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The falciparum malaria is a significant life-threatening disease caused by 
Plasmodium falciparum a protozoan parasite transmitted by the female 
Anopheles mosquito. The resistance of P. falciparum parasite to a limited 
class of antimalarial medicine has accelerated the process of screening a 
novel drug for falciparum malaria. In recent years the implementation of 
Machine Learning (ML) approaches to build a predictive model to facilitate 
the target-specific drug discovery process for both infectious and non-
infectious pathogen has gained significance. The availability of High-
throughput Screening (HTS) anti-malarial bioassay dataset has provided an 
opportunity to build ML-based chemoinformatics, predictive models, using 
features extracted from different Feature Selection (FS) algorithms. In the 
present study, a combination of feature selection algorithms namely Greedy 
Stepwise algorithm in association with CfsSubsetEval and Principal 
Components Analysis (PCA) in conjunction with Ranker method was used on 
the HTS dataset. The dataset comprising of P. Falciparum Calcium-Dependent 
Protein Kinase4 (PfCDPK4) inhibitors and non-inhibitors were used to train 
and build four state-of-art classifiers based model for predicting inhibitors of 
PfCDPK4 protein from an independent test dataset accurately. The 
classification models were evaluated based on specific statistical measures of 
the Weka software tool. The J48 classifier based predictive model was found 
to accurately predict active anti-PfCDPK4 molecule based on better Accuracy, 
Recall, Precision, and Area under the Curve (AUC) values. Thus, the authors 
conclude that the J48-based classification model will be efficient and cost-
effective in screening future active anti-CDPK4 molecule against P. 
falciparum malaria parasite. 
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1. Introduction 

*P. falciparum a protozoan parasite is the 
causative agent of falciparum malaria and is 
transmitted to human by the female Anopheles 
mosquitos. As per the World Health Organization 
(WHO) malarial report of 2017, there were an 
assessed 216 million reported cases of malaria in 
ninety-one countries and approximately 445000 
death cases reported globally until November 2017. 
The African region with 90 % malarial cases and 91 
% death due to disease shares a majority malarial 
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burden of the world (WHO, 2017). In recent times, 
the evolution of multi-drug resistant strains of P. 
falciparum against conventional antimalarial drugs 
namely chloroquine and primaquine (Trenholme 
and Carson, 1978; Mehta and Das, 2006) have 
resulted in limited therapeutic option for the 
treatment of falciparum malaria (Wongsrichanalai et 
al., 1992; Wongsrichanalai et al., 2002; Dua et al., 
2003; Yang et al., 2011). With only eight medications 
in preclinical trials and only 13 new antimalarial 
drugs under clinical trial, the elimination of the 
multidrug-resistant strain of P. falciparum will not be 
easy. Therefore, for designing new next-generation 
antimalarial novel medicines for the removal of 
recently evolved falciparum malarial parasite will 
require target-based rapid screening of novel 
antimalarial hit molecules (Burrows et al., 2013). 
One of the significant hurdles in the detection of 
novel antimalarial molecules is the considerable cost 
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associated with selection of novel hit molecules via 
in vitro and in vivo procedures. 

In this regard, the availability of large dataset of 
the chemical molecule with their chemical structure 
and clear bio-activity information available via 
automated high-throughput bioassay (Wang et al., 
2009) has helped the development of ML-based 
computational models to predict the bio-activity of a 
synthetic chemical molecule. The computational 
predictive model predicts the bio-activity of a 
chemical molecule based on the correlation between 
the chemical properties and the activity of the 
molecule (Schierz, 2009; Melville et al., 2009). The 
ML-based in silico virtual screening protocol enables 
rapid screening of target-based inhibitors from vast 
chemical molecule library. Therefore, the ML-based 
computational model enhances the rate of detection 
of active hit molecules thereby reducing the high-
cost involved in the discovery of hit molecules from 
conventional automated high-throughput bioassay 
drug screening protocols. In the recent past many 
research groups have developed many ML-based 
predictive models to (1) predict anti-malarial 
molecules that inhibit apicoplast formation in 
Plasmodium falciparum (Jamal et al., 2013; Dixit and 
Singla, 2017; Bharti and Lynn, 2017), (2) screen anti-
malarial hit molecules against Aspartyl 
aminopeptidase (M18AAP) protein (Kumari and 
Chandra, 2015), (3) predict natural products with 
antimalarial bioactivity (Egieyeh et al., 2018), (4) 
screen inhibitors and noninhibitor targeting P. 
falciparum intraerythrocytic cycle (Subramaniam et 
al., 2011), and also (5) predict that molecules which 
will block the malarial parasite’s ion pump, PfATP4 
(Rio et al., 2017).  

