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The main goal of this study is to address the ongoing problem of low 
academic performance in higher education by using machine learning 
techniques. We use a dataset from a higher education institution that 
includes various information available at student enrollment, such as 
academic history, demographics, and socio-economic factors. To address this 
issue, we introduce a new method that combines the Slime Mould Algorithm 
(SMA) for efficient feature selection with a Forest-Optimized Neural Network 
(FO-NN) Classifier. Our method aims to identify students at risk of academic 
failure early. Using the SMA, we simplify the feature selection process, 
identifying important attributes for accurate predictions. The Forest 
Optimization technique improves the classification process by optimizing the 
neural network model. The experimental results of this study show that our 
proposed method is effective, with significant improvements in feature 
selection accuracy and notable enhancements in the predictive performance 
of the neural network classifier. By selecting a subset of relevant features, 
our approach deals with high-dimensional datasets and greatly improves the 
quality and interpretability of predictive models. The innovative combination 
of the SMA and the FO-NN classifier increases accuracy, interpretability, and 
the ability to generalize in predicting student performance. This work 
contributes to a more effective strategy for reducing academic 
underachievement in higher education. 
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1. Introduction 

*Predicting students' learning styles and academic 
performance is a significant challenge for higher 
education institutions. The availability of large-scale 
data provides an opportunity to use machine 
learning for accurate predictions and personalized 
student support (Romero and Ventura, 2020). By 
analyzing academic records, demographics, socio-
economic factors, and student engagement data, 
machine learning models can identify patterns that 
influence student success and the risk of academic 
failure (Lampropoulos, 2023). 

Machine learning, which includes classification 
algorithms, regression models, and clustering 
methods, helps create predictive models. These 
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models can predict student needs and improve how 
resources are distributed (Batool et al., 2023; 
Andrade et al., 2021; Khan and Ghosh, 2021; 
Mangina and Psyrra, 2021; Tsiakmaki et al., 2020). 
Early warning signs of academic difficulties or 
dropouts can also be identified through historical 
data analysis, allowing proactive interventions (Hall 
et al., 2021; Xiao et al., 2022). Collaboration among 
educators, administrators, and data scientists is 
crucial for interpreting results and implementing 
interventions effectively. This research aims to 
address the following questions: 

 
- Can machine learning classification models 

effectively predict the challenges students may 
face in completing their degrees at the Polytechnic 
Institute of Portalegre (IPP) in Portugal? 

- How does combining the Slime Mould Algorithm 
(SMA) for feature selection with a Forest-
Optimized Neural Network (FO-NN) Classifier 
affect the accuracy, interpretability, and 
generalization capability of student performance 
prediction models? 
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Initially, we employed commonly used algorithms 
for student performance classification, including 
Logistic Regression (LR), Support Vector Machines 
(SVM), Decision Trees (DT), and Random Forests 
(RF) (Hamoud, 2016). 

Our key contribution lies in proposing an 
innovative approach that combines the SMA for 
feature selection with an FO-NN classifier for student 
performance prediction. The SMA efficiently 
explores the feature space, identifying informative 
attributes, while Forest Optimization enhances 
classification by optimizing the neural network 
model, improving accuracy, interpretability, and 
generalization (Li et al., 2020; Orujpour et al., 2020). 
This novel approach addresses the challenges of 
high-dimensional datasets and complex 
relationships within student performance data. 

By conducting experiments on a 36-attribute 
dataset, we aim to provide compelling evidence of 
the methodology's efficacy in addressing the stated 
research questions. It advances feature selection 
accuracy and classification performance compared 
to existing methods, offering educational institutions 
a dependable tool for data-informed decisions and 
interventions. Our approach navigates the 
complexities of student performance analysis, 
providing clarity and confidence in decision-making. 

2. Literature review 

Student performance analysis is a vital area of 
research that aims to understand and predict factors 
influencing student outcomes in educational settings. 
This literature review provides an overview of key 
studies and trends in student performance analysis, 
highlighting methodologies, influential factors, and 
the impact of interventions. 

