 

By using of transformations of (3.1) and (4.59), 
we can obtain the following complex dark solutions 
for Eq. 3.1 as 
 
Case 7.1: Family 1 
𝑢20(𝑥, 𝑡) =

−
𝐴1√−Δ

𝑏−𝑐
tan (

√−Δ

2
𝜉(𝑥, 𝑡)) 𝑒

𝑖[(
1

2
+

𝐴1
2

𝑘2(𝑏−𝑐)2)𝑥−(
1

2
+

𝐴1
2

𝑘2(𝑏−𝑐)2+
1

2
𝑘2Δ)𝑡]

,   

           (4.60) 

𝑣20(𝑥, 𝑡) =
−𝑘2Δ

2
 𝑡𝑎𝑛2 (

√−Δ

2
𝜉(𝑥, 𝑡)) ,    𝜉(𝑥, 𝑡) = 𝑘𝑥 −

𝑘 (1 +
2𝐴1

2

𝑘2(𝑏−𝑐)2) 𝑡.  

 

Case 7.2: Family 2 
𝑢21(𝑥, 𝑡)

=
𝐴1√Δ

𝑏 − 𝑐
tanh (

√Δ

2
𝜉(𝑥, 𝑡)) 𝑒

𝑖[(
1
2

+
𝐴1

2

𝑘2(𝑏−𝑐)2)𝑥−(
1
2

+
𝐴1

2

𝑘2(𝑏−𝑐)2+
1
2

𝑘2Δ)𝑡]
, 
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           (4.61) 

𝑣21(𝑥, 𝑡) =
𝑘2Δ

2
𝑡𝑎𝑛ℎ2 (

√Δ

2
𝜉(𝑥, 𝑡)) ,     𝜉(𝑥, 𝑡) = 𝑘𝑥 −

𝑘 (1 +
2𝐴1

2

𝑘2(𝑏−𝑐)2) 𝑡.  

 

Case 7.3: Family 6 

𝑢22(𝑥, 𝑡) = 𝐴1 tan (
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
]) ,     

𝑒
𝑖[(

1

2
+

𝐴1
2

𝑘2𝑏2)𝑥−(
1

2
+

𝐴1
2

𝑘2𝑏2+
1

2
𝑘2b2)𝑡]

               (4.62) 
𝑣22(𝑥, 𝑡) =
𝑘2

2
 𝑡𝑎𝑛2  (

1

2
𝑎𝑟𝑐𝑡𝑎𝑛 [

𝑒2𝑏𝜉(𝑥,𝑡)−1

𝑒2𝑏𝜉(𝑥,𝑡)+1
,

2𝑒𝑏𝜉(𝑥,𝑡)

𝑒2𝑏𝜉(𝑥,𝑡)+1
]) ,     𝜉(𝑥, 𝑡) = 𝑘𝑥 −

𝑘 (1 +
2𝐴1

2

𝑘2𝑏2
) 𝑡.  

 

Case 7.4: Family 12 

𝑢23(𝑥, 𝑡) = 𝐴1 {−
𝑐

𝑏−𝑐
+

(𝑏+𝑐)𝑒𝑏(𝜉+𝐶)+1

(𝑏−𝑐)𝑒𝑏(𝜉+𝐶)−1
} 𝑒

𝑖[(
1

2
+

𝐴1
2

𝑘2(𝑏−𝑐)2)𝑥−(
1

2
+

𝐴1
2

𝑘2(𝑏−𝑐)2+
1

2
𝑘2𝑏2)𝑡]

,             (4.63) 

𝑣23(𝑥, 𝑡) =
𝑘2(𝑏−𝑐)2

2
{−

𝑐

𝑏−𝑐
+

(𝑏+𝑐)𝑒𝑏(𝜉+𝐶)+1

(𝑏−𝑐)𝑒𝑏(𝜉+𝐶)−1
}

2

,     𝜉)(𝑥, 𝑡) =

𝑘𝑥 − 𝑘 (1 +
2𝐴1

2

𝑘2(𝑏−𝑐)2
) 𝑡.  