Therefore, in this context, the authors have 
applied the principles of ML to form a 
chemoinformatics model to screen inhibitor of a 
PfCDPK4 protein essential for sexual reproduction 
(microgamete formation) and transmission of the P. 
falciparum parasite into mosquitoes (Billker et al., 
2004; Solyakov et al., 2011; Tewari et al., 2010). 
Thus, to build ML-based chemoinformatics and 
validate the efficiency of the predictive model to 
screen inhibitor of PfCDPK4 protein the current 
research article is divided into following three 
sections (1) Materials and method (2) Results and 
Discussion and (3) Conclusion. The materials and 
method section of the research paper describes the 
dataset as well as provides details about the 
methods involved in building an ML-based 
predictive model.  

While the Results and Discussion section explains 
the results obtained in the making and testing of 
different classifier based-model using different 
statistical model evaluators. The results obtained 
show that the predictive model made using J48 
classifier is useful in predicting active PfCDPK4 
inhibitor from an independent chemical molecule 
dataset and also outperform other ML-based 
chemoinformatics models developed for the 
screening of antimalarial molecules. Moreover, the 
conclusion section states the importance of our 

proposed computational predictive model in 
enhancing the hit-rate of novel antimalarial drug and 
also discusses the future scope of the present model 
in antimalarial drug discovery program. Fig. 1 
represents a flow diagram describing the making of 
the computational predictive model for facilitating 
the rapid screening of antimalarial drugs. 

2. Materials and methods 

The material and method section describes the 
following (1) the HTS bioassay data (AID: 1159588), 
(2) the data processing strategies and (3) the ML 
classifiers employed in the making of a classifier 
based model to predict active PfCDPK4 inhibitors 
from AID: 1159588 bioassay dataset. Moreover, the 
section also explains different statistical assessors to 
assess the accuracy of the predictive model to 
identify active PfCDPK4 protein inhibitor molecules.  

2.1. Dataset source 

The bioassay dataset AID-1159588 consisted of 
approximately 13500 cell-active molecules screened 
against the CDPK4 protein of P. falciparum 
(CDPK4/PF3D7_0717500/XP_001349078.1). The 
biochemical screening of ~13500 chemical 
molecules was performed to test P. falciparum 
protein kinases inhibitors. The AID-1159588 dataset 
was obtained from PubChem bioassay repository 
(NCBI, 2016). The confirmatory bioassay AID-
1159588 tested 55 potent inhibitors of pf-CDPK4 
protein (active molecule) and 13396 non-inhibitors 
of pf-CDPK4 protein (inactive molecules). The 
Structure Data Format (SDF) of the entire chemical 
molecules (active and inactive molecules) present in 
AID: 1159588 bioassay dataset were obtained from 
PubChem Substance repository (NCBI, 2016). 

2.2. Molecular descriptors generation and data 
pre-processing  

The SDF file of the active, as well as inactive 
chemical molecules obtained from the biochemical 
screening of P. falciparum CDPK4 protein, were 
fragmented into smaller SDF file using a Perl script 
(SplitSDFiles) present in MayaChemTool (Sud, 
2016). The splitting of the large SDF files of both 
inactive and active molecules was performed since 
the memory available in PowerMV can be only 
utilized to generate molecular descriptors from 
smaller SDF file of the chemical molecule. The 
PowerMV is a favorite tool for the generation of the 
molecular descriptor, molecular similarity search 
and statistical analysis (Liu et al., 2005). In total 179 
two dimensional molecular descriptors (attributes) 
of each instance (chemical molecule) of both inactive 
and active chemical molecules were made using 
PowerMV. Out of 179 molecular descriptors, eight 
descriptors were categorized based on the chemical 
property while twenty-four descriptors were 
classified based on weighted burden numbers and 
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the rest one forty-seven descriptors belonged to 
pharmacophore fingerprint. Each molecular 
descriptor Comma Separated Value (CSV) file of both 
inactive and active chemical molecule was combined 
into a lone CSV file. The last column of the individual 
combined molecular descriptors CSV file was 
appended with an outcome dependent attribute 

labeled as “Class.” Based on the results of the AID-
1159588 bioassay a nominal value “active” or 
“inactive” for the dependent variable attribute was 
added for each active and inactive chemical 
compound. 

