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This study examines the vital role of accurate load forecasting in the energy 
planning of smart cities. It introduces a hybrid approach that uses machine 
learning (ML) to forecast electricity usage in homes, improving accuracy 
through the extraction of correlated features. The accuracy of predictions is 
assessed using loss functions and the root mean square error (RMSE). In 
response to increasing interest in explainable artificial intelligence (XAI), this 
paper proposes a framework for predicting energy consumption in smart 
homes. This user-friendly approach helps users understand their energy 
consumption patterns by employing shapley additive explanations (SHAP) 
techniques to provide clear explanations. The research uses gradient 
boosting and long short-term memory neural networks to forecast energy 
usage. In the context of sustainable urban development, it emphasizes the 
importance of conserving energy in homes. The paper explores AI and ML 
methods for predicting residential energy use, aiming to make socially 
meaningful impacts. It highlights the need to understand the factors affecting 
predictions to improve the accountability, reliability, and justification of 
decisions in energy optimization. Explainable AI techniques are used to gain 
insights into the prediction models and identify factors influencing 
household energy consumption. This research aids in decision-making 
processes related to electricity forecasting, advancing discussions on 
intelligent decision-making in power management, especially in smart grids 
and sustainable urban development. 
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1. Introduction 

*In recent years, there has been a visible surge in 
the degree of attention surrounding the application 
of machine learning (ML) models in the domain of 
energy consumption prediction. The primary goal of 
this study is to enhance the level of awareness 
among smart home users regarding their 
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prospective energy use (Kim and Cho, 2021; Zhang 
et al., 2021). Furthermore, these systems can predict 
the energy consumption of individual apparatuses. 
Nevertheless, the operational mechanisms of these 
prediction systems may appear enigmatic to 
consumers, who may possess limited comprehension 
of the fundamental decision-making processes at 
play. Consequently, individuals may exhibit a 
preference for objective justifications elucidating the 
rationale behind a certain decision implemented on 
their behalf by the system (Ehsan et al., 2021). Users 
may pose inquiries such as "What is the fundamental 
rationale behind the projected energy quantity?" or 
"What was the primary determinant taken into 
account when formulating this forecast?" What 
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strategies can be employed to enhance energy 
efficiency?  

The capacity of the system to offer detailed 
responses to such inquiries has the capacity to 
improve the confidence and transparency of AI 
models among end-users. Furthermore, in 
accordance with the provisions outlined in the 
General Data Protection Regulation, individuals who 
are citizens of the European Union have an inherent 
entitlement to receive appropriate notification 
regarding the decision-making processes employed 
by artificial intelligence (AI) models that are directly 
linked to them. In recent times, there has been a 
significant surge in focus on the examination and 
elucidation of intricate ML models (Crabbé and Van 
Der Schaar, 2021; Lundberg and Lee, 2017). The 
aforementioned motivation stems from the desire of 
AI practitioners and developers to enhance the 
effectiveness of these models. However, additional 
investigation is required to explore the 
methodologies by which explanations focused on 
human-centered perspectives might be developed in 
a manner that is comprehensible to those lacking 
expertise in AI theory and development. It is 
imperative to take into account the incorporation of 
varied user requirements across multiple domains in 
research related to user-centered design, given its 
inherent contextual nature. For instance, this study 
aims to investigate the strategies that can be 
employed to boost the clarity of explanations for 
users within a certain pragmatic framework and 
subsequently put these strategies into practice. In 
addition, the task of elucidating the prediction 
generated by a time series forecasting model 
presents difficulties due to the intricate interaction 
between the explanations and the corresponding 
temporal attributes and components (Crabbé and 
Van Der Schaar, 2021). 

The active involvement of households in the 
development of sustainable smart cities holds 
paramount significance, given their substantial 
contributions to overall energy consumption within 
urban areas. The urban landscape grapples with the 
imperative task of efficiently addressing the energy 
needs of residences and diverse industries, all while 
navigating the constraints imposed by finite energy 
resources. Governments worldwide are proactively 
addressing these challenges by consistently working 
towards implementing legislation aimed at 
enhancing energy efficiency and promoting 
conservation in residential settings. Consequently, 
there arises a critical need to forecast the daily 
energy consumption patterns of households, 
facilitating the anticipation of energy requirements 
for the entire city. Although various ML models exist 
to forecast energy consumption, their inherent 
complexity often poses challenges in comprehension. 
The intricacies of these models, along with the 
rationale behind their specific predictions, remain 
elusive, contributing to a lack of transparency. 
Additionally, there is an ongoing struggle to fully 
comprehend how these models behave when 
employed in real-world data. The insufficient 

understanding of ML models among citizens may 
lead to skepticism regarding the credibility of the 
generated projections. Recognizing the pivotal role 
citizens play in energy optimization, it becomes 
imperative for them to possess a comprehensive 
understanding of the factors influencing domestic 
energy consumption. Recent trends reflect a growing 
inclination towards innovative approaches aimed at 
addressing these challenges. The overarching goal is 
to enhance model understandability and reduce 
complexity, with the primary objective being to 
improve comprehension of expected outcomes, 
benefiting homeowners, researchers, model 
developers, and professionals involved in the realm 
of smart cities (Masood et al., 2018; Badshah et al., 
2023), ultimately striving for a thorough 
understanding of the internal dynamics of ML 
models while ensuring their integrity. 

The utilization of AI has led to the advancement 
of improved methodology for ML algorithms and the 
incorporation of innovative ways for assessing Deep 
Learning (DL) in various sustainable smart city 
applications. In numerous instances, these 
methodologies have the potential to confer a 
competitive advantage by enhancing efficiency and 
accuracy while simultaneously reducing the 
occurrence of errors. In contemporary times, the 
conservation of energy for household purposes has 
emerged as a prominent subject of attention. 

Accurately predicting power system load holds 
significant strategic value in efficiently managing the 
operational aspects of power systems within 
deregulated economies (Feinberg and Genethliou, 
2005). This resource provides essential contextual 
information that is vital for making educated 
decisions in the management of electricity networks, 
particularly in the strategic planning of operational 
activities during normal electrical conditions. The 
capacity to produce resources in both low-demand 
and high-demand modes is contingent upon the 
dimensions and makeup of technical apparatus, 
which is determined by load forecasts. The 
anticipation of load power consumption is presently 
a noteworthy field of research within the electric 
power sector (Lin et al., 2021; Quan et al., 2014; 
Zueva et al., 2015). The main object of this work 
revolves around the analysis of short-term and 
operational graphs. 

The aim of power consumption prediction 
involves analyzing many elements that influence 
variations in load, as well as forecasting future load 
patterns for power consumption. The primary 
components implicated in anticipation of electricity 
consumption by consumers encompass several 
factors: Active and reactive load schedules across 
various temporal intervals, encompassing daily, 
seasonal, and annual cycles; electricity usage as a 
time-varying variable; and the fundamental 
attributes of load curves during specific forthcoming 
periods. 