 

Case 7.5: Family 15 

𝑢24(𝑥, 𝑡) = −
2𝐴1

𝑐𝜉(𝑥,𝑡)
𝑒

𝑖[(
1

2
+

𝐴1
2

𝑘2𝑐2)𝑥−(
1

2
+

𝐴1
2

𝑘2𝑐2)𝑡]
,     𝑣24(𝑥, 𝑡) =

2

(𝑥−(1+
2𝐴1

2

𝑘2𝑐2)𝑡)
2                                    (4.64) 

5. Simulation and discussion of the solutions 

In this section, the numerical simulations of the 
the nonlinear long-short wave interaction system 
will be given. Now, we will discuss all possible 
physical significance for each parameter. By utilizing 
the balance principle, one can found m = 1, therefore 
we can write other following equations: 

 
𝑈(𝜉) = 𝐴0 + 𝐴1[𝑝 + tan(𝜙/2)] + 𝐵1[𝑝 + tan(𝜙/2)]−1,  
                   (5.1) 
𝑈′(𝜉) = 𝐴1𝑠𝑒𝑐2(𝜙/2) − 𝐵1𝑠𝑒𝑐2(𝜙/2)[𝑝 + tan(𝜙/2)]−2,  
                    (5.2) 
𝑈′′(𝜉) = 2𝐴1 tan(𝜙/2)𝑠𝑒𝑐2(𝜙/2) − 2𝐵1 tan(𝜙/2)𝑠𝑒𝑐2(𝜙/
2) [𝑝 + tan(𝜙/2)]−2 +                     (5.3) 
2𝐵1𝑠𝑒𝑐4(𝜙/2)[𝑝 + tan(𝜙/2)]−2  

 
where A1 ̸= 0 and B1 ̸= 0. When we use Eqs. 5.1 to 5.3 
in Eq. 3.7, we get a system of algebraic equations 
from the coefficients of polynomial of tan (ϕ/2). By 
solving this system of algebraic equations via Maple 
13 software, we can find other different style 
analytical solutions which can be obtained by using 
ITEM. We have also obtained the dark, bright and 
singular soliton solutions of the nonlinear long-short 
wave interaction system (3.1) by using He’s semi-
inverse variational method and briefly studied their 
behavior dynamics. Moreover, by utilizing the ITEM, 
can found the exact particular solutions containing 
four types hyperbolic function solution (exact soliton 
wave solution), trigonometric function solution 
(exact periodic wave solution), rational exponential 
solution (exact singular kink-type wave solution) 
and rational solution (exact singular cupson wave 
solution). It can be said the ITEM has further merit 

comparing with other methods. This study will find 
analytical applications in nonlinear sciences, 
particularly in the literature we refer to the circular 
functions, the gravitational potential of a cylinder 
(Weisstein, 2002), the profile of a laminar jet 
(Weisstein, 2002), the Langevin function for 
magnetic polarization (Weisstein, 2002), the 
longitudinal waves such as in sound, pressure waves 
and musical instruments waves. In Figs. 1- 12, we 
plot two and three dimensional graphics of absolute 
values of (4.33), (4.34), (4.36), (4.37), (4.54) and 
(4.55) by means of Section 4.2, which denote the 
dynamics of solutions with appropriate parametric 
selections. Likewise, after comparing these analytical 
solutions obtained via He’s semi-inverse variational 
method and ITEM with solutions obtained by 
authors of (Bekir et al., 2013; Baskonus et al., 2017; 
Khater et al., 2010), and to the best of our current 
state of knowledge, we think that complex 
hyperbolic function, trigonometric function and 
rational function solutions may have been obtained 
here for the first time, in the literature. 

 

 
Fig. 1: Graphs of (4.33) ((a) and (b)) real values and ((c) 
and (d)) imaginary values by considering the values  a =

b = B1 = p = k = 2, c = 3, −20 < x < 20, −5 < t < 5 and  
t = 0.01 for 2D surfaces 

 

 
Fig. 2: Graphs of (4.33) real values by considering the 

values  a = b = B1 = p = k = 2, c = 3, −20 < x <
20, −5 < t < 5 for ((a) and (b)), values  a = b = p = k =
2,   B1 = 0.2, c = 3, −20 < x < 20, −5 < t < 5 ((a) and 