 

 

 
Fig. 1: Making of a classifier based model to accurately screen active inhibitors of PfCDPK4 protein from a given chemical 

molecule dataset 
 

2.3. Data pre-processing 

2.3.1. Data preparation 

The single combined CSV molecular descriptor 
file was preprocessed to remove the noninformative 
attributes. The attributes having 0’s or 1’s bit strings 
throughout the dataset were extracted using the 
unsupervised “RemoveUseless” attribute filter of 
Weka software tool. Weka is java based data mining 
software for data pre-processing, clustering, 
classification and visualization (Bouckaert et al., 
2010). Upon removal of noninformative features, the 
total number of features for our dataset was reduced 
to 154 attributes. Furthermore, duplicates instances 
from the molecular descriptor file were removed 
using the unsupervised instance filter 
“RemoveDuplicates” of Weka. 
 

2.3.2. Dimensionality reduction 

The feature selection technique plays a pivotal 
role in constructing an ML-based predictive model 
with higher interpretability, shorter training time 
and lower complexity. The Feature selection 
technique selects the best subset of features from a 
given set of features to form a predictive model with 
lower variance and higher accuracy. The main idea 
behind implementing a feature selection technique is 
to decrease the dimensionality of the data by taking 
out features that are redundant or irrelevant and do 
not contribute significantly to enhance the 
performance of the model. In the present study, the 
descriptor file of the inactive and active molecules 
consisted of 154 features. Therefore, the authors 
employed the attribute selection methods accessible 
in the Weka software tool to reduce the 
dimensionality of the generated chemical descriptor 
data. In Weka, the feature selection is performed 
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using both attribute evaluator and search method. 
Since the dataset understudy have nominal value for 
the dependent variable (class) and both nominal and 
binary value for an independent set of variables 
(attributes), therefore the authors selected two sets 
of feature selection algorithm. In Weka, each set 
consists of one feature selection algorithm from 
attribute evaluator and other from search method. 
Therefore, in this context, dimensionality reduction 
of the present dataset is performed by using both 
CfsSubsetEval algorithms of the attribute evaluator 
in conjunction with the GreedyStepwise algorithm of 
the Search method and Principal Components 
Analysis (PCA) algorithm of the attribute evaluator 
works in conjunction with the Ranker method of the 
search method. The CfsSubsetEval select the best 
subsets of attributes that have a higher value of 
correlation with the dependent variable (class) and 
comparatively lower intercorrelation between the 
independent variable (attributes). While the 
GreedyStepwise algorithm performs either 
backward or forward search through the space of 
attribute subset. The process ends when the deletion 
or addition of the attributes leads to a decline in the 
performance of the model. Correspondingly, in PCA 
the reduction in the dimensionality of the data is 
made possible by selecting sufficient eigenvectors 
which account for a small percentage of variance in 
the original data-default 0.95 (95 %). While the 
Ranker search method rank attribute based on their 
performance and is used in combination with PCA 
algorithm present in the “attribute evaluator” of 
Weka. Two sets of the dataset were created using the 
attributes obtained from the two set of feature 
selection algorithms. Both the dataset with different 
amount of attributes but the same amount of active 
and inactive samples was subjected to Synthetic 
Minority Over-Sampling Technique (SMOTE) for 
class balancing since the target classes in both the 
dataset were imbalanced. 

2.4. Class balancing using synthetic minority 
over-sampling technique (SMOTE) algorithm 

A dataset is considered imbalanced when the 
target classes in a classification problem are unequal 
in number. The AID-115483 bioassay dataset 
consists of two class’s namely inactive and active 
chemical molecule. The AID-11583 bioassay dataset 
is highly imbalance as the ratio of active to inactive 
molecule is 0.0041 therefore SMOTE was used to 
oversample the minority class (active molecule) by 
generating artificial instances from the minority 
class rather than merely making copies of the 
minority instances from the AID-115483 dataset. 
The SMOTE algorithm performs the oversampling of 
the minority class by randomly selecting a random 
sample from the minority class and selects k nearest 
neighbor using a distance measure. In this case, five 
nearest neighbors were selected (k=5) for 
generating minority synthetic samples. A new 
synthetic sample is made by multiplying the 
difference between one of the k neighbor instances 

and the selected data point (vector) by a random 
number say “x” which ranges between 0 and 1 
(Chawla et al., 2002; Han et al., 2005). In the present 
study, we have used 0.5, and the result of the same is 
added to the selected feature vector (data point) to 
create a new synthetic data point (instance). The 
final datasets upon implementation of the synthetic 
minority class oversampling consisted of equal 
number instances from both the categories (active 
and inactive). 

