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In this paper, the steady rotational motion of an incompressible microstretch 
fluid between two rotating spheres is investigated. The slip boundary 
conditions are proposed on the spherical boundaries. The two spheres are 
assumed to be rotating with different angular speeds. Closed form solutions 
for the velocity, microrotation, and microstretch are obtained. Numerical 
results are presented and the effects of slip and spin parameters on the 
velocity, microrotation, and microstretch are discussed through graphs. 
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1. Introduction 

*The theory of micro-fluids was introduced by 
Eringen (1966) to consider the microscopic effects of 
fluid elements. He has adopted a physical model in 
which each material volume element contains micro-
volume elements that can translate, rotate and 
deform independently of the motion of the macro-
volume elements. The microfluid was classified into 
three main subclasses. The first sub-class is the class 
of micromorphic fluids that has nine degrees of 
freedom, the second class is called microstretch 
fluids with seven degrees of freedom and the third 
sub-class is the class of micropolar fluids which has 
only six degrees of freedom. Microstretch fluids are 
also known as Eringen fluids or micropolar fluids 
with stretch. Microelements of these fluids can 
stretch or contract in addition to being micropolar. 
Physically, microstretch fluids represent fluids with 
deformable suspensions. These fluids model slurries, 
paper pulps, insect colonies, blood and other 
biological fluids (Eringen, 1998). 

The classical no-slip boundary condition was 
applied to many problems in the Navier-Stokes 
theory extensively. It assumes that the liquid 
molecules adjacent to the solid are stationary 
relative to the solid. This condition is not adequate 
for the motion of fluids with microstructure such as 
micropolar and microstretch fluids. 
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An alternative boundary condition, namely slip 
condition was introduced in (Navier, 1823; 
Narasimhan, 2003; Murthy et al., 2007; Ramkissoon 
and Majumdar, 1976; Sherief et al., 2019a; 2019b; 
2015; 2017; 2018). This condition depends on the 
shear stress and permits the fluids to slip at the solid 
boundary. This means that the tangential velocity at 
a solid surface is proportional to the shear stress at 
the surface (Navier, 1823). The constant of 
proportionality is called the coefficient of sliding 
friction; it depends on the nature of the fluid and 
solid surface. Several researchers applied the slip 
boundary condition in micropolar and microstretch 
fluid flows. A linear slip condition was used to study 
the unsteady Couette flow of an isothermal 
incompressible micropolar fluid between two 
infinite parallel plates (Ashmawy, 2012). Sherief et 
al. (2012) studied the effect of the slip boundary 
condition on the problem of slow steady motion of 
an unbounded microstretch fluid past a translating 
rigid sphere. In addition, the spin boundary 
condition, which gives the value of the microrotation 
vector of the microelements on the boundary has 
been used by many authors in the literature. The 
unsteady flow of a microstretch fluid through state 
space approach with slip conditions was discussed in 
(Slayi and Ashmawy, 2018). Sherief et al. (2009) 
investigated the flow problem of an infinite 
microstretch fluid past a rotating sphere with slip 
and spin boundary conditions. 

Many researchers discussed micropolar fluid flow 
problems with different geometries and conditions. 
Ramkissoon and Majumdar (1976) discussed the 
problem of axisymmetric Stokes flow of a micropolar 
fluid past a sphere with no-slip boundary conditions. 
Rao et al. (1969) studied the slow steady rotation of 
a sphere about its diameter in a micropolar fluid. 
Faltas and Saad (2005) discussed the Stokes flow 
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with slip caused by the axi-symmetric motion of a 
sphere bisected by a free surface bounding a semi-
infinite micropolar fluid. The problem of steady 
rotation of a micropolar fluid sphere in concentric 
spherical container was discussed by Madasu and 
Gurdatta (2015). Faltas et al. (2012) studied the 
steady-state axisymmetric flow of an incompressible 
micropolar fluid past two spherical particles. The 
problem of interaction between two rigid spheres 
moving in a micropolar fluid with slip surfaces was 
discussed (Sherief et al., 2019a). Sherief et al. 
(2019b) studied the axisymmetric creeping motion 
caused by a spherical particle in a micropolar fluid 
within a nonconcentric spherical cavity. The flow 
generated by slow steady rotation of a permeable 
sphere in a micropolar fluid was discussed in 
(Aparna et al., 2017)  