The research conducted by the authors of Phan et 
al. (2023) centers around the analysis of an 
extensive dataset sourced from a Canadian 
university, encompassing 38,842 students. The 
primary objective of the study is to utilize RF as a 
machine-learning model for predicting academic 
success. The accuracy achieved for program 
completion prediction is 79% overall. Notably, the 
accuracy for students who successfully completed 
their program reaches 91%, indicating a relatively 
high success rate in program completion prediction. 
However, a limitation of this approach is that it may 
not account for all individual variations and factors 
influencing student success, potentially leading to 
misclassifications in specific cases. 

In a separate study, the authors of Smadi et al. 
(2023) aimed to identify profiles of freshmen who 
are likely to encounter significant challenges in 
completing their first academic year. They work with 
a dataset comprising information from 6,845 
students and employ conventional classification 
methods, including RF, LR, and Artificial Neural 
Networks (ANN). While this approach offers valuable 
insights, it may not capture the complexities of 
students' academic journeys and may overlook some 
unique factors contributing to their challenges. 

Another study conducted by Miguéis et al. (2018) 
focused on predicting overall academic performance 
based on available data at the end of students' first 
year of academic pursuit. The prediction models 
developed in this research employ a dataset 
comprising 2,459 students from a European 
Engineering School. While this approach provides 
early predictions, it may not consider the evolving 
dynamics of student performance over time and the 
potential for academic improvement beyond the first 
year. 

In a comprehensive review (Pojon, 2017) of 
educational data mining for student performance 
prediction, various techniques are discussed along 
with their applications. These techniques 
incorporate a wide range of factors, including 
demographic and social aspects, as well as academic 
measures, such as assessments from first-year 
courses. Machine learning algorithms explored in the 
review include SVM, Naïve Bayes, DT, RF, Bagging 
DT, and Adaptive Boosting DT. The results indicate 
that RF and Adaptive Boosting DT demonstrate 
superior performance among the tested algorithms, 
achieving an overall accuracy of 96%. Nevertheless, 
it's essential to recognize that the choice of 
algorithm may not universally apply to all 
educational settings, and some situations may 
require a more tailored approach. 

The authors of Mutrofin et al. (2019) conducted a 
study focusing on predicting dropout within a 
dataset comprising 21,654 students. The research 
investigates various class balancing strategies and 
conventional classification methods to enhance 
prediction accuracy. Class balancing becomes crucial 
when dealing with imbalanced datasets, where one 
class (in this case, dropout) is significantly 
underrepresented compared to the other class (non-
dropout). The authors of Sha et al. (2022) compared 
different class balancing techniques, such as random 
under-sampling, random oversampling, and 
synthetic oversampling. Among the methods tested, 
the synthetic minority oversampling technique 
(SMOTE) (Alex et al., 2022) yields the most favorable 
outcomes. However, it's important to note that class 
balancing techniques can introduce certain biases 
and may not entirely eliminate the misclassification 
of minority class instances. 

Our proposed research work addresses several of 
the limitations observed in the methods discussed in 
the literature review. While previous studies, such as 
those of Phan et al. (2023) and Smadi et al. (2023), 
achieved commendable accuracy in predicting 
student outcomes, they may not fully account for 
individual variations and unique factors influencing 
student success. In contrast, our innovative 
approach, which combines the SMA for feature 
selection with a FO-NN classifier, enhances feature 
selection accuracy, improving the precision of our 
predictive models. Moreover, earlier research, as 
exemplified by Miguéis et al. (2018), often focused 
on predicting student performance based on initial-
year data, potentially overlooking the evolving 
dynamics of student success over time. In contrast, 
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our approach employs a comprehensive dataset of 
36 attributes to provide a holistic view of student 
performance, allowing for more accurate predictions 
and tailored interventions. Additionally, the class 
balancing strategies discussed by Mutrofin et al. 
(2019) and the various methods explored in Pojon 
(2017) demonstrated notable results but may 
introduce biases and limitations in handling 
imbalanced datasets. Our proposed approach 
effectively tackles the challenges associated with 
high-dimensional datasets and minimizes biases, 
offering improved accuracy, interpretability, and 
generalization capabilities for student performance 
prediction. Thus, our research work aims to rectify 

these limitations and provide educational 
institutions with a dependable tool for data-
informed decisions and interventions, ultimately 
contributing to a more effective strategy for 
mitigating academic underachievement in higher 
education. 