The academic literature has extensively examined 
and analyzed the topic of Explainable Artificial 
Intelligence (XAI) (Gunning et al., 2019). Numerous 
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techniques have been developed in the existing 
corpus of research to address the concept of XAI, 
particularly in relation to DL models (Adadi and 
Berrada, 2018; Das and Rad, 2020). However, the 
adoption of XAI techniques for forecasting daily 
household energy consumption and offering 
explanations regarding the factors influencing 
energy usage is not extensively widespread. The 
constrained availability of resources poses a 
challenge for individuals in their ability to identify 
and address these factors in order to optimize 
energy efficiency. The present work assembles a 
dataset that is primarily centered on the urban area 
of French households, encompassing many factors 
that can impact the energy consumption patterns of 
residential dwellings. Obtaining all attributes inside 
a single dataset may not be feasible in practice. 
However, the process of gathering relevant 
characteristics can be achieved by the integration of 
many interrelated databases. The prediction of daily 
energy consumption in residential buildings can be 
achieved by the application of several ML algorithms 
often used in this context. The utilization of various 
methodologies in the domain of XAI enables the 
examination of the inherent lack of transparency in a 
black-box model and facilitates the generation of 
coherent explanations. This elucidation facilitates 
the discernment of reasons accountable for energy 
consumption and enables the execution of viable 
remedies. The present study presents a novel 
approach utilizing a Gradient Boosting and Long 
Short-Term Memory (LSTM) model for the purpose 
of predicting home energy usage. Moreover, a 
strategic approach has been created to offer 
elucidations by integrating the LIME and SHAP 
(Lundberg and Lee, 2017) methodologies to enhance 
the comprehensibility of the forecasting process. The 
methodology used in this study clarifies the decision-
making process by establishing a correlation 
between the time taken and the contributions of the 
features. The primary aims of our research are 
centered on delivering explanations that prioritize 
the human perspective, hence improving users' 
comprehension of the rationale behind certain 
choices connected to energy. 

Smart cities utilize advanced technologies to 
amend the superiority of life for their residents 
through the promotion of sustainability, facilitation 
of economic growth, and enhancement of 
productivity. The aforementioned objectives are 
achieved through the utilization of intelligent 
technologies, which facilitate seamless movement, 
effective economic management, and enhanced 
quality of life. The proactive utilization of 
Information and Communication Technologies 
(ICTs) is implemented to gather data in order to 
monitor, assist, and improve various aspects of 
urban infrastructures. These domains comprise a 
wide range of areas, including, but not limited to, 
energy consumption, transportation networks, 
healthcare services, educational institutions, and 
environmental activities, specifically waste 
management. 

Accurately predicting and effectively managing 
electricity use in residential areas are major 
challenges in smart urban environments. Efficiently 
controlling the power consumption of households 
can help in several ways, such as providing energy, 
managing power, and predicting electricity demand 
and load (Khemakhem et al., 2019).  

The energy sector is currently engaged in the 
promotion and integration of Information and 
Communication Technologies (ICT) and ML 
techniques. This integration aims to develop 
intelligent urban grids that offer enhanced benefits 
in terms of electrical reliability, power delivery, 
communication security, efficient energy generation, 
and optimized energy usage. Our main focus 
revolves around the utilization of these 
methodologies within the context of power load 
forecasting regulations, which are relevant to 
communities involved in both energy generation and 
consumption. 

The construction of prediction models in 
contemporary times is significantly dependent on 
the usage of statistical analysis and time series 
modeling (Lin et al., 2021; Quan et al., 2014; Firsova 
et al., 2019). The electricity consumption of a specific 
system can be characterized by a time series, which 
denotes the instantaneous power consumption at 
discrete time intervals. These models exhibit a 
significant level of efficacy in addressing various 
challenges related to forecasting techniques within 
the electric power sector. 

The integration of smart grid technologies 
(Amjad et al., 2012) is a crucial component in the 
deployment of smart cities. The utilization of this 
technical implementation facilitates the collection 
and analysis of large quantities of data obtained from 
the field. The proliferation and advancement of 
smart meters in smart urban settings have led to the 
implementation of several advanced metering 
techniques. The efficacy of these approaches relies 
on the utilization of mechanisms that facilitate the 
collection and transmission of data to centralized 
systems through residential gateways. The primary 
goal is to enhance the efficiency of power system 
management. This encompasses both the elements 
of power generation and power consumption. The 
assessment of economic benefits is based on an 
examination of the relationship between 
environmental limitations and relevant data. The 
progress of decision-making systems forms the 
fundamental basis for accurately predicting load 
demand in power markets and effectively managing 
power resources.  

In the domain of electrical load forecasting, a 
considerable number of prediction algorithms 
integrate time series analysis with statistical 
approaches. There exist various forecasting 
approaches that place emphasis on the crucial aspect 
known as load variations. Furthermore, 
methodologies exist that take load variations into 
account as a stochastic phenomenon. However, 
effectively replicating the operation is a considerable 
problem owing to the intricate and non-linear 
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correlation between the load and its various 
dependent components. Furthermore, it is 
imperative to acknowledge that current approaches 
to forecasting electrical load are inadequate in 
effectively handling data that is characterized by 
noise or incompleteness despite the frequent need to 
work with such data in real-world scenarios. Hence, 
the enhancement of electrical load prediction 
efficacy can be achieved through the incorporation of 
novel concepts and methodologies that combine 
many data sources, hence improving the handling of 
imprecise and incomplete input data.  

In the field of time series analysis, the subsequent 
elements are commonly utilized: 
 
 A trend is a phenomenon characterized by a 

gradual and continuous change, which reflects the 
impact of persistent variables over an extended 
duration. 

 The seasonal component refers to the recurring 
patterns observed in the analyzed phenomenon. 

 The random component refers to a constituent 
that demonstrates the impact of stochastic factors. 

 
The characterization of the variability in the 

behavior of electrical loads often involves the 
identification of repetitive patterns. This enables the 
development and use of physical and mathematical 
models that effectively characterize the electrical 
load of different types of electrical equipment.  The 
classification of load prediction can be categorized 
into three unique classes based on the time period, 
as mentioned by Yildiz et al. (2017). Durations can 
be classified into three discrete temporal intervals: 
Short-term, medium-term, and long-term. The 
temporal range of short-term duration spans from a 
few seconds to a few days, whereas the temporal 
range of medium-term length encompasses a period 
extending from a few days to a few months. 
Ultimately, the extended temporal span varies from a 
few months to many years. 

The term "short-term load forecast" refers to the 
estimation of the anticipated electrical demand in 
the near future for specific sections or the entire 
network within the domain of electricity demand 
(Firsova et al., 2019; Ma, 2022). Within a limited 
time frame, often ranging from 1 to 24 hours, it is 
widely recognized that durations falling within this 
range are classified as short-term. However, there 
exist certain instances when a time span of 48 hours 
may also be categorized as short-term. Short-term 
load forecasting is a frequently employed method for 
forecasting network demand in a practical setting. 
The utilization of short-term load forecast can be 
employed to address the subsequent tasks (Quan et 
al., 2014; Firsova et al., 2019): 
 
 There is an imperative to augment the level of 

support for energy trading. 
 Market activity refers to the process of 

determining the price of electricity within a 
particular market. 

 The present goal is to optimize a network. 

 The topic under investigation concerns demand 
regulation. 

 The task at hand pertains to the prediction of the 
maximum level of demand. 

 Demand management is a strategic approach 
employed by businesses to effectively manage and 
govern the demand for their products or services. 

 The areas of concentration involve load balancing 
and overload protection. 

 The procedure of discerning defects and 
irregularities. 

 The phenomenon of peak reduction, also known as 
alignment, is observed. 

 
Short-term projection models predominantly 

depend on recent data pertaining to energy use, 
typically including the most recent day or week. The 
projected temperature serves as the primary 
forecasting factor. Currently, the process of 
obtaining precise temperature predictions for both 
short-term (i.e., hourly) and medium-term (i.e., 
daily) intervals does not pose significant challenges. 
The observed patterns exhibit a reduced level of 
responsiveness to both seasonal fluctuations and 
long-term consumption trends.  