The microstretch fluids model attracted the 
attention of low number of researchers to 
investigate. Ariman (1970) studied the problem of 
Poiseuille flow of a microstretch fluid between two 
parallel plates. Eringen (1964) discussed the steady 
flow of an incompressible microstretch fluid in 
circular arteries. Iesan (1997) derived a uniqueness 
theorem for an incompressible microstretch fluid. 
Narasimhan (2003) considered the problem of 
pulsatile flows of microstretch fluids due to a 
sinusoidally varying pressure gradient in circular 
tubes. The problem of unsteady flow of a 
microstretch fluid through state space approach with 
slip conditions was discussed by Slayi and Ashmawy 
(2018). Sherief et al. (2012) obtained the 
fundamental solution for the axi-symmetric 
translational motion of a microstretch fluid. Galerkin 
representations and fundamental solutions for an 
axisymmetric microstretch fluid flow were obtained 
by Sherief et al (2009). Moreover, Sherief et al. 
(2018) studied the slow motion of slightly deformed 
spherical droplets in a microstretch fluid. A general 
formula for the drag on a solid of revolution body at 
low Reynolds numbers in a microstretch fluid was 
obtained in (Sherief et al., 2017). 

In this work, we consider the problem of 
axisymmetric flow of an incompressible 
microstretch fluid between two rotating spheres. 
The two spheres are assumed to be rotating with 
different angular speed. The slip and spin boundary 
conditions are applied at the boundaries. Non-
dimensional variables are introduced. 

2. Governing equations of microstretch fluid flow  

The equations governing the steady motion of an 
incompressible microstretch fluid, in the absence of 
body forces and body couples, are given by: 

 
∇ ∙ 𝑞⃗ = 0,                                                                                          (1) 
(𝜆 + 2𝜇 + 𝜅)∇(∇ ∙ 𝑞⃗) − (𝜇 + 𝜅)∇ × ∇ × 𝑞⃗ + κ∇ × 𝜈 +

∇(𝜆0φ − 𝑝) = 0,                                                                             (2) 
(𝛼0 + 𝛽0 + 𝛾0)∇(∇ ∙ 𝜈) − 𝛾0∇ × ∇ × 𝜈 + κ∇ × q⃗⃗ − 2𝜅𝜈 = 0, 
                                                                                                            (3) 

𝑎0∇ ∙ ∇φ + 𝜋0 − 𝜆0(∇ ∙ q⃗⃗) − 𝜆1𝜑 = 0,                                      (4) 

 

where the vectors q⃗⃗ and ν⃗⃗ represent, respectively, 
the velocity and microrotation vectors of the fluid 
flow. φ denotes the microstretch scalar function. 𝑝 
denotes the pressure of fluid at any point and 𝜋0 
represents inertial micro-pressure. The material 
constants (λ, μ, κ, λ0, λ1, a0) represent the viscosity 
coefficients and (α0, β0, γ0) represent the gyro-
viscosity coefficients. 

The constitutive equations for the stresses, 
couple stresses and internal microstretch force 
density are: 
 

𝑡𝑖𝑗 = (𝜆𝑞𝑟,𝑟 + 𝜆0𝜑 − 𝑝)𝛿𝑖𝑗 + μ𝑞i,j + (𝜇 + 𝑘)𝑞𝑗,𝑖 − 𝜅𝜖𝑖𝑗𝑘𝜈k  ,  

                                                                                         (5) 
𝑚ij = 𝛼0νr,rδij + β0𝜈i,j + γ0𝜈j,i − b0𝜖ijk𝜑,k,                           (6) 

𝑚k = a0φ,k + 𝑏0𝜖ijk𝜈i,j,                                                               (7) 

 
where 𝑏0 is a material constant and 𝜖𝑖𝑗𝑘  is the 

alternating tensor. 