3. Materials and method 

Fig. 1 shows a block diagram for the proposed 
student performance prediction. The proposed 
approach in this paper makes several contributions 
to the field of student performance prediction: 

 

Student 
Performance 

Dataset

Feature Selection 
by Slime Mould 

Algorithm

Split Train and 
Test

Forest-Optimized 
Neural Network 

Classifier

 
Fig. 1: Proposed method for student performance classification 

 

 Integration of the SMA for Feature Selection: The 
paper introduces the use of the SMA for feature 
selection in student performance prediction. The 
SMA is a nature-inspired optimization algorithm 
that efficiently explores the feature space to 
identify the most relevant attributes. By 
incorporating SMA, the proposed approach 
addresses the challenge of high-dimensional 
datasets, enabling the selection of a subset of 
features that have the most significant impact on 
student performance. This improves the accuracy 
and interpretability of the predictive model. 

 FO-NN classifier: The paper combines the SMA 
with a FO-NN classifier for student performance 
prediction. This integration leverages the 
strengths of neural networks in capturing complex 
relationships within student performance data 
while also optimizing the classification model 
using Forest Optimization techniques. By 
optimizing the neural network model, the 
proposed approach enhances the predictive 
performance of the classifier and improves the 
accuracy of student performance prediction. 

 Improved Accuracy and Interpretability: By 
utilizing the SMA for feature selection and 
optimizing the neural network classifier, the 
proposed approach aims to improve the accuracy 
of student performance prediction. Selecting the 
most relevant features enhances the model's 
ability to capture the key factors influencing 
student outcomes. Additionally, the FO-NN 
classifier ensures that the model is optimized to 
make accurate predictions. The combination of 
these techniques leads to a more accurate and 
reliable prediction of student performance. 
Furthermore, the feature selection process 
improves interpretability by identifying the most 
important factors contributing to student 
outcomes. 

 Potential for Targeted Interventions: Accurate 
student performance prediction can facilitate 
targeted interventions to support students' 
academic progress. By identifying the key factors 
influencing student outcomes, educational 
institutions can develop tailored interventions and 
strategies to improve student performance. The 
proposed approach provides insights into the 
important features affecting student performance, 
enabling the design of effective interventions that 
address specific areas of improvement. 

 
The contribution of this paper lies in proposing 

an innovative approach that combines the SMA for 
feature selection and the FO-NN classifier for student 
performance prediction. This integration improves 
the accuracy and interpretability of the predictive 
model, enabling educational institutions to identify 
factors influencing student outcomes and implement 
targeted interventions for academic success. 

3.1. Dataset 

The dataset used in this research paper is sourced 
from the institutional records of undergraduate 
students who enrolled at the Polytechnic Institute of 
Portalegre in Portugal (Martins et al., 2021). Data 
collection methods involved the aggregation of 
diverse databases spanning academic years from 
2008/09 to 2018/2019. These databases 
encompassed students from various undergraduate 
disciplines, including agronomy, design, education, 
nursing, journalism, management, social service, and 
technologies. The integrity of the data was 
maintained through careful data preprocessing, 
which aimed to correct errors, address unexplained 
outliers, and manage missing values. During this 
phase, records that could not be accurately classified 
were carefully removed from the analysis. The 
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criteria for removing records were based on the 
most recent 3 or 4 academic years, depending on the 
length of the respective courses. As a result of this 
thorough preprocessing, the final dataset consisted 
of 3,623 records with 25 independent variables. 

The dataset encompasses a broad range of 
variables, incorporating demographic aspects such 
as age at enrollment, gender, marital status, 
nationality, address code, and special needs. It also 
considers socio-economic factors, including student-
worker status, parental qualifications, parental 
professions, parental employment status, student 
grants, and student debt. Moreover, variables related 
to the students' academic trajectory, such as 
admission grade, retention years in high school, 
preference order for the chosen course, and the type 
of course pursued during high school, are included. 
It's important to note that the academic information 
is limited to observable factors preceding 
registration, excluding internal evaluations 
conducted subsequent to enrollment. 

Each entry within the dataset is categorized into 
one of three groups: Success, Relative Success, or 
Failure, based on the duration taken by the student 
to attain their degree. Success denotes that the 
student accomplished their degree within the 
anticipated timeframe, while Relative Success 
indicates a delay of no more than three additional 
years. Conversely, Failure encompasses instances 
where students required more than three extra 
years to complete their degree or were unable to 
obtain it altogether. These classifications effectively 
represent three levels of risk: low-risk (Success), 
medium-risk (Relative Success), and high-risk 
(Failure). It's important to acknowledge that, despite 
the rigorous data preprocessing, the dataset may still 
carry certain biases and limitations inherent to 
institutional records and the data collection process. 