In the context of short-term forecasts, it is 
common practice to generate a substantial number 
of prediction calls, referred to as service requests, at 
regular intervals, typically on an hourly basis or even 
more frequently in certain instances. Furthermore, it 
is well acknowledged that implementing methods 
often include representing specific families or 
transformers as autonomous models. Subsequently, 
there has been a substantial rise in the quantity of 
requests for forecasts. 

The prediction of electricity consumption often 
entails the application of established statistical 
methodologies, including auto-regression, seasonal 
curves, component analysis, and other relevant 
approaches (Quan et al., 2014; Zueva et al., 2015; 
Firsova et al., 2019; Ma, 2022). 

When utilizing statistical approaches, it is 
possible to identify multiple stages within the 
process of prediction. The procedure has a series of 
distinct stages that encompass a number of crucial 
steps. The initial step in obtaining statistical 
information involves the collection of data from a 
dataset via a sampling methodology. Subsequently, 
the data undergoes standardization in order to 
guarantee uniformity and facilitate comparability. 
Subsequently, the data is categorized according to its 
structural characteristics. The subsequent 
examination of the dynamics of the process is 
conducted in order to acquire valuable insights and 
enhance comprehension. A suitable period of 
retrospection is chosen in order to enhance the 
precision of the study. The data is further processed 
to minimize interference and improve 
comprehensibility. Ultimately, additional data is 
integrated to enhance the dependability and 
resilience of the model. The construction of the 
Residential Power Load Prediction Machine 
(RPLPM) model involves the utilization of ML 
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methodologies, namely the implementation of the 
gradient boosting regressor, multivariate linear 
regression (MLR), and LSTM techniques. The 
proposed predictive model objectives are to improve 
prediction accuracy through the use of training data. 

2. Literature survey 

The discipline of assessing data to enhance 
comprehension of energy usage in residential 
constructions has been increasingly embraced by 
academicians. In recent years, there has been a 
notable enhance in the utilization of regressive 
models for the goal of predicting short-term 
residential load consumption. This is accomplished 
by utilizing the available data.  

The purpose of this section is also to provide a 
comprehensive review of the remaining literature on 
the topic at hand. By examining and analyzing 
previous research, this review aims to identify gaps 
in knowledge and highlight key findings, and 
considerable scholarly focus has been devoted to the 
prediction of home energy consumption, mostly 
driven by the rapid advancements in sustainable 
smart city technology and the related services it 
provides. A considerable number of recent academic 
publications have focused on ML techniques aimed 
at estimating energy use and offering opportunities 
for improvement. The study's authors utilized data 
pertaining to the structural attributes and 
technological elements of buildings. The researchers 
successfully trained multilayer perceptron (MLP) 
and support vector regression (SVR) models to 
estimate the cooling and heating requirements in 
residential buildings. This accomplishment was 
attained within the context of the fourth experiment, 
as evidenced by Moradzadeh et al. (2020). The essay 
presented a forecasting technique consisting of two 
stages (Wang et al., 2010). In the initial phase, 
conventional methods of time forecasting were 
employed to generate day-ahead load forecasts. 
Subsequently, support vector machines (SVM), linear 
regression, and quadratic models were employed to 
enhance the precision of the predictions. The 
mathematical models for backpropagation neural 
networks and Elman neural networks were created 
by Zheng et al. (2020) to address the time-dependent 
characteristics of energy consumption data. The 
implemented models utilized reduced learning rates, 
decreased number of layers, and internal state 
storage. Nonetheless, an important constraint of ML 
models lies in their inherent lack of transparency. 

Currently, a range of approaches are employed to 
determine the correlation between input factors and 
their respective output projections. There are four 
primary group classifications that can be 
distinguished (Yildiz et al., 2017). The study will 
utilize statistical approaches, including Auto 
Regressive Integrated Moving Average (ARIMA), k-
nearest neighbor models (KNM), and Multiple linear 
regression (MLR). There are several ML approaches 
available for the purpose of regression tasks. The 
technique of SVR has been proposed in previous 

studies (Jain et al., 2014; Paudel et al., 2015). 
Another technique that can be employed is the 
Decision Tree (DT) (Yu et al., 2010). The algorithm 
described can be further developed to construct the 
Random Forest (RF), which is a compilation of 
decision trees that can be utilized for both 
classification and regression tasks (Westphal and 
Lamberts, 2007). In addition, Artificial Neural 
Networks (ANN) (Karatasou et al., 2006; Tso and 
Yau, 2007; Westphal and Lamberts, 2007) constitute 
a set of strategies that can be utilized. Various ANN 
architectures have been developed, such as feed-
forward neural networks (FFNN), multilayer 
perceptron (MLP), and LSTM. 

LSTM is utilized in many applications, such as 
smart grids, industrial environments, and home 
energy management systems. LSTMs have 
demonstrated their capacity to capture both diurnal 
and seasonal patterns, rendering them versatile for 
various load forecasting scenarios. Although LSTM 
models have achieved notable success in Short-Term 
Load Forecasting (STLF), there are still existing 
difficulties that need to be addressed. The issue of 
model interpretability continues to be a concern, 
particularly in situations where transparency is 
essential for making informed decisions. 
Furthermore, the optimal performance of the LSTM 
model necessitates meticulous consideration of 
hyperparameter selection, input feature choice, and 
outlier handling. 

The research reviewed suggests an increasing 
inclination toward employing LSTM for short-term 
load prediction in the power industry. LSTMs 
provide the capability to effectively capture complex 
temporal relationships, handle nonlinearity, and may 
be combined with other techniques (Yang et al., 
2024; Lotfipoor et al., 2024), making them a highly 
promising option for addressing the issues in STLF. 
As progress continues, additional investigation is 
required to enhance techniques, tackle difficulties in 
interpretability, and investigate innovative methods 
to enhance the precision and dependability of short-
term load projections utilizing LSTM networks. 

Presently, researchers are devoting their 
attention to examining several approaches to XAI 
that demonstrate extensive applicability in the 
domain of intelligent urban environments. The 
utilization of XAI methodologies, such as Shapley 
Additive Explanations (SHAP), enables the 
examination of long-term prediction models to 
assess the potential impacts of climate change on the 
energy consumption associated with building 
cooling (Chakraborty et al., 2021). Wenninger et al. 
(2022) investigated the yearly projections of 
building energy efficiency using a predictive model 
that operates over an extended period. In this study, 
the authors employ an additional methodology 
based on XAI, as described by Fan et al. (2019), to 
estimate the energy efficiency of a building. This is 
achieved by implementing a short-term predictive 
model. However, the system's performance is subpar 
in the presence of trust matrices. The study 
conducted by Yoo and Ko (2020) employed a 
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recurrent neural network (RNN) model that 
incorporated feature importance and an attention 
mechanism to forecast residential energy 
consumption. Prior studies have utilized an encoder-
decoder architecture comprising an LSTM sequence 
and a self-attention mechanism to make short-term 
forecasts regarding the energy usage of buildings 
(Gao and Ruan, 2021; Li et al., 2021; Miller, 2019). 
The model description provided by Tiwari et al. 
(2022) also includes the prediction of load demand 
for households. The categorization of buildings 
based on their usage patterns is achieved through 
the utilization of ML classifiers and the examination 
of correlations among their attributes, as outlined by 
Pandey et al. (2022). Many research studies often 
overlook the potential impact of several factors, such 
as weather conditions, social dynamics, and 
environmental components, on energy use. The 
ability to interpret these variables presents 
homeowners with the potential to enhance energy 
optimization by employing appropriate procedures 
grounded in valid criteria. In the present setting, it is 
crucial to possess a thorough comprehension of 
several XAI methodologies that can potentially 
enable the provision of explanations in predicting 
residential energy usage. 

