International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 6, Issue 10 (October 2019), Pages: 62-72

----------------------------------------------

 Original Research Paper

 Title: A supervised classifier based chemoinformatics model to predict inhibitors essential for sexual reproduction and transmission of the P. falciparum parasite into mosquitoes

 Author(s): Asif Hassan Syed *, Tabrej Khan

 Affiliation(s):

 Department of Computer Science, Faculty of Computing and Information Technology Rabigh (FCITR), King Abdulaziz University, Jeddah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-7288-3098

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2019.10.011

 Abstract:

The falciparum malaria is a significant life-threatening disease caused by Plasmodium falciparum a protozoan parasite transmitted by the female Anopheles mosquito. The resistance of P. falciparum parasite to a limited class of antimalarial medicine has accelerated the process of screening a novel drug for falciparum malaria. In recent years the implementation of Machine Learning (ML) approaches to build a predictive model to facilitate the target-specific drug discovery process for both infectious and non-infectious pathogen has gained significance. The availability of High-throughput Screening (HTS) anti-malarial bioassay dataset has provided an opportunity to build ML-based chemoinformatics, predictive models, using features extracted from different Feature Selection (FS) algorithms. In the present study, a combination of feature selection algorithms namely Greedy Stepwise algorithm in association with CfsSubsetEval and Principal Components Analysis (PCA) in conjunction with Ranker method was used on the HTS dataset. The dataset comprising of P. Falciparum Calcium-Dependent Protein Kinase4 (PfCDPK4) inhibitors and non-inhibitors were used to train and build four state-of-art classifiers based model for predicting inhibitors of PfCDPK4 protein from an independent test dataset accurately. The classification models were evaluated based on specific statistical measures of the Weka software tool. The J48 classifier based predictive model was found to accurately predict active anti-PfCDPK4 molecule based on better Accuracy, Recall, Precision, and Area under the Curve (AUC) values. Thus, the authors conclude that the J48-based classification model will be efficient and cost-effective in screening future active anti-CDPK4 molecule against P. falciparum malaria parasite. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Falciparum malaria, High-throughput screening dataset, Supervised learning based model, Precision, Recall

 Article History: Received 20 April 2019, Received in revised form 4 August 2019, Accepted 5 August 2019

 Acknowledgement:

The Authors are grateful to the Dean of Faculty of Computing and Information Technology, King Abdulaziz University to provide an excellent platform for conducting various machine learning experiments.

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

 Syed AH and Khan T (2019). A supervised classifier based chemoinformatics model to predict inhibitors essential for sexual reproduction and transmission of the P. falciparum parasite into mosquitoes. International Journal of Advanced and Applied Sciences, 6(10): 62-72

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 

 Tables

 Table 1 Table 2 Table 3

----------------------------------------------

 References (34) 