3.2. Feature selection using SMA  

The SMA serves as a nature-inspired optimization 
algorithm suitable for feature selection in student 
prediction datasets. SMA emulates the behavior of 
slime molds, which are single-celled organisms 
renowned for their aptitude to identify the shortest 
path between food sources. Here's a step-by-step 
guide on how to apply the SMA for feature selection 
in a dataset with 36 attributes: By employing the 
SMA on a student prediction dataset, a subset of 
features with substantial influence on student 
performance can be identified, thereby enhancing 
the accuracy and interpretability of predictive 
models. Hyperparameter Settings: The SMA lacks 
widely accepted standard hyperparameters, in 
contrast to machine learning algorithms with 
established parameter norms. This algorithm 
typically involves several essential parameters that 
can be adjusted according to a specific problem and 
dataset. These parameters encompass: 
 
 Number of Slime Mould Individuals (Agents): This 

parameter defines the quantity of individual slime 

mould entities within the population. It should be 
determined based on the dataset's size, with the 
potential need for experimentation to identify an 
optimal value. 

 Iteration Count: The number of iterations or 
generations the algorithm undergoes should be 
specified. A higher iteration count may result in a 
more comprehensive search but could potentially 
extend computational time. 

 Chemotactic Step Size: This parameter governs the 
distance an individual can cover in a single step 
during the chemotactic phase. Smaller step sizes 
may yield more precise yet slower convergence. 

 Evaporation Rate: Certain versions of SMA 
integrate an evaporation rate, which simulates the 
dissipation of pheromones or chemical signals left 
by the slime mould. The evaporation rate dictates 
the speed at which these signals dissipate. 

 Stop Criteria: A stopping criterion must be 
established for the algorithm. This criterion could 
entail a maximum number of iterations, a 
designated fitness level, or other conditions based 
on the specific problem. 

 Objective Function: The choice of a fitness function 
(objective function) should be aligned with the 
problem at hand. While the example herein 
employs accuracy as the objective function, 
alternative metrics may be chosen to suit the 
unique requirements of the application. 

 
To devise a mathematical fitness function for the 

SMA within the context of student prediction 
utilizing a dataset containing 36 attributes, it is 
necessary to establish a quantitative measure that 
represents the performance of the predictive model 
based on the selected features. Here's a suggestion 
for a mathematical fitness function formula: 

Assuming a binary classification task (e.g., 
predicting student success or failure) and selecting 
accuracy as the evaluation metric, the fitness 
function can be defined as the accuracy of the 
predictive model trained on the chosen subset of 
features. Let: 
 
𝑋𝑡𝑟𝑎𝑖𝑛: Training dataset containing the selected 
features 
𝑦𝑡𝑟𝑎𝑖𝑛: True labels for the training dataset 
𝑋𝑣𝑎𝑙: Validation dataset containing the selected 
features 
𝑦𝑣𝑎𝑙 : True labels for the validation dataset 
𝑚𝑜𝑑𝑒𝑙: The chosen predictive model algorithm 
 

The fitness function formula for accuracy can be 
written as: 
 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙 , 𝑚𝑜𝑑𝑒𝑙)                           (1) 
 

In this formula, Accuracy represents a function 
that calculates the accuracy of the predictive model. 
LR, DT, and SVM are among the diverse machine 
learning algorithms that can serve as the "model" 
parameter in the equation. The Accuracy function 
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should be implemented to calculate the accuracy 
based on the true labels (𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑣𝑎𝑙) and the 
predicted labels obtained from the model trained on 
the selected features (𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑣𝑎𝑙). The specific 
implementation will depend on the programming 
language or framework being used. 

By utilizing this fitness function formula, the SMA 
can optimize the selection of features by maximizing 
the accuracy of the predictive model. The fitness 
function can be customized by selecting different 
evaluation metrics or incorporating additional 
performance measures based on the specific 
requirements of the student prediction task. 