2.5. Partitioning of dataset and cross-validation  

Each set of balanced datasets were divided into 
80 % training and 20 % independent validation set. 
The 80 % training dataset of each set was subjected 
to 5-fold training-cum-cross validation. The 
validation of the model was performed using the 20 
% independent test data obtained from each dataset. 

2.6. Classification algorithms for model building 

Classification is a technique where we apply ML 
algorithms to classify or categorize new data into a 
given set of classes. In this study, we have used four 
different state-of-art classification algorithms 
namely Naïve Bayes (NB), LibSVM, J48, and MLR-
XGBoost for building a predictive model to screen 
active inhibitor compound of PfCDPK4 protein from 
the 20 % independent test dataset. 

The principle of the Bayesian theorem is applied 
to the Naïve Bayes algorithm, with an assumption 
that every feature of a given dataset is conditionally 
independent of each other (Friedman et al., 1997). 
The LIBSVM is an integrated software tool that 
implements an SMO-type algorithm for kernelized 
Support Vector Machine (SVM) supporting 
regression and classification (Chang and Lin, 2011). 
The J48 algorithm is a widely used supervised 
learning algorithm available in Weka for the 
construction of decision trees from a given labeled 
dataset. The algorithm initially calculates the 
entropy (information gain) of the entire set of 
attributes of the given dataset. Further, the attribute 
having the least entropy (i.e., highest information 
gain) is selected as the nonterminal node for 
splitting the dataset into subsets. Accordingly, the 
algorithm continues to recur on a subset of 
attributes to build a decision tree where the 
nonterminal node represents the splitting point 
(decision tree node) and a terminal node (leaf node) 
where all the instances of the subset of independent 
variable belong to a particular class label (Quinlan, 
1993). eXtreme Gradient Boosting (XGBoost) is an 
implementation of gradient boosting decision tree 
algorithm. Gradient boosting is an ML technique for 
solving supervised classification and regression 
problem. The gradient boosting tree algorithm 
produces a predictive model in the form of tree 
ensembles. The tree ensemble is an ensemble of 
models generated using a set of Classification and 
Regression Tree (CART). In boosting the ensemble, 
the model is built by optimizing the training loss and 
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regularization of different models until no further 
improvement in the model performance can be made 
(Chen and Guestrin, 2016). 

2.7. Model performance assessment 

The performance of various predictive model 
build on LibSVM, NB, J48 and XGBoost algorithms 
were assessed using different statistical performance 
evaluators available in the Weka software tool. The 
performance evaluations for all predictive models 
were performed using 20 % independent test 
dataset unseen by the trained models. The datasets 
prepared using different feature selection methods 
were imbalanced. Therefore, the influence of SMOTE 
on model performance was also evaluated.  

Recall or True Positive Rate (TPR) estimates the 
percentage of True Positives (TP) (Powers, 2011) 
(i.e., correctly classified positives instances) from the 
total number of actual positives samples (i.e., False 
Negative (FN)+True Positive (TP)) and is 
determined as follows: 

 
TP

TP+FN
                                                                                                 (1) 

 
In our case, the recall evaluates the ability of the 

trained predictive models to correctly classify 
inhibitors of PfCDPK protein (TP) from 20 % 
independent test data. Moreover, the proportion of 
False Positives (FP) (i.e., False Positive Rate (FPR)) 
obtained from a given population of negative 
instances [True Negative (TN) + False Positives (FP)] 
is calculated as follow: 

 
FP

TN+FP
                                                                                                 (2) 

 
In this regard, in the usual case, a predictive 

model with lower FPR can correctly classify TP 
(inhibitors of PfCDPK) with higher accuracy when 
compared to a model with higher FPR. Precision 
refers to the proportion of correctly classified 
positive instances (TP) from the total number of 
retrieved positive instances (TP + FP) and is 
determined as follow (Powers, 2011): 

 

 
TP

TP+FP
                                                                                                (3) 

 
Therefore, in our case, a model with a higher 

number of FP instances will have a lower chance to 
screen true inhibitors of PfCDPK protein from a 
given independent test data. Moreover, specificity 
another statistical parameter determines the 
competency of the model to classify TN instances 
from a given dataset correctly and is defined as 
follow: 

 

  
TN

TN+FP
                                                                                               (4) 

 
In the present case, the model with higher 

specificity has the higher competency to correctly 
classify non-inhibitors of PfCDPK protein (TN) from 

inhibitor chemical molecules (TP). Additionally, the 
accuracy which determines the ability of the 
predictive classification model to classify TP and TN 
instances correctly is an important parameter to 
help determine the ability of our generated 
predictive model to accurately discriminate between 
active and inactive inhibitor chemical molecule of 
PfCDPK protein from a given independent test data 
and is determined as follow: 