2.1. XAI methods 

This paper aims to discuss several methodologies 
employed in the field of XAI as they offer a 
framework for effectively conveying the connections 
within a model and discerning the fundamental 
components that contribute to the generated 
outcomes. Further investigation is required in the 
field of residential energy usage in order to enhance 
transparency and provide a more thorough 
assessment of efficiency. There are multiple 
approaches within the domain of XAI that can be 
utilized to identify the fundamental input properties. 
In the field of methods, it is noteworthy to 
emphasize two significant approaches referred to as 
LIME and SHAP. The utilization of the Local 
Interpretable Model-agnostic Explanations (LIME) 
method is prevalent in the field of ML to provide 
explanations for the predictions made by complex 
models. 

Local interpretable model agnostic explanations 
(LIME), suggested by Ribeiro et al. (2016), is a 
technique that is not dependent on any specific 
model. In the current context, the term "local" is 
utilized to denote the specific extent or scale of the 
model being examined. This suggests that the Lime 
technique is employed to elucidate a particular 
instance or entry rather than providing an 
explanation for the entire dataset as a whole. The 
LIME algorithm generates interpretable 
representations that are comprehensible to human 
users. The incorporation of explanatory components 
within the model is essential for enhancing its 
interpretative capability. The methodology has the 
capability to operate on black box models, making it 
suitable for generating explanations that are 

independent of the specific model being used. The 
algorithm discussed above plays a vital role in 
elucidating the operational mechanics of many AI 
models. LIME is an abbreviation that represents a 
mathematical optimization problem. The aim of this 
technology is to provide a localized calculation of the 
complicated model (f) for a specific input (x). 

SHAP is a method used in the field of ML to 
present explanations for distinctive estimates made 
by black-box models. The methodology proposed in 
the study conducted by Lundberg and Lee (2017) 
presents a framework that is not limited to any 
single model. Its primary objective is to provide 
visual explanations for ML algorithms. The 
conceptual basis of this notion is rooted in the 
fundamental principles of game theory. The Shapley 
value is utilized to ascertain and elucidate the 
incremental contribution of each participant within 
the system. 

The variable f is employed as a representation of 
the black box model, which is utilized to generate 
predictions. Conversely, the variable x is employed 
as a symbol to represent the input data point. The 
symbol z' is employed to represent the collection of 
attributes, while x' is utilized to signify the simplified 
data points. In the particular context of evaluating 
forecasts for residential energy usage, the SHAP 
technique is regarded as more appropriate for 
discerning and comprehending the distinct 
contributions made by each constituent. 

3. Proposed methodology 

This section provides a description of the dataset, 
as well as the methodology that is proposed for the 
forecasting of electricity use. 

3.1. Dataset description 

The dataset comprises a wide range of variables 
and observations, providing a comprehensive 
collection of data. The document offers a 
comprehensive overview of the collected data, 
facilitating a comprehensive examination and 
understanding of the material. The current 
investigation entails the examination of the dataset 
titled "Household Electric Power Consumption" 
acquired from reliable sources, including Kaggle and 
UCI. The dataset consists of multivariable time series 
data, largely focusing on the electricity consumption 
of a single household. The dataset encompasses a 
time span of four years, commencing in December 
2006 and concluding in November 2010. The dataset 
has a grand total of 2,075,259 data readings, which 
were gathered at a sampling rate of one minute. The 
data was gathered from a residential dwelling 
situated close to Paris, France. The data regarding 
electricity use was gathered from a wide variety of 
household electrical equipment. Each column inside 
the dataset represents a distinct component of 
electricity consumption. In addition to the variables 
of date and time, there exist seven additional 
variables within the context of a multivariate series, 



Janjua et al/International Journal of Advanced and Applied Sciences, 11(5) 2024, Pages: 230-248 

236 
 

which can be characterized as follows: The variable 
"global_active_power" represents the total amount of 
active power consumed by residential units, 
measured in kilowatts. The variable referred to as 
"global_reactive_power" measures the aggregate 
amount of reactive power consumed by residential 
units, measured in kilowatts. Voltage is formally 
defined as the average electrical potential difference 
measured in units of volts. The concept of "global 
intensity" refers to the average current intensity 
measured in amperes (A).  

Sub-metering_1 is employed to measure the 
active energy consumption, which is indicated in 
watt-hours, of the electrical equipment located 
within the kitchen area. The concept of "sub-
metering_2" refers to the measurement and 
quantification of active energy use, expressed in 
watt-hours, primarily for electrical equipment used 
in washing facilities. The concept of "sub-
metering_3" refers to the measurement and 
quantification of active energy consumption, 
expressed in watt-hours. This measurement 
primarily focuses on the electrical appliances that 
are employed within the temperature control 
system. 

3.2. Pre-processing 

The pre-processing stage is an essential step in 
the analysis of data. The process involves the initial 
preparation of raw data in order to facilitate further 
analysis through various techniques, including but 
not limited to cleaning, converting, and organizing. 
The primary aim of this stage is to make the data 
pre-processing procedure encompass a sequence of 
operations that are necessary for addressing 
particular facets of the dataset. The dataset 
underwent an initial processing stage wherein the 
date and time variables were combined, employing 
the Python programming language. The application 
of this technology resulted in a significant benefit in 
the conversion of measurements from minutes to 
hours during a future phase, hence enhancing 
effectiveness. Furthermore, it was noted that the 
utilization of wireless data collecting resulted in the 
identification of a total of 25,979 values that were 
deemed invalid or missing. In certain instances of 
data, the '?' symbol is seen instead of numerical 
values. The incorporation of absent values inside the 
dataset is deemed unacceptable and should not be 
disregarded. Furthermore, the non-numeric values 
were substituted with the mean of the 
corresponding variables for the power load 
measurement from the preceding day. Ultimately, 
the dataset underwent resampling at an hourly 
interval, wherein the meter readings recorded at 
minute intervals were aggregated to derive a single 
representative value for each hour. The “fillna()” 
Python method was employed to achieve this 
objective, resulting in the creation of a sanitized 
dataset. The dataset underwent subsequent cleaning, 

recording, and indexing procedures based on date-
time values to enhance its usability for subsequent 
analysis and research purposes. 

3.3. System design 

The topic being discussed refers to the domain of 
system design. The technique encompasses a series 
of procedures, and the comprehensive procedure of 
system design is depicted in Fig. 1. The methodology 
involves the selection of time-series parameters or 
columns from the dataset, the use of data re-
sampling techniques, and the training of a model. 
The subsequent section provides a comprehensive 
explanation of the dataset.  

The initial dataset was imported, and parameters 
or features derived from time-series data were 
acquired. The assessment was undertaken in order 
to ascertain the relative importance of each attribute 
as indicated by the time-series data. The dataset was 
subjected to resampling using time-series features 
that demonstrate a significant level of statistical 
significance. Subsequently, the dataset that 
underwent rigorous data cleaning and resampling 
procedures was employed to train the data model 
using three distinct approaches: MLR, linear 
regression, and gradient boosting regressor. 