 
Pseudo Code: function calculateFitness (features): 
# Split the dataset into training and validation sets 
𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙 , 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑣𝑎𝑙 = splitDataset(features) 
# Train a predictive model using the selected features 
model = trainModel(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) 
# Make predictions on the validation set 
𝑦𝑝𝑟𝑒𝑑 = model.predict(𝑋𝑣𝑎𝑙) 

# Calculate the accuracy of the model 
accuracy = calculateAccuracy(𝑦𝑣𝑎𝑙, 𝑦𝑝𝑟𝑒𝑑) 

# Return the fitness value 
return accuracy 
 

This pseudocode provides a high-level 
representation of the SMA for feature selection. It 
starts by initializing a population of slime mould 
agents and runs a specified number of iterations. 
During each iteration, agents perform the 
chemotactic movement, evaluate their fitness, and 
update their positions based on the fitness value. 
Pheromone evaporation is also simulated, and the 
best features are selected based on the final agent 
positions. 

3.3. Classification using FO-NN 

FO-NN is a specific approach that combines the 
concepts of forest optimization and neural networks. 
It is a hybrid algorithm that leverages the strengths 
of both techniques to optimize the structure and 
parameters of a neural network. Forest optimization, 
as mentioned earlier, is a metaheuristic algorithm 
inspired by the behavior of a forest ecosystem. It 
utilizes the principles of collaboration and 
competition among different solution sets, referred 
to as "forests," to explore and exploit the search 
space. Conversely, neural networks represent a 
computational framework that draws inspiration 
from the intricate workings of the human brain. 
These networks are composed of interconnected 
nodes, referred to as neurons, which are structured 
in layers. Neural networks find extensive application 
in a range of machine-learning endeavors, 
encompassing tasks such as classification, 
regression, and pattern recognition. 

In the context of a FO-NN, the algorithm applies 
the principles of forest optimization to optimize the 
architecture and parameters of the neural network. 
It may involve exploring different neural network 
topologies (e.g., number of layers, number of 

neurons per layer) and optimizing the weights and 
biases associated with the connections between 
neurons. 

The algorithm typically starts by initializing 
multiple candidate solutions (neural network 
architectures) within different forests. These forests 
then undergo iterative processes of collaboration 
and competition, where successful architectures are 
preserved, shared, and improved upon. The 
algorithm gradually refines the architectures and 
optimizes the neural network parameters based on 
the evaluation of their performance on a specific task 
or problem. 

The specific implementation details of FO-NNs 
can vary depending on the researchers or 
practitioners working on the approach. It is essential 
to consider the specific objectives, constraints, and 
problem domains when applying this hybrid 
algorithm to ensure its effectiveness and efficiency. 

 
Algorithm: 
Initialize the population of neural network architectures 
within different forests 
Repeat until a stopping criterion is met: 
Assess the efficacy of every neural network within the 
population 
Select the best-performing neural networks from each forest 
Share and exchange knowledge among the forests (cultural 
transmission) 
Perform collaboration and competition within each forest: 
For each forest: 
Perform crossover and mutation operations to generate new 
neural network architectures 
Evaluate the performance of the new architectures 
Select the top-performing architectures to substitute the 
inferior ones 
End for 
End Repeat 

 
The FO-NN is a hybrid model that integrates the 

adaptability of neural networks with the 
optimization capabilities of forest optimization 
algorithms. Its architecture comprises several key 
components: 
 
1. Candidate architectures (Candidates): FO-NN 

maintains a "forest" of candidate neural network 
architectures. Each candidate represents a unique 
configuration of neural network layers, neurons, 
and connection weights. Mathematically, a 
candidate's architecture can be represented as 𝐶𝑖 , 
where 𝑖 denotes the specific candidate. 

2. Neural network layers: A candidate architecture 
includes layers, typically comprising input, hidden, 
and output layers. The architecture optimizes the 
number of layers and the number of neurons in 
each layer. Mathematically, the layers can be 
represented as 𝐿 = [𝐿1, 𝐿2, . . . , 𝐿𝑛], where 𝐿𝑖  
represents the 𝑖𝑡ℎ layer. 