 
(TP + TN)/(TP + TN + FP + FN)                                            (5) 

 
The ideal value for accuracy for a predictive 

model is 1. Therefore, in our study, an ideal 
predictive model is the one that can accurately 
classify inhibitors and a noninhibitory molecule of 
PfCDPK protein as TP and TN, respectively from any 
given independent chemical test dataset. Moreover, 
the Area under the Curve (AUC) is a statistical model 
evaluator who evaluates the consistency of the 
classification model to predict positive instances 
(Powers, 2011), i.e., in our case inhibitors of PfCDPK 
protein from the given dataset. The AUC curve of the 
model is plotted by plotting the FPR and TPR value 
of every instance of a dataset in the x-axis and y-axis, 
respectively. An AUC value of 1is considered as an 
ideal value for a predictive model. Therefore, in the 
present case, a model which has a higher AUC value 
is deemed to be reliable in screening positive sample 
(i.e., true inhibitors of PfCDPK protein) from any 
given dataset. 

2.8. Selection of best FS method and two sample 
unpaired t-test 

Firstly, the feature selection method which gave 
better value for different statistical evaluators when 
tested on models built using four state-of-art 
classification algorithms (NB, LibSVM, J48, and 
XGBoost) was selected. Lastly, the statistical 
significance of SMOTE on dataset prepared using the 
above chosen FS method was evaluated using two-
sample unpaired t-test (Student, 1908; Barbara, 
2008). The two sample unpaired t-test was 
employed to find the statistical significance of 
sensitivity (recall) in a different predictive model 
built on balanced and imbalanced data (i.e., with or 
without SMOTE algorithm). 

3. Results and discussion 

3.1. Molecular descriptor generation and 
classification model generation 

The confirmatory AID-1159588 bioassay dataset 
consisted of 55 active, and 13396 inactive molecules 
screened against CDPK protein of Plasmodium 
falciparum. The SDF of all the inactive and active 
molecules were downloaded from the PubChem 
Substance repository, and molecular descriptor 
dataset was prepared using PowerMV (a molecular 
descriptor generator software tool) (NCBI, 2016). 
Firstly 179 2D molecular descriptors were generated 
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and upon further data pre-processing the number of 
features (molecular descriptors) was reduced to 154. 
Since all the features do not contribute significantly 
in the enhancement of model performance, therefore 
feature selection technique was employed to define 
the subset of features that help significantly to build 
a predictive model with a higher sensitivity in 
screening active inhibitors of CDPK protein of P. 
falciparum. As per the nature of the dependent 
attribute and independent variable two set of feature 
selection method was employed to generate two 
daughter datasets. The daughter dataset created 
using CfsSubsetEval, and GreedyStepwise algorithm 
consisted of eight features including a dependent 
attribute labeled as “class” to represent the two 
classes (active and inactive) of the chemical 
molecule. 

Similarly, another daughter dataset consisting of 
109 features including the dependent variable 
attribute (i.e., class) and was created using Principal 
Components Analysis (PCA) algorithm in conjunction 
with the Ranker method. Each of the dataset 
prepared using different FS methods was randomly 
partitioned into 20 % independent test and 80 % 
training data. Since the number of instances 
representing the active class of molecule in the 
training datasets was far lower as compared to the 
inactive class of molecule, therefore SMOTE a class 
balancing algorithm was implemented to equal the 

number of instances of each class (active and 
inactive molecule) in the 80 % training dataset.  

3.2. Model performance evaluation 

Four state-of-art classification algorithms were 
used to build classification models using Five-fold 
cross-validation on the training datasets (with and 
without SMOTE) generated using two FS method. 
The best model for each classifier was selected based 
upon their performance using various statistical 
evaluators namely accuracy, precision, recall, 
sensitivity and FPR upon testing on 20 % 
independent test dataset. The model performances 
of different classifier based models are shown in 
Table 1.  

Since the predictive models were trained and 
built using both imbalanced and balanced dataset 
therefore in the present case the statistical evaluator 
“accuracy” alone cannot be sufficient to determine 
the effectiveness of the generated predictive models. 
Thus, the role of other model performance statistical 
evaluators such as Recall, precision, specificity, and 
FPR are considered pivotal in determining the 
effectiveness of the classification model to screen 
true positive (i.e., inhibitors of PfCDPK protein) 
instances from any given independent test data. 