  1. Barbara F (2008). High-yield behavioural science (high-yield series). Lippincott Williams and Wilkins, Hagerstown, USA.   [Google Scholar]
  2. Bharti DR and Lynn AM (2017). QSAR based predictive modeling for anti-malarial molecules. Bioinformation, 13(5): 154-159. https://doi.org/10.6026/97320630013154   [Google Scholar] PMid:28690382 PMCid:PMC5498782
  3. Billker O, Dechamps S, Tewari R, Wenig G, Franke-Fayard B, and Brinkmann V (2004). Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell, 117(4): 503-514. https://doi.org/10.1016/S0092-8674(04)00449-0   [Google Scholar]
  4. Bouckaert RR, Frank E, Hall MA, Holmes G, Pfahringer B, Reutemann P, and Witten IH (2010). WEKA-Experiences with a java open-source project. Journal of Machine Learning Research, 11: 2533-2541.   [Google Scholar]
  5. Burrows JN, van Huijsduijnen RH, Möhrle JJ, Oeuvray C, and Wells TN (2013). Designing the next generation of medicines for malaria control and eradication. Malaria Journal, 12: 187. https://doi.org/10.1186/1475-2875-12-187   [Google Scholar] PMid:23742293 PMCid:PMC3685552
  6. Chang CC and Lin CJ (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3): 27. https://doi.org/10.1145/1961189.1961199   [Google Scholar]
  7. Chawla NV, Bowyer KW, Hall LO, and Kegelmeyer WP (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16: 321-357. https://doi.org/10.1613/jair.953   [Google Scholar]
  8. Chen T and Guestrin C (2016). XGBoost: A scalable tree boosting system. In the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, USA: 785-794. https://doi.org/10.1145/2939672.2939785   [Google Scholar]
  9. Dixit S and Singla D (2017). CAPi: Computational model for apicoplast inhibitors prediction against plasmodium parasite. Current Computer-Aided Drug Design, 13(4): 303-310. https://doi.org/10.2174/1573409913666170301121110   [Google Scholar] PMid:28260517
  10. Dua VK, Dev V, Phookan S, Gupta NC, Sharma VP, and Subbarao SK (2003). Multi-drug resistant Plasmodium falciparum malaria in Assam, India: Timing of recurrence and anti-malarial drug concentrations in whole blood. The American Journal of Tropical Medicine and Hygiene, 69(5): 555-557. https://doi.org/10.4269/ajtmh.2003.69.555   [Google Scholar] PMid:14695096
  11. Egieyeh S, Syce J, Malan SF, and Christoffels A (2018). Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach. PloS One, 13(9): e0204644. https://doi.org/10.1371/journal.pone.0204644   [Google Scholar] PMid:30265702 PMCid:PMC6161899
  12. Friedman N, Geiger D, and Goldszmidt M (1997). Bayesian network classifiers. Machine Learning, 29(2-3): 131-163. https://doi.org/10.1023/A:1007465528199   [Google Scholar]
  13. Han H, Wang WY, and Mao BH (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In the International Conference on Intelligent Computing, Springer, Nanchang, China: 878-887. https://doi.org/10.1007/11538059_91   [Google Scholar]
  14. Jamal S, Periwal V, and Scaria V (2013). Predictive modeling of anti-malarial molecules inhibiting apicoplast formation. BMC Bioinformatics, 14: 55. https://doi.org/10.1186/1471-2105-14-55   [Google Scholar] PMid:23419172 PMCid:PMC3599641
  15. Kumari M and Chandra S (2015). In silico prediction of anti–malarial hit molecules based on machine learning methods. International Journal of Computational Biology and Drug Design, 8(1): 40-53. https://doi.org/10.1504/IJCBDD.2015.068783   [Google Scholar] PMid:25869318
  16. Liu K, Feng J, and Young SS (2005). PowerMV: A software environment for molecular viewing, descriptor generation, data analysis and hit evaluation. Journal of Chemical Information and Modeling, 45(2): 515-522. https://doi.org/10.1021/ci049847v   [Google Scholar] PMid:15807517
  17. Mehta SR and Das S (2006). Management of malaria: Recent trends. Journal of Communicable Diseases, 38(2): 130-138.   [Google Scholar]
  18. Melville JL, Burke EK, and Hirst JD (2009). Machine learning in virtual screening. Combinatorial Chemistry and High Throughput Screening, 12(4): 332-343. https://doi.org/10.2174/138620709788167980   [Google Scholar]
  19. NCBI (2016). Biochemical screen of P. falciparum CDPK4. National Center for Biotechnology Information, Bethesda, Maryland, USA.   [Google Scholar]
  20. Powers DM (2011). Evaluation: From precision, recall and f-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1): 37–63.   [Google Scholar]
  21. Quinlan JR (1993). C4.5: Programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco, USA.   [Google Scholar]
  22. Rio ALD, Llorach-Parés L, Perera-Lluna A, Avila C, Nonell-Canals A, and Sanchez-Martinez M (2017). Machine-learning QSAR model for predicting activity against malaria parasite’s ion pump PfATP4 and in silico binding assay validation. Multidisciplinary Digital Publishing Institute Proceedings, 1(6): 652. https://doi.org/10.3390/proceedings1060652   [Google Scholar]
  23. Schierz AC (2009). Virtual screening of bioassay data. Journal of Cheminformatics, 1: 21. https://doi.org/10.1186/1758-2946-1-21   [Google Scholar] PMid:20150999 PMCid:PMC2820499
  24. Solyakov L, Halbert J, Alam MM, Semblat JP, Dorin-Semblat D, Reininger L, and Holland Z (2011). Global kinomic and phospho-proteomic analyses of the human malaria parasite plasmodium falciparum. Nature Communications, 2: 565. https://doi.org/10.1038/ncomms1558   [Google Scholar] PMid:22127061
  25. Student (1908). The probable error of a mean. Biometrika, 6(1): 1–25. https://doi.org/10.1093/biomet/6.1.1   [Google Scholar]
  26. Subramaniam S, Mehrotra M, and Gupta D (2011). Support vector machine based classification model for screening plasmodium falciparum proliferation inhibitors and non-inhibitors. Biomedical Engineering and Computational Biology. https://doi.org/10.4137/BECB.S7503   [Google Scholar]
  27. Sud M (2016). MayaChemTools: An open source package for computational drug discovery. Journal of Chemical Information and Modeling, 56(12): 2292-2297. https://doi.org/10.1021/acs.jcim.6b00505   [Google Scholar] PMid:28024397
  28. Tewari R, Straschil U, Bateman A, Böhme U, Cherevach I, Gong P, and Billker O (2010). The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host and Microbe, 8(4): 377-387. https://doi.org/10.1016/j.chom.2010.09.006   [Google Scholar] PMid:20951971 PMCid:PMC2977076
  29. Trenholme GM and Carson PE (1978). Therapy and prophylaxis of malaria. Journal of the American Medical Association, 240(21): 2293-2295. https://doi.org/10.1001/jama.240.21.2293   [Google Scholar] PMid:359850
  30. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, and Bryant SH (2009). PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37(suppl_2): W623-W633. https://doi.org/10.1093/nar/gkp456   [Google Scholar] PMid:19498078 PMCid:PMC2703903
  31. WHO (2017). Malaria. World Health Organization, Geneva, Switzerland. Available online at: https://bit.ly/1fteTok
  32. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, and Meshnick SR (2002). Epidemiology of drug-resistant malaria. The Lancet Infectious Diseases, 2(4): 209-218. https://doi.org/10.1016/S1473-3099(02)00239-6   [Google Scholar]
  33. Wongsrichanalai C, Webster HK, Wimonwattrawatee T, Sookto P, Chuanak N, Thimasarn K, and Wernsdorfer WH (1992). Emergence of multidrug-resistant plasmodium falciparum in Thailand: In vitro tracking. The American Journal of Tropical Medicine and Hygiene, 47(1): 112-116. https://doi.org/10.4269/ajtmh.1992.47.112   [Google Scholar] PMid:1636877
  34. Yang Z, Li C, Miao M, Zhang Z, Sun X, Meng H, and Cui L (2011). Multidrug-resistant genotypes of Plasmodium falciparum, Myanmar. Emerging Infectious Diseases, 17(3): 498-501. https://doi.org/10.3201/eid1703.100870   [Google Scholar] PMid:21392443 PMCid:PMC3166001