3. Neuron configuration: Within each layer, the 
candidate architecture specifies the number of 
neurons and their activation functions. The 
configuration of neurons in a layer is represented 
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as 𝑁 = [𝑁1, 𝑁2, . . . , 𝑁𝑚], where 𝑁𝑗  represents the 

𝑗𝑡ℎ  neuron in that layer. 
4. Connection weights: Connection weights between 

neurons in the neural network are optimized. 
These connection weights determine the strength 
of connections between neurons in different 
layers. Mathematically, the connection weights can 
be represented as 𝑊 = [𝑊1, 𝑊2, . . . , 𝑊𝑝], where 𝑊𝑘  

represents the 𝑘𝑡ℎ connection weight. 
5. Fitness function: Each candidate architecture is 

evaluated using a fitness function that measures 
its performance on the given classification task. 
The fitness function is typically based on a 
classification metric such as accuracy, precision, 
recall, or F1-score. Mathematically, the fitness 
function can be represented as 𝐹(𝐶𝑖), where 𝐶𝑖  is 
the candidate architecture. 

6. Integration with feature selection: The integration 
of FO-NN with feature selection is a two-step 
process: 

 
 Step 1: Feature selection using the SMA: The SMA 

is applied to the dataset to select the most relevant 
features. SMA optimizes feature selection by 
considering the subset of features that maximizes 
the performance of the predictive model. 
Mathematically, this process can be represented 
as: 

 
Let 𝑋 represent the dataset with all features and 
𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  represent the dataset with the selected 
features. The feature selection process can be 
defined as: 
 
𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑆𝑀𝐴(𝑋, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)                                  (2) 
 

Here, SMASMA is the SMA, and the fitness function 
measures the performance of the predictive model. 
 
 Step 2: FO-NN training:  
 
 FO-NN utilizes the dataset with the selected 

features (𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) to train the candidate 
architectures within the forest. 

 The optimization process involves iterating 
through different candidate architectures and 
evaluating their performance on the classification 
task. 

 The fitness function for a candidate architecture 
𝐶𝑖  is based on the performance of the neural 
network with that architecture using the selected 
features. Mathematically: 

 
𝐹(𝐶𝑖) = 𝑀𝑜𝑑𝑒𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝐶𝑖)                       (3) 
 

where, 𝑀𝑜𝑑𝑒𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 measures the 
performance of the neural network with architecture 
𝐶𝑖  on the dataset 𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 .  
 
 FO-NN uses genetic algorithms to create new 

candidate architectures by performing crossover 
and mutation operations on the existing 
architectures. These operations introduce 

variations in the neural network structures. 
Mathematically, the crossover and mutation 
processes can be represented as: 

 

𝐶𝑛𝑒𝑤 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝐶𝑝𝑎𝑟𝑒𝑛𝑡1, 𝐶𝑝𝑎𝑟𝑒𝑛𝑡2) 

𝐶𝑚𝑢𝑡𝑎𝑡𝑒𝑑 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐶𝑜𝑙𝑑)                                                      (4) 
 

 Collaboration and competition among candidates 
in the forest ensure that successful architectures 
are preserved, shared, and improved while less 
successful ones are gradually replaced. 

 The optimization process continues over multiple 
iterations until a termination criterion is met. 
Termination criteria may include a maximum 
number of iterations, achieving a satisfactory 
level of performance, or other conditions. 

 The FO-NN classifier selects the best-performing 
candidate architecture based on the fitness 
evaluations as the final model for the 
classification task. 

 
By integrating feature selection with FO-NN, the 

classifier ensures that it works with the most 
relevant features, improving predictive accuracy and 
interpretability while optimizing the neural network 
architecture for the given classification task. Fig. 2 
shows the flow diagram for the proposed FO-NN 
approach. 

4. Results and discussion 

4.1. Evaluation parameters 

Table 1 presents the evaluation parameters used 
to assess the performance of a classification model. 
These parameters include TP (True Positive), which 
represents the number of records correctly classified 
by the model, TN (True Negative), indicating the 
number of records correctly classified as not 
belonging to a specific class, FP (False Positive), 
signifying the number of records incorrectly 
classified as belonging to the class, and FN (False 
Negative), which denotes the number of records 
incorrectly classified as not belonging to the class. 
These parameters are crucial for measuring the 
model's accuracy, precision, recall, and F1-score, 
enabling a comprehensive assessment of its 
effectiveness in classification tasks by capturing 
different aspects of its performance. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                          (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                        (6) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                    (7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                                                                    (8) 