3. Formulation of the problem 

Let us consider the axisymmetric flow of an 
incompressible microstretch fluid between two 
rotating spheres of radii a and b (a < b) with 
constant angular velocity Ω1 and Ω2, respectively. Let 

(e⃗⃗r, e⃗⃗θ, e⃗⃗ϕ) be the unit vectors in the spherical 

coordinates in the increasing directions of (r, θ, ϕ). 
The velocity components of the two spheres in these 
coordinates are given by  
 
𝑉𝑟 = 0,           Vθ = 0,               Vϕ = Ω1asinθ          on   r = a,  

𝑉𝑟 = 0,           Vθ = 0,               Vϕ = Ω2bsinθ          on   r = b.  

 

Due to the axisymmetric of the fluid flow, the 
components of the velocity, microrotation and 
microstretch of the fluid flow, respectively, have the 
following forms: 
 

𝑞⃗ = (0,0, 𝑞𝜙(𝑟, 𝜃)),      𝜈 = (𝜈𝑟(𝑟, 𝜃), 𝜈𝜃(𝑟, 𝜃), 0)  𝑎𝑛𝑑     𝜑 =

𝜑(𝑟).  

 
Also Fig. 1 shows Geometry of problem. The 

proposed boundary conditions on the spherical 
surfaces are: 
 
  𝜈⃗⃗⃗𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =

𝑠

2
(∇ × 𝑞⃗)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦                  𝑜𝑛     𝑟 = 𝑎,         (8) 

  𝜈⃗⃗⃗𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =
𝑠

2
(∇ × 𝑞⃗)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦                  𝑜𝑛      𝑟 = 𝑏,        (9) 

𝛽1(𝑞∅ − 𝑉∅) = 𝜏𝑟∅                                        𝑜𝑛    𝑟 = 𝑎,          (10) 

𝛽2(𝑞∅ − 𝑉∅) = −𝜏𝑟∅                                      𝑜𝑛    𝑟 = 𝑏,        (11) 

φ(𝑎) = 𝜑(𝑏) = 0,                                                                       (12) 
 
where 𝛽1 and 𝛽2 are the velocity slip parameters of 
the inner and outer spheres. These parameters 
depend only on the nature of the fluid and the 
boundary. The spin parameter 𝑠 varies from 0 to 1. 

Let us introduce the following non-dimensional 
variables: 

 
 

𝑞̂∅ =
q∅

aΩ1
,       𝜈̂𝑖 =

a2κ

γΩ1
𝜈i,        r̂ =

𝑟

a
,      φ̂ =

a0

π0a2 φ,𝜏̂ij =

a2

γΩ1
𝜏𝑖𝑗 ,       𝑚̂𝑖𝑗 =

a3κ

γ2Ω1
𝑚ij,        m̂k =

𝑚𝑘

π0a
.                               (13) 
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Now, we use the above non-dimensional 
variables. The hats are dropped for convenience, and 
take the following substitutions: 
 
F(𝑟, 𝜃) = 𝑑𝑖𝑣 𝜈,⃗⃗⃗⃗⃗                                                                            (14)  
 

𝑄(𝑟, 𝜃)𝑒𝜙⃗⃗ ⃗⃗⃗ = curl ν.⃗⃗⃗                                                                     (15) 

 
 

 

 

 
Fig. 1: Geometry of problem 

 
 

The differential Eqs. 1 to 4 reduce to 
 
(∇2 − 𝑁2)F = 0,                                                                          (16) 
 

(𝐿 − 𝛿2)𝑄 = 0,                                                                            (17) 
𝐿(𝐿 − 𝛿2)𝑞𝜙 = 0,                                                                        (18) 
 

(∇2 − ℓ2)φ = −1                                                                        (19) 

 
where ∇2 is the Laplacian operator and the Stokesian 
operator 𝐿 is defined by 
 

𝐿 = ∇2 −
1

r2sin2𝜃
  

 
moreover;  

 

𝑁2 =
2𝜅𝑎2

(α0,β0,γ0)
 ,          𝜆2 =

(2𝜇+𝜅)𝜅𝑎2

(μ+k)γ
 ,                 ℓ2 =

𝜆1𝑎2

a0
,  

 
The boundary conditions (8)−(12) in terms of the 

dimensionless variables can be written as: 
  
𝜂1𝜈𝑟 =

𝑠

2
(∇ × 𝑞⃗)𝑒𝑟

        𝑜𝑛      𝑟 = 1,                                        (20) 