The training dataset consisted of the initial 80% 
of the data, while the remaining 20% was designated 
as the test dataset. The selection of the loss function 
was made based on an evaluation of the 
methodologies utilizing performance indicators, 
including mean absolute error (MAE), mean squared 
error (MSE), and root mean squared error (RMSE). 
The application of the root mean square error 
(RMSE) is utilized to quantify the disparities 
between each predicted value and its matching 
observed value. In the realm of time-series data 
analysis, it is feasible to develop models that 
encompass both dependent and independent 
variables. The main aim of these models is to 
generate a linear equation that accurately represents 
the fundamental connection between these 
variables. The hypothesis posits the presence of a 
linear correlation concerning the variables x and y, 
whereby the value of y is contingent upon the value 
of x. The mathematical description of the equation is 
as follows: the variable 'd' represents the y-intercept, 
while the variable 'e' represents the weight allocated 
to the parameter x.  

The equation can be expressed in the form of 𝑦 =
𝑑0 + (𝑑0. 𝑥), where y represents the dependent 
variable, d_0 is the initial value, and x signifies the 
independent variable. In the training phase of a 
regression-based model, several values of 
independent variables are utilized to evaluate the 
predictive capacity of the dependent variable. The 
model under consideration is frequently known as 
the MLR model. The dataset utilized for predicting 
home energy usage comprises the data attributes of 
submetering_1, submetering_2, and submetering_3. 
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Fig. 1: Proposed model (RPLPM) of residential power consumption prediction in smart grids using gradient boosting, linear 

regression, and LSTM interchangeable machine 
 

The equation governing MLR can be expressed in 
the following manner, and the equation can be 
expressed in the form of, 
 
𝑦 = 𝑑0 + 𝑒1𝑥1 + 𝑒2𝑥2…+ 𝑒𝑛𝑥𝑛 
 

The system configuration for electricity load 
forecasting can further be expressed as  
 
𝐸𝐿𝑜𝑎𝑑 = 𝛽0 + 𝛽1𝜆1 + 𝛽2𝜆2 + …+ 𝛽𝑛𝜆𝑛 + 𝜀 
 

where, 𝐸𝐿𝑜𝑎𝑑  represents the electricity load, 
𝜆1, 𝜆2, … , 𝜆𝑛 are features, and 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑛  are 
coefficients. During training, MLR aims to minimize 
the total sum of squared variances between 
predicted and actual values. 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝐸𝐿𝑜𝑎𝑑𝑖 − (𝛽0 + 𝛽1𝜆1𝑖 + 𝛽2𝜆2𝑖 +
𝑁
𝑖=1

…+ 𝛽𝑛𝜆𝑛𝑖 + 𝜀))
2

  

 

where, ε is the error term. The coefficients are 
estimated using the least squares method. 

Intelligent strategies include the amalgamation of 
multiple base classifiers in order to form a 
committee. The efficacy can be significantly 
enhanced in comparison to a classifier operating at 
its initial state (Bishop, 2006). The core principle 
underlying boosting is the iterative construction of 
new models, which are subsequently combined or 
ensemble. In a particular iteration, a recently 
produced and less powerful learner model is utilized 
for the purpose of training, taking into account the 
faults of all previously trained ensemble models. The 
procedure for generating a sequential model adheres 
to a methodology comparable to other boosting 

procedures and is also extended to facilitate the 
optimization of a differentiable loss technique 
(Bishop, 2006). The utilization gradient descent 
algorithm is employed to tackle the purpose of 
minimizing a specified objective function, leading to 
the development of a predictive model consisting of 
a set of weak predictive models represented by 
decision trees. Each successive forecast enhances the 
precision of its previous iteration by considering the 
residual error. The significance of the method lies in 
its usefulness for addressing issues in both the 
classification and regression domains (Bishop, 
2006). Supervised learning methodologies are 
specifically designed to minimize a predetermined 
loss function by iteratively adjusting the parameters 
of the model. The MSE is commonly employed as a 
loss function in many applications. The fundamental 
goal of the model is to generate forecasts that 
minimize the MSE. The equation can be rephrased in 
a more scholarly manner as follows: The equation 
can be reformulated in a more scholarly fashion as 
follows: 
 

𝑦𝑖
𝑝
= 𝑦𝑖

𝑝
+ 𝑎.

𝜕 ∑(𝑦𝑖 − 𝑦𝑖
𝑝
)
2

𝜕𝑦𝑖
𝑝  

 

In the given framework, the symbol α is employed 
to denote the learning rate, whereas the term 
∑(𝑦𝑖 − 𝑦𝑖

𝑝
) signifies the summation of residuals. The 

model, denoted as RPLPM, is depicted in Fig. 1. The 
process is comprised of two distinct stages: The 
primary training stage and the subsequent validation 
stage. The methods described in this study report 
had three distinct tiers, specifically the input layer, 
the output layer, and a hidden layer. The utilization 
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of extreme ML has facilitated the integration of 
backpropagation, a methodology that incorporates 
various techniques for error computation, including 
feedforward, weight initialization, and 
backpropagation itself. The subsequent step involves 
the adjustment of weight and bias settings. The 
hidden layer consists of multiple instances of 
regression trees, each equipped with an activation 
function denoted as 𝑓(𝑧), aiming to minimize the 
square loss. The incorporation of an extra regression 
tree model, denoted as "𝑤𝑙," into the existing model 
F results in an improved prediction, which may be 
expressed as the sum of 𝑓(𝑧) and 𝑤𝑙(𝑧). The 
evaluation of model correctness is conducted using 
the "Miss rate" criterion and the RMSE statistic. The 
results imply that the gradient-boosting regressor 
reveals greater performance in contrast to the MLR 
model with regard to the training RMSE. The input 
layer and hidden layer of the proposed model can be 
characterized as having a gradient-based nature. 
Gradient Boosted Regression Trees (GBRT) 
regressors are a nonparametric regression method 
that employs input 𝑧𝑖  to produce predictions 𝑦𝑖 , 
according to the provided formulation.  

The predicted value 𝑦 
𝑖
 can be represented as the 

multiplication of the function 𝐹𝑀(𝑧𝑖) with the sum of 
the weights 𝑤𝑀(𝑧𝑖) for m ranging from 1 to M. In the 
context of boosting frameworks, the term "𝑤𝑙𝑀" 
commonly represents weak learners, which are 
estimators. Gradient Boosting Regression Trees 
(GBRT) employ decision tree regressors as weak 
learners with a predetermined magnitude. The 
parameter "n-estimators" is associated with the 
constant "M." The refinement of system 
configuration utilizing Gradient Boosting optimizes 
electricity load forecasting by sequentially adding 
weak learners. The algorithm minimizes the negative 
gradient of a loss function, combining predictions of 
multiple decision trees. The iterative process 
updates the model: 
 
𝐸𝐿𝑜𝑎𝑑𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + Υ𝑚ℎ𝑚(𝑋) 
 

where, 𝐸𝐿𝑜𝑎𝑑𝐹𝑚(𝑋) is the final model, Υ𝑚  is the 
optimal step size, and ℎ𝑚(𝑋) is the weak learner. The 
goal is to minimize:  
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐿(𝑦𝑖 , 𝐸𝐿𝑜𝑎𝑑𝐹𝑚−1(𝑋) + Υ𝑚ℎ𝑚(𝑋𝑖))
𝑁

𝑖=1
 

 

The final prediction is a weighted sum of 
individual tree predictions, ensuring accurate and 
robust electricity load forecasts. 

