International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 6, Issue 7 (July 2019), Pages: 83-88

----------------------------------------------

 Original Research Paper

 Title: A new set of quaternion Laguerre moments for the reconstruction of CT and MRI images

 Author(s): Nouf Saeed Al Otaibi *

 Affiliation(s):

 Computer Science Department, Shaqra University, Shaqra, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-3057-297x

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2019.07.011

 Abstract:

This study proposes a new set of moment functions for the reconstruction of medical computer tomography (CT) and magnetic resonance images (MRI) based on the associated Laguerre polynomials, which are orthogonal over the whole right-half plane. Moreover, the mathematical frameworks of radial associated Laguerre moments and associated rotation invariants are introduced. The proposed radial Laguerre invariants retain the basic form of disc-based moments, such as Zernike moments, pseudo-Zernike moments, Fourier-Mellin moments, and so on. Therefore, the rotation invariants of radial associated Laguerre moments can be easily obtained. In addition, we have also extended the proposed moments and invariants using the algebra of quaternion to avoid losing some significant color information. Finally, we have tested the numerical results performance based on the mean square error technique. The numerical experiment results obtained from both gray-level medical images and color medical images demonstrate that the effectiveness of the proposed ALMs and RALMs could be better according to reconstruction. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Medical images, Reconstruction, Laguerre polynomials, Orthogonal Laguerre moments, Quaternion, Radial-polar, Rotation invariants

 Article History: Received 6 January 2019, Received in revised form 28 April 2019, Accepted 22 May 2019

 Acknowledgement:

No Acknowledgement.

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

 Al Otaibi NS (2019). A new set of quaternion Laguerre moments for the reconstruction of CT and MRI images. International Journal of Advanced and Applied Sciences, 6(7): 83-88

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5

 Tables

 No Table

----------------------------------------------

 References (10) 

  1. Askey R and Wimp J (1984). Associated Laguerre and Hermite polynomials. In the Conference of the Royal Society of Edinburgh Section A: Mathematics, 96(1-2): 15-37. https://doi.org/10.1017/S0308210500020412   [Google Scholar]
  2. Chen B, Shu H, Zhang H, Coatrieux G, Luo L, and Coatrieux JL (2011). Combined invariants to similarity transformation and to blur using orthogonal Zernike moments. IEEE Transactions on Image Processing, 20(2): 345-360. https://doi.org/10.1109/TIP.2010.2062195   [Google Scholar] PMid:20679028 PMCid:PMC3286441
  3. Jain S, Papadakis M, Upadhyay S, and Azencott R (2012). Rigid-motion-invariant classification of 3-D textures. IEEE Transactions on Image Processing, 21(5): 2449-2463. https://doi.org/10.1109/TIP.2012.2185939   [Google Scholar] PMid:22287241
  4. Mukundan R (2004). A new class of rotational invariants using discrete orthogonal moments. In the 6th IASTED International Conference on Signal and Image Processing, Honolulu, Hawaii, USA: 80-84.   [Google Scholar]
  5. Raj VNP and Venkateswarlu T (2012). Ultrasound medical image denoising using hybrid bilateral filtering. International Journal of Computer Applications, 56(14): 44-51. https://doi.org/10.5120/8963-3171   [Google Scholar]
  6. Singh C and Aggarwal A (2017). Single-image super-resolution using orthogonal rotation invariant moments. Computers and Electrical Engineering, 62: 266-280. https://doi.org/10.1016/j.compeleceng.2017.02.009   [Google Scholar]
  7. Teague MR (1980). Image analysis via the general theory of moments. Journal of the Optical Society of America, 70(8): 920-930. https://doi.org/10.1364/JOSA.70.000920   [Google Scholar]
  8. Yang B and Dai M (2011). Image analysis by Gaussian–Hermite moments. Signal Processing, 91(10): 2290-2303. https://doi.org/10.1016/j.sigpro.2011.04.012   [Google Scholar]
  9. Yap PT, Jiang X, and Kot AC (2010). Two-dimensional polar harmonic transforms for invariant image representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7): 1259-1270. https://doi.org/10.1109/TPAMI.2009.119   [Google Scholar] PMid:20489228
  10. Zhang H, Shu H, Han GN, Coatrieux G, Luo L, and Coatrieux JL (2010). Blurred image recognition by Legendre moment invariants. IEEE Transactions on Image Processing, 19(3): 596-611. https://doi.org/10.1109/TIP.2009.2036702   [Google Scholar] PMid:19933003 PMCid:PMC3245248