𝜂1𝜈𝜃 =
𝑠

2
(∇ × 𝑞⃗)𝑒𝜃

        𝑜𝑛      𝑟 = 1,                                       (21) 
 

𝜂1𝜈𝑟 =
𝑠

2
(∇ × 𝑞⃗)𝑒𝑟

        𝑜𝑛      𝑟 = 𝑐,                                        (22) 
 

𝜂1𝜈𝜃 =
𝑠

2
(∇ × 𝑞⃗)𝑒𝜃

        𝑜𝑛      𝑟 = 𝑐,                                       (23) 

𝛼1(𝑞∅ − 𝑠𝑖𝑛𝜃) = 𝜏𝑟∅        𝑜𝑛      𝑟 = 1,                                   (24) 

𝛼2 (𝑞∅ −
Ω2𝑏

Ω1𝑎
𝑠𝑖𝑛𝜃) = −𝜏𝑟∅        𝑜𝑛      𝑟 = 𝑐,                        (25) 

 

𝜑(1) = 𝜑(𝑐) = 0,                                                                       (26) 

 
where, 
 

𝑐 =
𝑏

𝑎
,     𝜂1 =

𝛾

𝑎2𝜅
,    𝛼1 =

𝛽1𝑎3

𝛾
,    𝛼2 =

𝛽2𝑎3

𝛾
  

4. Solution of the problem 

Employing the method of separation of variables, 
we get the solution of the differential Eqs. 16 to 19 as  

 

𝑞𝜙 = 𝑐1𝑟 + 𝑐2𝑟−2 +
1

√𝑟
[𝑐3𝑘3

2

(𝛿𝑟) + 𝑐4𝐼3

2

(𝛿𝑟)] 𝑠𝑖𝑛𝜃,          (27) 

𝑄 = −
𝑎2𝛿2(𝜇+𝜅)

𝛾√𝑟
[𝑐3𝑘3

2

(𝛿𝑟) + 𝑐4𝐼3

2

(𝛿𝑟)] 𝑠𝑖𝑛𝜃,                      (28) 
 

𝐹 =
1

√𝑟
[𝑐5𝑘3

2

(𝑁𝑟) + 𝑐6𝐼3

2

(𝑁𝑟)] 𝑐𝑜𝑠𝜃,                                     (29) 

𝜑(𝑟) =
1

ℓ2 +
1

√𝑟
[𝑐7𝑘1

2

(ℓ𝑟) + 𝑐8𝐼1

2

(ℓ𝑟)],                                  (30) 

 
where 𝐼1

2

(. ),  𝑘1

2

(. ), 𝐼3

2

(. ), 𝑘3

2

(. ) are the modified 

Bessel functions of the first and second kinds of 

orders 
1

2
 and 

3

2
, respectively.   

 

𝑃(𝑟, 𝜃) 

Ω1 

Ω2 

O a 

b 

Fluid Region 

 

 

𝑧 

 
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The constants 𝑐1 − 𝑐8 that appear in the above 
equations are arbitrary constants to be determined 
using the boundary conditions (20)-(26).  

Inserting the expressions (14) − (15) and (27) −
(29) into Eq. 3, we get the microrotation 
components as: 
 
 

𝜈𝑟 = {−
𝑐5

𝑁2𝑟
3
2

[2𝑘3

2

(𝑁𝑟) + 𝑁𝑟𝑘1

2

(𝑁𝑟)] −
𝑐6

𝑁2𝑟
3
2

[2𝐼3

2

(𝑁𝑟) −

𝑁𝑟𝐼1

2

(𝑁𝑟)] +
2(𝜇+𝜅)

𝛾𝑟√𝑟
𝑎2 (𝑐3𝑘3

2

(𝛿𝑟) + 𝑐4𝐼3

2

(𝛿𝑟)) +

+
𝑘𝑎2

𝛾
[𝑐1 +

𝑐2

𝑟3]} 𝑐𝑜𝑠𝜃,                                                                 (31) 

    