LSTM networks, as part of recurrent neural 
networks (RNNs), capture temporal dependencies 
for electricity load forecasting. For each time step t, 
LSTM computes forget (Gt), input (It), and output (Yt) 
gates, as well as cell states (St) and hidden states (Ht

). The notations employed as At : Input at time t, Dt : 
Hidden state at time t, St: Cell state at time t, Gt, It, Yt : 
Forget, input, and output gates at time t, W, U, B: 
Weight matrices and bias terms, ϕ: Sigmoid 
activation function and tanh: Hyperbolic tangent 

activation function. These are determined by the 
equations:  
 
𝐺𝑡  =  Ø(𝑊𝑓𝑜𝑟𝑔𝑒𝑡  . 𝐴𝑡  +  𝑈𝑓𝑜𝑟𝑔𝑒𝑡  . 𝐷𝑡−1 + 𝐵𝑓𝑜𝑟𝑔𝑒𝑡) 

𝐼𝑡  =  Ø(𝑊𝑖𝑛𝑝𝑢𝑡 . 𝐴𝑡  +  𝑈𝑖𝑛𝑝𝑢𝑡  . 𝐷𝑡−1  +  𝐵𝑖𝑛𝑝𝑢𝑡) 

�̃�𝑡 =  𝑡𝑎𝑛ℎ (𝑊𝑐𝑒𝑙𝑙  . 𝐴𝑡  +  𝑈𝑐𝑒𝑙𝑙  . 𝐷𝑡−1  +  𝐵𝑐𝑒𝑙𝑙) 
𝑆𝑡  =  𝐺𝑡 . 𝑆𝑡−1  +  𝐼𝑡  . �̃�𝑡  

𝑌𝑡   =  Ø(𝑊𝑜𝑢𝑡𝑝𝑢𝑡 . 𝐴𝑡  +  𝑈𝑜𝑢𝑡𝑝𝑢𝑡 . 𝐷𝑡−1 + 𝐵𝑜𝑢𝑡𝑝𝑢𝑡 ) 

𝐷𝑡  =  𝑂𝑡 . 𝑡𝑎𝑛ℎ (𝑆𝑡) 
 

LSTMs, trained using backpropagation through 
time, can capture sequential dependencies, enabling 
accurate and dynamic predictions of electricity 
consumption over time. 

Blockchain technology is a method of storing data 
that makes it difficult to alter, hack, or cheat. When a 
transaction occurs on the blockchain, it is recorded 
in the ledgers of every participant in the network. 
Each device in the blockchain network has a copy of 
the blockchain's ledger.  

In this research, blockchain technology over the 
cloud is integrated with intelligent machines to 
improve the accuracy of electricity prediction 
models. As shown in Fig. 1, the cloud is blockchain-
enabled, and optimized model weights are stored in 
a secure environment. 

Integrating ML models with blockchain 
technology involves using permissioned smart 
contracts to securely store and manage optimized 
weights of AI models used for electricity forecasting. 
This blockchain-based approach ensures 
reproducibility and technical rigor by providing a 
tamper-proof ledger of model configurations. The 
secure storage of weight configurations on the 
blockchain facilitates validation processes and 
allows seamless integration with other systems, 
enhancing the reliability of electricity forecasting in 
smart grids. 

3.4. Co-relational analysis 

Co-relational analysis is a statistical tool utilized 
to examine the relationship between two or more 
variables. The analysis of correlations between 
variables in the energy usage dataset was conducted 
using the Python Pandas package. The 
aforementioned strategy is widely acknowledged as 
a prominent methodology for assessing correlations. 
The methodology utilized in this study entails the 
computation of pair wise correlations among all 
factors or traits encompassed within the dataset. The 
process establishes a linear relationship between 
variables within a dataset and computes the 
correlation coefficient to quantify the degree of 
interaction between two columns or parameters. 
The coefficient demonstrates a range of values from 
1 to -1 on a unitary scale. A value of 1 indicates a 
complete correlation between a parameter and itself, 
demonstrating a strong positive relationship. 
Conversely, a correlation value approaching zero 
suggests a diminished association.  

However, the existence of a number representing 
unity, irrespective of its polarity, indicates a more 
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pronounced positive or negative relationship 
between two columns or parameters within the 
dataset. Fig. 2 illustrates the relationship between 
energy use trends. The primary focus of prediction 
lies in the variable of global_active_power. The 
analysis of the correlation between these metrics 
and other variables enables the conclusion that a 
negative correlation is present with voltage. A 
significant correlation exists between the global 
active power and the individual sub-meters. 
Moreover, a study inquiry was undertaken utilizing a 

system of daily data re-sampling granularity, as 
depicted in Fig. 3. A negative correlation has been 
established between the unutilized energy, namely 
the global reactive power, and the global active 
power. In prospective studies, it is recommended to 
control for the variables of voltage and global 
reactive power while developing predictions for 
global active power. The input parameters will 
provide the current time in hours, but the output 
parameter will denote the global_active_power. 

 

 
Fig. 2: Energy parameter correlation matrix at hourly intervals 

 

 
Fig. 3: Energy parameter correlation matrix at daily intervals 

 

3.5. Exploratory data analysis 

Exploratory data analysis (EDA) is a key 
methodology utilized in the fields of statistics and 
data science. The procedure involves performing an 

initial analysis and examination of a dataset to 
obtain insights and understand its fundamental 
characteristics. 

The practice of EDA is a fundamental 
methodology employed to conduct preliminary 
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investigations on a given dataset. This facilitates the 
utilization of preliminary data analysis to ascertain 
the core attributes, detect patterns, or find 
deviations present within the data. The 
comprehension of dataset properties can be 
achieved by analyzing temporal data patterns. The 
components of the dataset that have been analyzed 
are as follows. The identification of patterns within 
datasets is a fundamental method within the 
framework of EDA. The aforementioned tool serves 
as a visual aid that aids in the identification of 
significant patterns and the highlighting of variable 
characteristics within a specific dataset. Line charts 
were developed with the purpose of visually 
representing the attributes of a given dataset. 
Multiple methodologies were employed to achieve 
the desired objective for the provided dataset. Fig. 4 
illustrates the dataset that has been provided to 
represent the whole set of meter measurements, 

which have been subjected to resampling on a 
monthly basis. The graphical representation depicts 
the monthly energy use over a span of four years, 
where each data point corresponds to a 48-month 
timeframe. There is a notable discrepancy in energy 
consumption throughout several months. The 
analysis of energy consumption patterns across 
many months can provide useful insights into 
understanding external influences, such as 
temperature swings. The winter months are 
distinguished by lower temperatures relative to the 
summer months, leading to an increased need for 
and utilization of air-conditioning systems in the 
summer season. The data was visually represented 
through a graph to illustrate the measurements in 
meters. These measurements were obtained through 
the iterative process of daily re-sampling. The 
presented picture encompasses a temporal duration 
of 1442 days.  

