International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 6, Issue 12 (December 2019), Pages: 105-111

----------------------------------------------

 Original Research Paper

 Title: Steady motion of an incompressible microstretch fluid between two rotating spheres with slip conditions

 Author(s): S. A. Slayi *, E. A. Ashmawy

 Affiliation(s):

 Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University, Beirut, Lebanon

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-0019-7064

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2019.12.013

 Abstract:

In this paper, the steady rotational motion of an incompressible microstretch fluid between two rotating spheres is investigated. The slip boundary conditions are proposed on the spherical boundaries. The two spheres are assumed to be rotating with different angular speeds. Closed form solutions for the velocity, microrotation, and microstretch are obtained. Numerical results are presented and the effects of slip and spin parameters on the velocity, microrotation, and microstretch are discussed through graphs. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Microstretch fluid, Slip condition, Axisymmetric flow

 Article History: Received 28 June 2019, Received in revised form 9 October 2019, Accepted 11 October 2019

 Acknowledgement:

No Acknowledgement.

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

 Slayi SA and Ashmawy EA (2019). Steady motion of an incompressible microstretch fluid between two rotating spheres with slip conditions. International Journal of Advanced and Applied Sciences, 6(12): 105-111

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 

 Tables

 No Table

----------------------------------------------

 References (23) 

  1. Aparna P, Pothanna N, Murthy JR, and Sreelatha K (2017). Flow generated by slow steady rotation of a permeable sphere in a micro-polar fluid. Alexandria Engineering Journal, 56(4): 679-685. https://doi.org/10.1016/j.aej.2017.01.018   [Google Scholar]
  2. Ariman T (1970). Fluids with microstructure. Rheologica Acta, 9(4): 542–549. https://doi.org/10.1007/BF01985465
  3. Ashmawy EA (2012). Unsteady Couette flow of a micropolar fluid with slip. Meccanica, 47(1): 85-94. https://doi.org/10.1007/s11012-010-9416-7   [Google Scholar]
  4. Eringen A (1964). Simple microfluids. International Journal of Engineering Science, 2(2): 205-217. https://doi.org/10.1016/0020-7225(64)90005-9   [Google Scholar]
  5. Eringen AC (1966). Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16(1): 1-18. https://doi.org/10.1512/iumj.1967.16.16001   [Google Scholar]
  6. Eringen AC (1998). Microcontinuum field theories. Volume I and II, Springer, New York, USA. https://doi.org/10.1007/978-1-4612-0555-5   [Google Scholar]
  7. Faltas MS and Saad EI (2005). Stokes flow with slip caused by the axisymmetric motion of a sphere bisected by a free surface bounding a semi-infinite micropolar fluid. International Journal of Engineering Science, 43(11-12): 953-976. https://doi.org/10.1016/j.ijengsci.2005.02.002   [Google Scholar]
  8. Faltas MS, Sherief HH, and Ashmawy EA (2012). Interaction of two spherical particles rotating in a micropolar fluid. Mathematical and Computer Modelling, 56(9-10): 229-239. https://doi.org/10.1016/j.mcm.2011.11.072   [Google Scholar]
  9. Iesan D (1997). Uniqueness results in the theory of microstretch fluids. International Journal of Engineering Science, 35(7): 669-679. https://doi.org/10.1016/S0020-7225(96)00117-6   [Google Scholar]
  10. Madasu KP and Gurdatta MK (2015). Steady rotation of micropolar fluid sphere in concentric spherical container. Procedia Engineering, 127: 469-475. https://doi.org/10.1016/j.proeng.2015.11.400   [Google Scholar]
  11. Murthy JVR, Srinivasacharyulu N, and Aparna P (2007). Uniform flow of an incompressible couple stress fluid past a permeable sphere. Bulletin Calcutta Mathematical Society, 99: 293-304.   [Google Scholar]
  12. Narasimhan MNL (2003). A mathematical model of pulsatile flows of microstretch fluids in circular tubes. International Journal of Engineering Science, 41(3-5): 231-247. https://doi.org/10.1016/S0020-7225(02)00204-5   [Google Scholar]
  13. Navier CLMH (1823). Memoirs de l’Academie Royale des Sciences de l’Institut de France. Volume 1, Royale des Sciences de l’Institut de France, Paris, France.   [Google Scholar]
  14. Ramkissoon H and Majumdar SR (1976). Drag on an axially symmetric body in the Stokes’ flow of micropolar fluid. The Physics of Fluids, 19(1): 16-21. https://doi.org/10.1063/1.861320   [Google Scholar]
  15. Rao SL, Ramacharyulu NP, and Rao PB (1969). Slow steady rotation of a sphere in a micro-polar fluid. International Journal of Engineering Science, 7(9): 905-916. https://doi.org/10.1016/0020-7225(69)90083-4   [Google Scholar]
  16. Sherief HH, Faltas MS, and Ashmawy EA (2009). Galerkin representations and fundamental solutions for an axisymmetric microstretch fluid flow. Journal of Fluid Mechanics, 619: 277-293. https://doi.org/10.1017/S0022112008004485   [Google Scholar]
  17. Sherief HH, Faltas MS, and Ashmawy EA (2012). Fundamental solutions for axi-symmetric translational motion of a microstretch fluid. Acta Mechanica Sinica, 28(3): 605-611. https://doi.org/10.1007/s10409-012-0033-7   [Google Scholar]
  18. Sherief HH, Faltas MS, and El-Sapa S (2017). A general formula for the drag on a solid of revolution body at low Reynolds numbers in a microstretch fluid. Meccanica, 52(11-12): 2655-2664. https://doi.org/10.1007/s11012-017-0617-1   [Google Scholar]
  19. Sherief HH, Faltas MS, and El-Sapa S (2018). Slow motion of a slightly deformed spherical droplet in a microstretch fluid. Microsystem Technologies, 24(8): 3245-3259. https://doi.org/10.1007/s00542-018-3854-x   [Google Scholar]
  20. Sherief HH, Faltas MS, and El-Sapa S (2019a). Interaction between two rigid spheres moving in a micropolar fluid with slip surfaces. Journal of Molecular Liquids, 290: 111165. https://doi.org/10.1016/j.molliq.2019.111165   [Google Scholar]
  21. Sherief HH, Faltas MS, and El-Sapa S (2019b). Axisymmetric creeping motion caused by a spherical particle in a micropolar fluid within a nonconcentric spherical cavity. European Journal of Mechanics-B/Fluids, 77: 211-220. https://doi.org/10.1016/j.euromechflu.2019.05.006   [Google Scholar]
  22. Sherief HH, Faltas MS, Ashmawy EA, and Nashwan MG (2015). Stokes flow of a micropolar fluid past an assemblage of spheroidal particle-in-cell models with slip. Physica Scripta, 90(5): 055203. https://doi.org/10.1088/0031-8949/90/5/055203   [Google Scholar]
  23. Slayi SA and Ashmawy EA (2018). Unsteady flow of a microstretch fluid through state space approach with slip conditions. Applied Mathematics and Computation, 12(4): 841-850. https://doi.org/10.18576/amis/120419   [Google Scholar]