(b)) and  t = 0.01 for 2D surfaces 
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Fig. 3: Graphs of (4.34) ((a) and (b)) real values and ((c) 
and (d)) imaginary values by considering the values  b =
B1 = p = k = 2, a = c = 3, −20 < x < 20, −5 < t < 5 and  

t = 0.01 for 2D surfaces 
 

 
Fig. 4: Graphs of (4.34) real values by considering the 

values b = B1 = p = k = 2, a = c = 3, −20 < x < 20, −5 <
t < 5 for ((a) and (b)), values b = p = k = 2,   B1 =

0.2,   a = c = 3, −20 < x < 20, −5 < t < 5 ((a) and (b)) 
and  t = 0.01 for 2D surfaces 

 

 
Fig. 5: Graphs of (4.36) ((a) and (b)) real values and ((c) 
and (d)) imaginary values by considering the values  b =
B1 = p = k = 2, a = c = 3, −20 < x < 20, −5 < t < 5 and  

t = 0.01 for 2D surfaces 

6. Conclusion 

This paper presented a study on the nonlinear 
long-short wave interaction system. The nonlinear 
long-short wave interaction system is solved by two 
analytical methods, namely, the improved tan (ϕ/2)-
expansion method and He’s semi-inverse variational 
method, by using the integration tools. Abundant 

exact traveling wave solutions including solitons, 
kink, periodic and rational solutions have been 
found. The obtained results are useful in gaining 
understanding of the transmission of the soliton 
wave solutions.  

 

 
Fig. 6: Graphs of (4.36) real values by considering the 

values b = B1 = p = k = 2, a = c = 3, −20 < x < 20, −5 <
t < 5 for ((a) and (b)), values b = p = k = 2,   B1 =

0.2,   a = c = 3, −20 < x < 20, −5 < t < 5 ((a) and (b)) 
and  t = 0.01 for 2D surfaces 

 

 
Fig. 7: Graphs of (4.37) ((a) and (b)) real values and ((c) 

and (d)) imaginary values by considering the values  a = 0,
b = c = k = 2, B1 = p = 0.5, −20 < x < 20, −5 < t < 5 

and  t = 0.01 for 2D surfaces 
 

 
Fig. 8: Graphs of (4.37) real values by considering the 
values a = 0, b = c = k = 2, B1 = p = 0.5, −20 < x <

20, −5 < t < 5 for ((a) and (b)), values a = 0, b = c = k =
2, B1 = 0.5, p = 5, −20 < x < 20, −5 < t < 5 ((a) and (b)) 

and  t = 0.01 for 2D surfaces 
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Fig. 9: Graphs of (4.54) ((a) and (b)) real values and ((c) 
and (d)) imaginary values by considering the values  β =
b = B1 = p = k = 2, c = 3, −20 < x < 20, −5 < t < 5 and  

t = 0.01 for 2D surfaces 
 

 
Fig. 10: Graphs of (4.54) real values by considering the 

values β = b = B1 = p = k = 2, c = 3, −20 < x < 20, −5 <
t < 5 for ((a) and (b)), values β = b = B1 = k = 2, c = 3,
p = 0.2, −20 < x < 20, −5 < t < 5 ((a) and (b)) and  t =

0.01 for 2D surfaces 
 

 
Fig. 11: Graphs of (4.55) ((a) and (b)) real values and ((c) 
and (d)) imaginary values by considering the values  β =
c = B1 = p = k = 2, b = 3, −20 < x < 20, −5 < t < 5 and  

t = 0.01 for 2D surfaces 
 

It is worth noting that the new solutions obtained 
by means of aforementioned methods confirm the 
correctness of those obtained by other methods. Not 
only, the newly obtained solutions are identical to 
already published results, but also further solutions 
have obtained. Therefore, these methods can be 
applied to study many other nonlinear partial 

differential equations which frequently arise in 
mathematical physics and mechanical sciences. 

 

 
Fig. 12: Graphs of (4.55) real values by considering the 

values β = b = B1 = p = k = 2, c = 3, −20 < x < 20, −5 <
t < 5 for ((a) and (b)), values β = c = B1 = k = 2, b = 3,
p = 0.2, −20 < x < 20, −5 < t < 5 ((a) and (b)) and  t =

0.01 for 2D surfaces 
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