 

 
Fig. 4: Monthly-based data set features 

 

Fig. 4 illustrates the fluctuation in energy 
consumption over a range of days during the month. 
The utilization of this visualization enables the 
analysis of trends within the characteristics of the 
dataset. Additional analysis can be conducted to 
examine the influence of both summer and winter 
seasons on the dataset. Moreover, it is noteworthy to 
notice that various variables present in the dataset 
have a less pronounced association with the primary 
variable of global active power. To accurately depict 
the measurements of meter data, the dataset 
illustrated in Fig. 5 was subjected to resampling at 
regular hourly intervals. The dataset, spanning the 
duration of four years, resulted in a cumulative total 
of 34,589 hours. The variable "sub_metering_3" 
exhibits a more pronounced correlation with 
"global_active_power," indicating its potential to 
effectively represent the energy consumption of 
climate control equipment used for air conditioning 
and heating during the documented period. The 
assessment of global reactive power involves the 

calculation of surplus power generated by a unused 
residential system. In order to enhance 
computational efficiency and expedite model testing, 
we implemented an hourly resampling technique, 
resulting in a reduction in the dataset size from 
2,075,259 minutes to 34,589 hours. 

A visual representation of the distribution of 
global active power consumption across distinct 
hours of the day is shown in Fig. 6. The horizontal 
axis (x-axis) is dedicated to the hours, delineating 
the various time intervals, while the vertical axis (y-
axis) conveys the corresponding global active power 
consumption values. Through this visualization, we 
gain a comprehensive insight into the fluctuations 
and patterns in global active power consumption 
over the course of the day. Analyzing Fig. 7 allows for 
the identification of potential trends and variations 
in power usage, aiding in the interpretation of the 
underlying dataset and facilitating a more nuanced 
understanding of energy consumption patterns. 
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Fig. 5: Daily-based data set features 

 

 
Fig. 6: Hourly-based data set features 

 

 
Fig. 7: Hourly power consumption 

 

3.6. XAI integration 

In order to offer a thorough comprehension of the 
decision-making mechanisms utilized by energy 
demand forecasting models for smart home users, 
our suggested methodology incorporates the 
integration of XAI and consists of three key 
components. The framework comprises three main 
components: 

 A model for prediction and forecasting,  
 A generator for reasoning and explanation, and  
 An interface that facilitates collaboration and 

provides explanations to end-users in a manner 
that prioritizes human needs and preferences.  

 
The fundamental components of the XAI 

integrated system are illustrated in Fig. 8. The 
primary component utilizes a pre-trained ML model 
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to provide predictions and projections for 
forthcoming energy demands. The estimates 
presented in this study are derived from pre-
processed measurements obtained from individual 
appliances. The following stage of the study involves 
an analysis of the underlying factors that influence 
the decision-making process and provides 
justifications for the anticipated conclusion, 
specifically about the forecasted energy 
consumption for the upcoming week. Moreover, our 
collaborative interface will offer and demonstrate 
explanations that prioritize human perspectives, 
aiming to enhance users' comprehension of the 
underlying rationales behind specific actions. The 
initial element of our system, referred to as the 
forecasting model, comprises a pair of LSTM layers 
or Gradient Boosting layers, for example, 
subsequently succeeded by a solitary completely 
linked layer. 

A dense layer is employed to obtain estimations 
pertaining to the aggregate energy consumption of 
residential units. The model is trained using the 
Mean-Squared-Error (MSE) as the selected cost 
function, and the Adam optimizer is employed for 
this purpose. The researchers performed tests 
utilizing a publicly accessible benchmark dataset 

that specifically centers on the consumption of 
electric energy within residential families. The 
dataset was gathered over a span of 47 months, 
specifically from December 2006 to November 2010. 
The dataset comprises the aggregated global active 
power consumption of a residential unit measured in 
kilowatts. It also includes sub-metering readings for 
specific areas like the kitchen and laundry room, 
recorded at one-minute intervals. The term 
"submetering_1 data" pertains to the quantification 
of active power usage, specifically in the context of 
several domestic devices like a dishwasher, an oven, 
and a microwave. The total power consumption of 
the laundry room is comprised of various appliances, 
specifically a washing machine, a tumble-dryer, a 
refrigerator, and a light source. The term 
"submetering_2" is used to refer to a group of 
appliances. Furthermore, the measurement of power 
usage for both an electric water heater and an air-
conditioner is denoted as submetering_3. The values 
are denoted in kilowatts. In order to do data pre-
processing, it is crucial to recognize the presence of 
missing values and null values. The minimax 
algorithm is a widely employed decision-making 
approach in the fields of game theory and AI. 
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Fig. 8: Electricity load prediction system in smart grids integrated with XAI 

 

Normalization is a regularly employed data pre-
processing technique that entails the adjustment of 
dataset values to conform to a specified range, 
typically [0, 4]. Subsequently, we modify the 
anticipated numerical value to a distinct magnitude 
in order to improve its visual depiction in its initial 
unit. In order to provide a clearer understanding of 
the projected energy usage, a combination of Local 
Interpretable Model Agnostic Explanations LIME and 

Shape Additive Explanation (SHAP) (Lundberg and 
Lee, 2017) methodologies was utilized. SHAP is a 
technique that is based on game-theoretic concepts. 
The LIME methodology is employed to estimate the 
SHAP values by dissecting the projected output of 
the model. The decomposition process is achieved 
through the back-propagation of the individual 
contributions of each neuron to all aspects. After 
doing a thorough examination of the data, it may be 
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inferred that the acquired findings demonstrate 
statistical significance. 

4. Results and discussion 

This article presents a comprehensive analysis of 
the experimental findings, focusing on the evaluation 
of the efficacy of our prediction methodology in 
forecasting the performance of home load. The 
assessment is conducted using a dataset that has 
been expressly collected for the purpose of this 
research. The projected values for the dataset on 

residential power use are presented in Fig. 9(a). The 
prediction of global active power was conducted 
over the initial 700-hour period. The prediction was 
calculated for duration of 1500 hours, as depicted in 
Fig. 9(b), encompassing the time range from 22000 
to 20500 hours. The data presented in Fig. 9(c) 
underwent a modification process, resulting in a 
revision of the initial estimate from 3000 hours to 
7000 hours. The evident effectiveness of our 
prediction engine in producing high-quality forecast 
outcomes is notable.  

 

 
(a) 

 
(b) 

 

 
Fig. 9: Predictive results on household dataset with (a) 700 hours, (b) 1500 hours, and (c) 5000 hours 

 

The anticipated values for global_active_power, 
which pertain to electricity consumption, are 
depicted in Fig. 10. These values have been derived 

using the MLR model. A discrepancy is evident 
between the anticipated values and the average of 
the linear graph.  
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Fig. 10: Linear representation of GBR predictions on the dataset 

 

Prediction outcomes are illustrated in Fig. 11 for 
global_active_power obtained by employing a 
gradient-boosting regressor. The extent to which the 
expected values align with the central axis of the 
linear line has a direct impact on the production of 

favorable outcomes by the proposed model. The 
accuracy of forecasting residential electricity usage 
is considered acceptable with respect to the amount 
of training data accessible. 

 

 
Fig. 11: Linear representation of LSTM predictions on the dataset 

 

Table 1 presents all the results obtained from the 
experiment. The computations for the MAE, MSE, 
and RMSE were executed. The generated prediction 
values from models utilizing MLR and gradient 
boosting regressor were subjected to computational 
analysis. In order to enhance computational 

efficiency and expedite the generation of results, the 
dataset underwent resampling to a temporal 
resolution of one hour. When both models are 
applied to the same dataset, it can be observed that 
the gradient-boosting regressor model demonstrates 
superior accuracy compared to MLR. 