 

Table 1: Tabulate the performance of different classifier based models generated using data obtained using different feature 
selection techniques 

Feature 
Selection 
Methods 

SMOTE Classifier ACC Recall Precision Specificity 
ROC 
Area 

TP 
Rate 

FP 
Rate 

Confusion Matrix 

TP FN FP TN 

CFS Subset 
Evaluator + 

Greedy 
Stepwise 

Not 
Using 

SMOTE 

Naive Bayes 94.7515 1.000 0.066 0.95 0.993 1.000 0.053 8 0 113 2032 
libSVM 99.6284 0.000 0.000 1.00 0.500 0.000 0.000 0 8 0 2145 

J48 99.6284 0.000 0.000 1.00 0.500 0.000 0.000 0 8 0 2145 
MLR-XGboost 99.582 0.000 0.000 0.99 0.499 0.000 0.000 0 8 1 2144 

Using 
SMOTE 

Naive Bayes 99.6749 0.375 0.600 0.99 0.998 0.375 0.001 3 5 2 2143 
libSVM 94.1013 1.000 0.059 0.98 0.970 1.000 0.059 8 0 127 2118 

J48 97.5848 1.000 0.133 0.97 0.999 1.000 0.024 8 0 52 2093 
MLR-XGboost 96.2843 1.000 0.091 0.96 0.997 1.000 0.037 8 0 80 2065 

Principal 
Component 
Analysis + 

Ranker 
Method 

Not 
Using 

SMOTE 

Naive Bayes 91.7789 0.571 0.022 0.92 0.816 0.571 0.081 4 3 174 1972 
libSVM 99.7213 0.143 1.000 1.00 0.571 0.143 0.000 1 6 0 2146 

J48 99.7213 0.286 0.667 0.99 0.655 0.286 0.000 2 5 1 2145 
MLR+XGboost 99.6749 0.143 0.500 0.99 0.570 0.143 0.000 1 6 1 2145 

Using 
SMOTE 

 99.1175 0.857 0.250 0.99 0.993 0.857 0.008 6 1 18 2128 
libSVM 90.8964 1.000 0.034 0.91 0.954 1.000 0.091 7 0 196 1950 

J48 99.8078 0.999 0.997 0.99 0.999 0.857 0.003 6 1 7 2139 
MLR+XGboost 98.3279 0.714 0.128 0.98 0.987 0.714 0.016 5 2 34 2112 

 

The recall is the capability of the classification 
model to detect TP instances from any given number 
of positive instances available in an independent test 
dataset. As tabulated in Table 1 and graphically 
represented in Fig. 2 and Fig. 3, respectively the 
recall for different classifiers based models 
generated using unbalanced dataset (without 
SMOTE) is nearly zero and just contrary are the 
results of recall of models made using balanced 
dataset (with SMOTE) where the recall value is 1 or 
almost equal to 1. Therefore, the use of SMOTE on 
datasets generated using both FS method enhanced 
the capability of the model to screen TP from a given 
number of actually positive instances. 

Similarly, another statistical evaluator namely 
precision that calculates the proportion of TP 
instances from a given number of retrieved positive 
instances and specificity which determine the 
effectiveness of the model to screen TN accurately 
from a given number of negative instances were 
used to assess model performance. In this context, a 
model with higher precision and specificity will be 
useful in classifying TP instances from TN instances 
with higher accuracy. In this context, model based on 
J48 classifier trained on balanced dataset prepared 
using PCA in conjunction with Ranker FS method 
was found to be more effective in discriminating a 
true inhibitor of PfCDPK protein (TP) from a non-
inhibitor of PfCDPK protein (TN) with a precision 
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value of 0.997 and specificity value of 0.99 as shown in Table 1, and pictorially represented in Fig. 3. 
 

 
Fig. 2: Comparative statistics evaluation of the four state-of-art classifier based models built using both imbalanced and 
balanced datasets (The original imbalanced data was generated using CFS Subset Evaluator in association with Greedy 

Stepwise Feature selection algorithms and that was later balanced using SMOTE algorithm) 
 

 
Fig. 3: Comparative statistics evaluation of the four state-of-art classifier based models built on both imbalanced and 
balanced data (The original imbalanced data was generated using PCA in association with Ranker Feature selection 

algorithms and that was later balanced using SMOTE algorithm) 
 

Additionally, the FPR that determines the 
proportion of FP instances from a set of predicted 
negative instances was found to be 0.003 for J48 
classifier based predictive model which is close to an 
ideal value, i.e., “0” as shown in Table 1. The AUC 
values obtained from the ROC plot of NB, LibSVM, 