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                        (9) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                    (10) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                            (11) 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶) =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)
                                               (12) 

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 =
2(𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃)

(𝑇𝑃+𝐹𝑃)×(𝐹𝑃+𝑇𝑁)+(𝑇𝑁+𝐹𝑁)×(𝐹𝑁+𝑇𝑁)
  (13) 
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Fig. 2: Flow diagram for the proposed approach 
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Table 1: Evaluation parameters 

TP (true positive) 
Indicated the number of records that were 

classified as correctly classified 

TN (true negative) 
Indicated the number of records that were 

classified as not classified correctly 

FP (false positive) 
Indicated the number of records that were 

classified as incorrectly classified 

FN (false negative) 
Indicated the number of records that were 

classified as not Classified incorrectly 

4.2. Simulation parameters 

Table 2 provides the simulation parameters for 
the SMA, which includes 50 agents, a maximum of 
500 iterations, and a parameter Z set at 0.03. These 
parameters define the characteristics of the SMA-
based optimization process. On the other hand, Table 
3 outlines the simulation parameters for Forest 
Optimization. In this context, the problem domain 
dimension is 2, with a maximum of 500 iterations 
allowed. The forest in the optimization process is 
limited to 20 trees, and the maximum age for a tree 
is 15. Additionally, 15% of the candidate population 
is used for global seeding, indicating the proportion 

of candidate solutions shared in the optimization 
process. These parameters collectively guide the 
Forest Optimization algorithm's behavior and its 
exploration of the problem space. 

 
Table 2: Simulation parameters for SMA 

No of agents 50 
Max iteration 500 

Z 0.03 

 
Table 3: Simulation parameters for forest optimization 

The dimension of the problem domain 2 
Maximum number of iterations 500 

The limitation of the forest 20 
The maximum allowed Age of a tree 15 

The percentage of candidate population for global 
seeding 

15 

4.3. Results 

Figs. 3, 4, and 5 show the graphical analysis for 
the graduate, dropout, and enrolled classes, 
respectively. 

 

 
Fig. 3: Graphical analysis for graduate 

 

 
Fig. 4: Graphical analysis for dropout 
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Fig. 5: Graphical analysis for enrolled 

 

Figs. 6, 7, 8, and 9 display the output confusion 
matrix plots for the Neural Network, FO-NN, SVM, 
and KNN classifiers, respectively. These confusion 
matrices offer a comprehensive visual 
representation of how well our predictive models 
perform in categorizing students into different 
academic outcomes. Each matrix, set up as a 3×3 
grid, illustrates the true positive, true negative, false 
positive, and false negative predictions for various 
student performance categories. These matrices are 
crucial in assessing the precision and recall of our 
system for each performance level, shedding light on 
its strengths and areas for improvement in 
predicting student success or potential academic 
challenges.  

 

 
Fig. 6: Confusion matrix plot for unbalanced data using 

neural network classifier 
 

In Table 4, the performance of different classifiers 
on balanced data was evaluated based on various 
parameters. Among the classifiers, the FO-NN 
classifierdemonstrated the highest accuracy 
(0.8611) and the lowest error rate (0.1389), 
indicating its effectiveness in predicting student 
performance. FO-NN classifier also showed excellent 
sensitivity (0.8611) and specificity (0.9537), 

suggesting its ability to correctly identify both 
positive and negative instances. It achieved a high 
precision (0.875) and a low false positive rate 
(0.0463), further highlighting its accuracy in 
classification.  

 

 
Fig. 7: Confusion matrix plot for unbalanced data using 

FO-NN classifier 
 

 
Fig. 8: Confusion matrix plot for unbalanced data using 

SVM classifier 
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Fig. 9: Confusion matrix plot for unbalanced data using 

KNN classifier 
 

Additionally, FO-NN exhibited a competitive F1-
score (0.8595) and Matthews Correlation Coefficient 
(0.8212), indicating its overall performance in 
balancing precision and recall. However, it is worth 
noting that the Kappa Statistics for FO-NN (0.6296) 
were lower than other classifiers, suggesting a 
moderate agreement beyond chance. Overall, the 
results emphasize the effectiveness of the FO-NN 
classifier in accurately predicting student 
performance on balanced data. 