𝜈𝜃 = {
−1

𝑁2𝑟
3
2

[𝑐5𝑘3

2

(𝑁𝑟) + 𝑐6𝐼3

2

(𝑁𝑟)] +
(𝜇+𝜅)𝑎2

𝛾𝑟
3
2

𝑐3 [𝑘3

2

(𝛿𝑟) +

𝜆𝑟𝑘1

2

(𝛿𝑟)] +
𝑎2(𝜇+𝜅)

𝛾𝑟√𝑟
𝑐4 (𝐼3

2

(𝛿𝑟) − 𝜆𝑟𝐼1

2

(𝛿𝑟)) +
𝑘𝑎2

2𝛾
[−2𝑐1 +

𝑐2

𝑟3]} 𝑠𝑖𝑛𝜃,                                                                                       (32) 

 

Using the constitutive Eq. 5 with the aid of the 
non-dimension variables, we get: 

 
 

𝜏𝑟∅ = {
(2𝜇+𝜅)𝑎2

𝛾
[

−3

2
𝑐2𝑟−3 −

𝑐3𝑘3
2

(𝛿𝑟)

𝑟
3
2

−
𝑐4𝐼3

2

(𝛿𝑟)

𝑟
3
2

] −

1

𝑁2𝑟
3
2

[𝑐5𝑘3

2

(𝑁𝑟) + 𝑐6𝐼3

2

(𝑁𝑟)]} 𝑠𝑖𝑛𝜃,                                         (33) 

 
Applying the boundary conditions (20)-(26) in 

non-dimensional form, we obtain the following 
system of algebraic equations in the unknown 
variables 𝑐1 − 𝑐8, 
 

{𝑐1 [
𝜂1𝜅𝑎2

𝛾
− 𝑠] + 𝑐2 [

𝜂1𝜅𝑎2

𝛾𝑟3
−

𝑠

𝑟3
] + 𝑐3 [

2𝜂1(𝜂+𝜅)𝑎2

𝛾𝑟
3
2

𝑘3

2

(𝛿𝑟) −

𝑠

𝑟
3
2

𝑘3

2

(𝛿𝑟)] + 𝑐4 [
2𝜂1(𝜂+𝜅)𝑎2

𝛾𝑟
3
2

𝐼3

2

(𝛿𝑟) −
𝑠

𝑟
3
2

𝐼3

2

(𝛿𝑟)] +

𝑐5 [
−2𝜂1𝑘3

2

(𝑁𝑟)−𝜂1𝑁𝑟𝑘1
2

(𝑁𝑟)

𝑁2𝑟
3
2

] +

𝑐6 [
−2𝜂1𝐼3

2

(𝑁𝑟)+𝜂1𝑁𝑟𝐼1
2

(𝑁𝑟)

𝑁2𝑟
3
2

]} 𝑐𝑜𝑠𝜃 = 0   on 𝑟 = 1    and   𝑟 = 𝑐, 

                                                                                                        (34) 
 
 

{𝑐1 [
−𝜂1𝜅𝑎2

𝛾
+ 𝑠] + 𝑐2 [

𝜂1𝜅𝑎2

2𝛾𝑟3 −
𝑠

2𝑟3] + 𝑐3 [
𝜂1(𝜂+𝜅)𝑎2

𝛾𝑟
3
2

(𝑘3

2

(𝛿𝑟) +

𝛿𝑟𝑘1

2

(𝛿𝑟)) +
𝑠

2𝑟
3
2

(−𝑘3

2

(𝛿𝑟) − 𝛿𝑟𝑘1

2

(𝛿𝑟))] +

𝑐4 [
𝜂1(𝜂+𝜅)𝑎2

𝛾𝑟
3
2

(𝐼3

2

(𝛿𝑟) − 𝛿𝑟𝐼1

2

(𝛿𝑟)) −
𝑠

2𝑟
3
2

(𝐼3

2

(𝛿𝑟) −

𝛿𝑟𝐼1

2

(𝛿𝑟)] − 𝑐5 [
𝜂1𝐾3

2

(𝑁𝑟)

𝑁2𝑟
3
2

] − 𝑐6 [
𝜂1𝐼3

2

(𝑁𝑟)