J48, and XGBoost based classifier model showed 
higher values i.e., 99 to 100 % for model trained 
using balanced datasets as compared to the AUC 
value obtained for above mentioned classifier based 
models trained using unbalanced dataset as shown 
in Fig. 4 and Fig. 5, respectively. Therefore, the 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Naïve Bayes LibSVM J48 Xgboost

0.1

0.0 0.0 0.0

0.6

0.1

0.1
0.1

1

0 0 0

0.4

1.0 1.0 1.0

S
ta

ti
st

ic
a

l 
p

a
ra

m
e

te
r 

v
a

lu
e

s

Supervised Learning Classifiers

CFS Subset + Greedy Stepwise Feature Selection Algorithms 

Precision (Imbalanced data) Precision (Balanced data) Recall (Imbalanced data) Recall (Balanced data)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Naïve Bayes LibSVM J48 XGBoost

0.0

1.0

0.7

0.5

0.3

0.0

1.0

0.1

0.6

0.1

0.3

0.1

0.9

1.0 1.0

0.7

S
ta

ti
st

ic
a

l 
p

a
ra

m
e

te
r 

v
a

lu
e

s

Supervised Learning Classifiers

Principal Component Analysis + Ranker Feature Selection Algorithms

Precision (Imbalanced data) Precision (Balanced data) Recall (Imbalanced data) Recall (Balanced data)



Asif Hassan Syed, Tabrej Khan/International Journal of Advanced and Applied Sciences, 6(10) 2019, Pages: 62-72 

69 
 

classifier based model when trained using balanced 
dataset has higher reliability in predicting TP 

instances (inhibitors of PfCDPK protein) from any 
library of chemical molecules). 

 
 

 
Fig. 4: Comparative ROC plot of the four state-of-art classifier based models built on both imbalanced and balanced data (The 

original imbalanced data was generated using CFS Subset Evaluator in association with Greedy Stepwise Feature selection 
algorithms and that was later balanced using SMOTE algorithm) 

 

 
Fig. 5: Comparative ROC plot of the four state-of-art classifiers based models built on both imbalanced and balanced data 

(The original imbalanced data was generated using PCA in association with Ranker Feature selection algorithms and that was 
later balanced using SMOTE algorithm) 
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Accuracy another statistical evaluator for model 
performance defined as the proportion of correctly 
predicted TP and TN instances from the total 
number of predicted positive and negative instances. 
The J48 classifier based predictive model which was 
trained on a dataset generated using PCA in 
conjunction with Ranker method and later class 
balanced using SMOTE showed better capability in 
predicting TP and TN samples from the total number 
of predicted samples. The J48 based predictive 
model showed a higher value of accuracy, i.e., 0.998, 
when compared to other classifiers based predictive 
model generated using dataset, created using PCA 
and ranker method and balanced using SMOTE. The 
accuracy value for various classifier based 
classification model is shown in Table 1. Therefore, 
based upon the results of the statistical evaluation 
the J48 classifier based predictive model trained and 
built on a dataset generated using PCA in 
conjunction with ranker based FS method was found 

to be a useful model for screening PfCDPK protein 
inhibitor molecule from an independent test dataset. 

Further, the statistical significance of the 
application of SMOTE on classifier based models 
trained on a dataset generated using PCA in 
conjunction with ranker based FS method was 
evaluated using Two sample unpaired t-test. The 
statistical evaluator “recall” was used by the authors 
to check the effect of SMOTE on the four state-of-art 
classifier based predictive models. Mean, standard 
error, standard deviation, and significance value 
were calculated for the precision values of all the 4 
classifier based predictive models trained on both 
imbalanced (without SMOTE) and balanced (with 
SMOTE) datasets generated using PCA in conjunction 
with ranker FS method and further tested on 20 % 
independent test dataset are shown in Table 2.  

The significance value of 0.0025 was obtained 
when the results of precision were compared for all 
classifier based models trained and built on the 
imbalanced and balanced dataset. 

 

Table 2: Unpaired samples T-test for recall was performed between model built using balance (with smote) and imbalanced 
(without smote) dataset generated using PCA and ranker feature selection (FS) method 

Algorithm Unpaired Differences 

 Mean 
Std. 