Fig. 10 shows a comparison between the number 
of features used in the SMA-selected features and 
normal SMOTE-balanced data. Specifically, 31 
features are selected in the SMA approach and 36 
features in the normal SMOTE balanced data 
approach. This comparison highlights the differences 
in feature selection between these two methods and 
provides insights into the dimensionality of the data 
used in the study. 

Table 4: Comparative analysis of results for various classifier 

Parameters 
Classifier with balanced data 

SVM 
(Mduma, 2023) 

KNN 
(Mduma, 2023) 

NN 
(Mduma, 2023) 

FO-NN 
(Proposed) 

Accuracy 0.8099 0.7547 0.7933 0.8611 
Error 0.1901 0.2453 0.2067 0.1389 

Sensitivity 0.8574 0.8160 0.8449 0.8611 
Specificity 0.7149 0.6320 0.6901 0.9537 
Precision 0.8574 0.8160 0.8452 0.875 

False positive rate 0.2851 0.3680 0.3099 0.0463 
F1-score 0.8574 0.8160 0.8450 0.8595 

Matthews correlation coefficient 0.5723 0.4480 0.5349 0.8212 
Kappa statistics 0.5723 0.4480 0.5349 0.6296 

 

 
Fig. 10: Number of features used in training for classifier 

 

Table 5 offers a comparative analysis of the 
performance of various classifiers, such as SVM, k-
nearest neighbors (KNN), neural network (NN), and 
FO-NN, using selected features determined by the 
SMA. Table 5 presents multiple evaluation 
parameters, including accuracy, error rate, 

sensitivity, specificity, precision, false positive rate, 
F1-score, Matthews Correlation Coefficient, and 
Kappa Statistics. In the comparison, FO-NN stands 
out with the highest accuracy and precision (0.889 
and 0.938, respectively), suggesting it excels in 
correctly classifying the dataset. SVM is closely 
followed by accuracy (0.8148) and Matthews 
Correlation Coefficient (0.5723). K-NN Classifier, 
based on a different study by Mutrofin et al. (2019), 
also exhibits competitive results. These parameter 
values provide insights into the relative strengths 
and weaknesses of each classifier for the specific 
task, aiding in the selection of the most appropriate 
classifier for the dataset. Overall, the results 
highlight the effectiveness of the FO-NN classifier 
when using selected features determined by the SMA 
for accurate prediction of student performance. 

 
Table 5: Comparative analysis of results for various classifier 

Parameters 

Classifier with selected features by SMA 

SVM 
(Mduma, 2023) 

KNN 
(Mduma, 2023) 

NN 
(Mduma, 2023) 

K-NN classifier 
(Mutrofin et al., 

2019) 

FO-NN 
(Proposed) 

Accuracy 0.8148 0.759 0.833 0.8455 0.889 
Error 0.185 0.241 0.167 - 0.111 

Sensitivity 0.852 0.778 0.722 - 0.833 
Specificity 0.778 0.741 0.944 - 0.944 
Precision 0.793 0.750 0.929 0.8619 0.938 

False positive rate 0.821 0.764 0.813 - 0.882 
F1-score 0.8574 0.759 0.833 - 0.893 

Matthews correlation coefficient 0.5723 0.490 0.5349 - 0.5869 
Kappa statistics 0.5856 0.490 0.5349 - 0.5959 

 

28

30

32

34

36

38

Selected feature

No of features used

SMA selected features Normal SMOTE balanced data
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5. Conclusion 

This research addresses the critical issue of 
academic underachievement in higher education by 
introducing an innovative approach that combines 
the SMA for feature selection with the FO-NN for 
early identification of students at risk of academic 
failure. The results demonstrate the efficacy of this 
approach, particularly on balanced data, with FO-NN 
classifier achieving the highest accuracy of 88.9% 
and precision of 93.8% among the classifiers. 
Additionally, the SMA aids in feature selection, 
enhancing the interpretability of predictive models. 
These findings contribute to a more effective 
strategy for mitigating academic underachievement 
in higher education. For future research, exploring 
the scalability and robustness of this approach on 
larger and more diverse datasets, as well as 
investigating its applicability in real-world 
educational settings, could further enhance its 
practical utility in improving student outcomes. 
Additionally, incorporating more advanced machine 
learning techniques and considering the ethical 
implications of predictive modeling in education 
would be valuable avenues for future research. 
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