𝑁2𝑟
3
2

]} 𝑠𝑖𝑛𝜃 = 0 on  𝑟 =

1    and 𝑟 = 𝑐                                                                               (35) 
 
 
 

{𝑐1[𝛼1𝑟] + 𝑐2 [
𝛼1

𝑟2 +
3

2𝑟3

(2𝜂+𝜅)𝑎2

𝛾
] + 𝑐3 [

𝛼1

√𝑟
𝐾3

2

(𝛿𝑟) +

(2𝜇+𝜅)𝑎2

𝛾𝑟
3
2

𝑘3

2

(𝛿𝑟)] + 𝑐4 [
𝛼1

√𝑟
𝐼3

2

(𝛿𝑟) +
(2𝜇+𝜅)𝑎2

𝛾𝑟
3
2

𝐼3

2

(𝛿𝑟)]   +

𝑐5 [
𝑘3

2

(𝑁𝑟)

𝑁2𝑟
3
2

] + 𝑐6 [
𝐼3

2

(𝑁𝑟)

𝑁2𝑟
3
2

] − 𝛼1} sinθ = 0   on r = 1            (36) 

{𝑐1[𝛼2𝑟] + 𝑐2 [
𝛼2

𝑟2
−

3

2𝑟3

(2𝜂+𝜅)𝑎2

𝛾
] + 𝑐3 [

𝛼2𝑘3
2

(𝛿𝑟)

√𝑟
−

(2𝜇+𝜅)𝑎2

𝛾𝑟
3
2

𝑘3

2

(𝛿𝑟)] + 𝑐4 [
𝛼2𝐼3

2

(𝛿𝑟)

√𝑟
−

(2𝜇+𝜅)𝑎2

𝛾𝑟
3
2

𝐼3

2

(𝛿𝑟)] −

𝑐5 [
𝑘3

2

(𝑁𝑟)

𝑁2𝑟
3
2

] − 𝑐6 [
𝐼3

2

(𝑁𝑟)

𝑁2𝑟
3
2

] −
𝛼2Ω2𝑏

𝑎Ω1
} 𝑠𝑖𝑛𝜃 = 0   on    𝑟 = 𝑐     (37) 

 
The constants c1 − c6 are obtained by solving the 

system of Eqs. 34 to 37. 

The two remaining constants c7 and c8 can be 
obtained by applying the boundary conditions (26) 
to give: 
 

𝑐7 [
𝑘1

2
(ℓ𝑟)

√𝑟
] + 𝑐8 [

I1
2

(ℓr)

√r
] +

1

ℓ2 = 0  on r = 1 ,      

𝑐7 [
𝑘1

2
(ℓ𝑟)

√𝑟
] + 𝑐8 [

I1
2

(ℓr)

√r
] +

1

ℓ2
= 0    𝑜𝑛 𝑟 = 𝑐.  

5. Numerical results and discussions 

In this section, we represent the velocity, 
microrotation and microstretch functions 
graphically for different values of the physical 
parameters. Figs. 2-5 show the variations of the 
velocity, microrotation and microstretch 
components against the radial distance r for 
different values of slip parameter 𝛼1 when the spin 

parameter 𝑠 = 0 and the angular velocity 
Ω2

Ω1
= 0.1. 

Fig. 2 indicates that the increase in the slip 
parameter results in an increase in the values of the 
velocity. Fig. 3 and Fig. 4 represent the distributions 
of the microrotation along r and 𝜃 respectively. 
These figures show that the increase in the slip 
parameter 𝛼1 increases the values of the 
microrotation components.  

In addition, it can be seen that the value of 
microrotation tends to zero at the boundaries when 
the spin parameter s equals zero. From Fig. 5, we 
conclude that the velocity slip parameter does not 
affect the microstretch function. Figs. 6, Fig. 7, Fig. 8 
and Fig. 9 show the variation of the velocity, 
microrotation and microstretch versus the distance r 
for different values of the velocity slip parameter 𝛼1, 

when s=0.1 and 
Ω2

Ω1
= 0.1, respectively. It is observed 

that the velocity slip parameter has a considerable 
effect on both velocity and microrotation while it has 
no effect on the microstretch component. Fig. 7 
shows that the spin parameter 𝑠 has a considerable 
effect on the microrotation and when the slip 
parameter 𝛼1increases the value of microrotation 
increases. It is observed also from Fig. 9 that the slip 
parameter does not affect the microstretch function. 
In Fig. 10 and Fig. 11, we study the variation of 

velocity and microrotation when s=0.1 and 
Ω2

Ω1
= 0. It 

can be seen that the increase of slip parameter 
𝛼1results an increase of the value of both velocity 
and microrotation. In addition, it can be noticed that 
the case of no-slip boundary conditions is obtained 
when the slip parameter tends to infinity.  