Deviation 
Std. Error 

Mean 
95% Confidence Interval of the 

Difference 
T Df 

Sig. (2-
tailed) 

SMOTE and WITHOUT 
SMOTE 

0.60675 0.244 0.122 0.30861 0.90489 4.9798 6 0.0025 

 
The significance value obtained show that the 

precision results obtained by all the four state-of-art 
classifiers based model made using balanced dataset 
is statistically significant since the calculated 
significance values are lower than 0.05. Thus it can 
be proposed that the classifier based models when 
trained using balanced dataset has a higher 
efficiency in predicting TP instances (i.e., inhibitors 
of PfCDPK protein) from any library of chemical 
molecules. 

3.3. A comparative study with other ML-based 
antimalarial predictive model 

The average accuracy and ability of the proposed 
J48 classifier based predictive model to screen true 
antimalarial molecule are comparatively higher than 
any other ML-based chemoinformatics model as 
shown in Table 3. 

Even though different ML-based models were 
tested on different dataset but still the overall 
potency to screen true positives from a given 
balanced dataset is greater as depicted regarding 
accuracy and AUC value of our proposed J48 
classifier based predictive chemoinformatics model. 
The reasons for better accuracy and AUC value can 
be inferred from the fact that the application of both 
SMOTE (class balancer) and selection of appropriate 
features using PCA and Ranker feature selection 
method resulted in the development of an efficient 
antimalarial chemoinformatics predictive model. 
Based on our results we argue that the current J48 
classifier based classification model will be 

competent in screening true antimalarial molecules 
from any given independent test chemical dataset. 

4. Conclusion and future scope 

The current proposed supervised J48 classifier 
based predicted model built using attributes selected 
using PCA in conjunction with ranker method 
showed better performance in screening TP 
instances, i.e., PfCDPK inhibitor molecules from an 
independent test dataset. Recall a statistical 
evaluator was used to assess the outcome of SMOTE 
a class balancing algorithm on a different classifier 
based model built using the dataset prepared using 
PCA in association with ranker FS method. The 
performance of the four state-of-art classifiers based 
model to screen TP instances was enhanced when 
the model was built using balanced dataset (with 
SMOTE). The results of recall obtained using SMOTE 
were found be significant when tested using two-
sample unpaired t-test at 95 % confidence interval. 
The comparative study displaying the performance 
of different classifier based chemoinformatics model 
show that our J48 classifier based classification 
model betters other ML-based antimalarial 
chemoinformatics models regarding accuracy and 
AUC value. Therefore, the current suggested J48 
classifier based predictive model built on balanced 
class dataset enables a more specific and rapid 
screening of novel antimalarial drugs targeted 
against P. falciparum CDPK protein. 
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Table 3: Performance comparison of different machine learning algorithm based chemoinformatics model for screening 
antimalarial chemical molecules 

Author  ML-algorithm 
Number of 

Active 
Molecule 

Number of 
Inactive 
Molecule 

Class Balancer Target 
ROC 
area 

Accuracy 

Subramaniam 
et al. (2011) 

Support Vector 
Machine 

(SVM) 
443 560 NA 

Inhibitors of 
Plasmodium 
falciparum 

proliferation 

Model 1 
0.88 

Model 1 
87 % 

Jamal et al. 
(2013) 

Random 
Forest (RF) 

22396 197741 Cost-Sensitive Classifier 

Apicoplast inhibition 
in the malarial 

parasite Plasmodium 
falciparum 

0.71 76.27 % 

Kumari and 
Chandra 
(2015) 

Random 
Forest (RF) 

3498 287,235 Cost-Sensitive Classifier 

Aspartyl 
aminopeptidase 

(M18AAP) of 
Plasmodium 
falciparum 

0.86 97.3 % 

Bharti and 
Lynn (2017) 

Random 
Forest (RF) 

18126 220632 

Down sampling of the 
data (random sampling 
has been done to bigger 

class) 

Apicoplast inhibition 
in the malarial 

parasite Plasmodium 
falciparum 

0.92 88 % 

Dixit and 
Singla (2017) NA 

1173 (AID-
504850) 

1391(AID-
504848) 

344 (AID-
504850) 

240 (AID-
504848) 

NA 

Apicoplast inhibition 
in the malarial 

parasite Plasmodium 
falciparum 

NA 81.4 % 

Egieyeh et al. 
(2018) 

Sequential 
Minimization 
Optimization 

(SMO) 

347 808 

The Weka “meta-
CostSensitiveClassifier” + 
Synthetic Minority Over-

sampling Technique 
(SMOTE) 

Antiplasmodial 0.86 85.9 % 

Current 
research 

J48 55 13396 
Synthetic Minority Over-

sampling Technique 
(SMOTE) algorithm 

P. falciparum 
Calcium-Dependent 

Protein Kinase4 
(PfCDPK4) 

0.99 99.8 % 
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