 
Table 1: Performance metrics for implemented prediction methods 

 RPLPM (MLR) RPLPM (GBX) RPLPM (LSTM) 
MAE 0.0244 0.0222 0.0054 
MSE 0.0015 0.0012 0.0020 

RMSE 0.0386 0.0350 0.0079 

 

Table 2 provides a comparison of performance 
metrics for electricity load prediction among 
different predictive models. The Root MSE is used as 
the evaluation metric. The RPLPM (GBX) model, 

implemented with a gradient boosting regressor, 
demonstrates superior performance with an MSE of 
0.0012. In contrast, other models, including the CNN-
LSTM Model, Conditional RBM Model, and LSTM 
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Model, exhibit higher MSE values of 0.2762, 0.7211, 
and 0.5420, respectively. A lower MSE indicates 
better predictive accuracy, highlighting the 

effectiveness of the RPLPM (GBX) model in 
comparison to the referenced predictive models. 

 
Table 2: Performance metrics comparison with other predictive models 

 RPLPM (GBX) CNN-LSTM model (Hardas et al., 2024) Cond. RBM model (Mocanu et al., 2016) LSTM model (Wang et al., 2019) 
MSE 0.0012 0.2762 0.7211 0.5420 

 

To accurately forecast and assess patterns of 
household energy use and ascertain the 
determinants of such consumption, it is important to 
initially gather comprehensive data from multiple 
sources that possess the ability to impact a 
residence's energy utilization. The datasets have 
been subjected to pre-processing and structuring to 
enhance the efficacy of ML model training. The 
project involves the implementation of a training 
procedure utilizing specialized black box models. In 
order to enhance comprehension of the elements 
that influence energy consumption in residential 
environments, an interpretable AI method known as 
SHAP is employed. This methodology facilitates the 
identification of the fundamental factors 
contributing to energy consumption. In light of the 
aforementioned concerns, it is imperative to 
facilitate the empowerment of diverse stakeholders 
to foster the formulation of policies that prioritize 
the optimization of energy utilization.  

The process of calculating the contribution 
importance score for each feature entails evaluating 
the disparity between the activation level of each 
neuron and its associated reference activation level. 
Following this, visualization techniques are 
employed to portray the unique contributions of 
individual attributes across a specified timeframe for 

a particular projected choice. This study examined a 
range of sub-metering data as potential variables.  

The assessment of the model's predictive 
performance is carried out by employing two 
measures, namely Root-Mean-Squared Error (RMSE) 
and Mean Absolute Error (MAE), which yield values 
of 0.07 and 0.05, respectively. The evaluation of the 
performance's effectiveness is conducted through a 
comparative analysis with the performance achieved 
by Kim and Cho (2021) on the identical dataset. The 
primary objective of this study is to elucidate the 
anticipated outcomes pertaining to energy usage. 
The visual representation of the explanation can be 
observed in Fig. 12 and Fig. 13, which employs an 
area plot. The graphic clearly illustrates the relative 
impacts of multiple variables, particularly the energy 
use in different areas of the household. The main aim 
of our graphic is to illustrate the relative 
contributions made by various regions of the house 
in terms of historical energy use. The analysis of the 
visual depiction suggests that the Sub_metering_3 
variable exerted a significant influence on the total 
calculation of energy use. The concept of 
"Sub_metering_3" refers to the practise of 
quantifying and monitoring the energy consumption 
of individual entities inside a larger system. 

 

 
Fig. 12: EAI explanations bar plot electricity utilization by a different area to overall load prediction system integrated with 

XAI 
 

 
Fig. 13: EAI explanations beeswarm plot for importance score of electricity utilization by different areas to overall load 

prediction system in smart grids integrated with XAI 
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The air conditioner and water heater are 
regarded as essential household appliances. The 
effects of the Sub_metering_3 contribution 
commenced with the highest impact. The provided 
image also depicts the impact of supplementary 
characteristics over a span of time. The purpose of 
these explanations is to increase household 
members' awareness of their energy use patterns. 
Furthermore, the achievement of trust and 
transparency in AI models can be accomplished by 
the usage of the aforementioned reasoning 
processes.  

Replacing internal factors such as 
Sub_metering_1, Sub_metering_2, and 
Sub_metering_3 with external factors like weather 
conditions, pressure, cloud cover, and user behavior, 
or vice versa, enables a more comprehensive 
analysis of the variables impacting global active 
power consumption. By treating both internal and 
external factors uniformly in the technological 
treatment, the goal is to reveal meaningful insights 
into their correlations and relative importance. This 
approach, whether it involves replacing internal 
factors with external ones or vice versa, not only 
enhances the transparency of predictions but also 
contributes to responsible AI modeling. 
Understanding the intricate interplay between both 
sets of variables can lead to more accurate and 
interpretable predictions, fostering trust in the 
model's outcomes. Adopting a unified methodology 
for analyzing and incorporating these factors, the 
research creates a more holistic and reliable 
framework for forecasting electricity usage in smart 
grids. 

5. Conclusions 

The present investigation encompassed the 
creation and execution of a residential power load 
prediction system. The introduction of the RPLPM 
model was aimed at achieving this objective by 
employing ML approaches. The application of feature 
extraction and associated feature selection 
techniques in predictive modeling has demonstrated 
a significant decrease in computing time. The 
utilization of training data greatly improves the 
accuracy of predictions and significantly raises the 
efficiency of the system, hence facilitating the 
development of a high-quality predictive model. The 
most favorable outcomes are observed when the 
data is resampled at an hourly frequency. The 
superior performance of the gradient-boosting 
regressor over MLR is evidenced by the lower RMSE 
attained during the training phase. Nevertheless, our 
contention is that GBR should not be considered a 
viable option for MLR. However, it is crucial to 
recognize that the simultaneous utilization of GBR, 
LSTM, and MLR can be employed to attain a 
harmonious equilibrium between time and accuracy. 
The research further investigates the concept of 
sustainable smart cities and its relationship with ML 
and XAI. Our main focus revolves around the 
application of SHAP approaches to enhance the 

interpretability of ML models in the context of 
sustainable smart cities. This paper presents a 
comprehensive examination of current research 
endeavors focused on exploring the difficulties 
associated with developing a transparent and 
human-centered system that can predict and 
forecast energy consumption in smart homes. The 
ultimate goal of this research is to bring advantages 
to the broader user community. A novel 
methodology has been suggested for the production 
of explanations, which combines the methodologies 
of LIME and Shapely Additive Explanations. The aim 
of this technique is to offer coherent and 
comprehensible explanations that enhance the 
comprehension of predictions produced by a 
forecasting model employing LSTM. There is a 
theory suggesting that the incorporation of a user-
centered prototyping technique, along with a variety 
of explanatory visualizations, could potentially 
improve the understanding of the distinct user 
requirements within the energy sector. The 
interchangeability of internal and external factors is 
pivotal for gaining an understanding of the dynamics 
affecting energy consumption, ultimately 
contributing to the development of more robust and 
insightful predictive models for smart grid 
environments. The primary aim of this methodology 
is to extract essential insights and gather necessary 
specifications for the development of a collaborative 
and human-centric system designed to forecast 
energy consumption. The system places significant 
importance on its ability to offer justifications for its 
forecasts. As a result, implementation of the system 
will enhance transparency, fairness, and 
responsibility for the individuals utilizing it. This 
research places significant importance on its ability 
to offer justifications for its forecasts, thereby 
enhancing transparency, fairness, and responsibility 
for the individuals utilizing it. The article aims to 
contribute to recent advances in multiple criteria 
decision-making problems, including electricity 
prediction, and foster discussions on intelligent 
decision-making within the realm of sustainable 
smart cities. 
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