Fig. 12, Fig. 13 and Fig. 14 represent the variation 
of velocity and microrotation respectively for 
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different values of spin parameter s when 𝛼1 and 𝛼2 

tends to infinity and 
Ω2

Ω1
= 0.1. From Fig. 12, we 

conclude that the spin parameter s has no effect on 
the velocity. Fig. 13 and Fig. 14 show that when the 
spin parameter s increases the values of the 
microrotation increase. 

 

 
Fig. 2: Variation of velocity versus distance for 𝛼2 → ∞,

𝜅 = 1, 𝑙 = 1, 𝑠 = 0,
Ω2

Ω1
= 0.1 

 

 
Fig. 3: Variation of microrotation versus distance for 𝛼2 →

∞, 𝜅 = 1, 𝑙 = 1, 𝑠 = 0,
Ω2

Ω1
= 0.1 

 

 
Fig. 4: Variation of microrotation versus distance for 𝛼2 →

∞, 𝜅 = 1, 𝑙 = 1, 𝑠 = 0,
Ω2

Ω1
= 0.1 

 
Fig. 5: Variation of microstretch versus distance for 𝛼2 →

∞, 𝜅 = 1, 𝑙 = 1, 𝑠 = 0,
Ω2

Ω1
= 0.1 

 

 
Fig. 6: Variation of velocity versus distance for 𝛼2 → ∞,

𝜅 = 1, 𝑙 = 1, 𝑠 = 0.1,
Ω2

Ω1
= 0.1 

 

 
Fig. 7: Variation of microrotation versus distance for 𝛼2 →

∞, 𝜅 = 1, 𝑙 = 1, 𝑠 = 0.1,
Ω2

Ω1
= 0.1 

6. Conclusion 

The problem of steady rotational motion of an 
incompressible microstretch fluid between two 
rotating spheres is considered. The slip and spin 
boundary conditions are applied on the spherical 
boundaries. Non-dimensional variables are 
introduced. The solution for velocity, microrotation 
and microstretch is obtained and represented 
graphically. The effect of the physical parameters is 
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discussed numerically. It is concluded that the 
velocity slip parameter has a remarkable effect on 
both velocity and microrotation however it has no 
effect on the microstretch function. 

 

 
Fig. 8: Variation of microrotation versus distance for 𝛼2 →

∞, 𝜅 = 1, 𝑙 = 1, 𝑠 = 0.1,
Ω2

Ω1
= 0.1 

 

 
Fig. 9: Variation of microstretch versus distance for 𝛼2 →

∞, 𝜅 = 1, 𝑙 = 1, 𝑠 = 0.1,
Ω2

Ω1
= 0.1 

 

 
Fig. 10: Variation of velocity versus distance for 𝛼2 → ∞,

𝜅 = 1, 𝑙 = 1, 𝑠 = 0.1,
Ω2

Ω1
= 0 

 

 
Fig. 11: Variation of microrotation versus distance for 

𝛼2 → ∞, 𝜅 = 1, 𝑙 = 1, 𝑠 = 0.1,
Ω2

Ω1
= 0 

 
 

 
Fig. 12: Variation of velocity versus distance for 𝛼1 →

∞, 𝛼2 → ∞, 𝜅 = 1, 𝑙 = 1,
Ω2

Ω1
= 0.1 

 
 

 
Fig. 13: Variation of microrotation versus distance for 

α_1→∞, α_2→∞, κ=1, l=1, Ω_2/Ω_1 =0.1 
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Fig. 14: Variation of microrotation versus distance for 

α_1→∞, α_2→∞, κ=1, l=1, Ω_2/Ω_1 =0.1 
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