International Journal of Advanced and Applied Sciences

Int. j. adv. appl. sci.

EISSN: 2313-3724

Print ISSN: 2313-626X

Volume 4, Issue 8  (August 2017), Pages:  84-97


Title: River water quality assessment using APCS-MLR and statistical process control in Johor River Basin, Malaysia

Author(s):  Mohd Saiful Samsudin 1, Azman Azid 1, 2, *, Saiful Iskandar Khalit 1, 2, Ahmad Shakir Mohd Saudi 3, Muhammad Amar Zaudi 4

Affiliation(s):

1Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
2UniSZA Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia
3Institute of Medical Science and Technology, University of Kuala Lumpur, 43600 Kajang, Selangor, Malaysia
4Department of Environmental Science, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

https://doi.org/10.21833/ijaas.2017.08.013

Full Text - PDF          XML

Abstract:

The objectives of this study are to determine the most significant parameters of Johor River Basin which contribute to river pollution loading and to discover the potential contamination of pollutants and perform the process capability of water quality. The environmetric techniques and statistical process control have been utilize in this study. PCA extracted eight principal components which explaining 77% of total variance. The APCS-MLR model has revealed NH3-N and PO4 as the main parameter which are main pollutants that give highest contribution towards the river. The control charts have been established for NH3-N and PO4 by using SPC to monitor the level of concentration in a timely manner. Thus, continuous monitoring in the area should be done for better improvement of river quality in the Johor River Basin. 

© 2017 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Environmetric, Water quality, Source apportionment, Principal component analysis, APCS-MLR, Statistical process control

Article History: Received 8 May 2017, Received in revised form 9 July 2017, Accepted 15 July 2017

Digital Object Identifier: 

https://doi.org/10.21833/ijaas.2017.08.013

Citation:

Samsudin MS, Azid A, Khalit SI, Saudi ASM, Zaudi MA (2017). River water quality assessment using APCS-MLR and statistical process control in Johor River Basin, Malaysia. International Journal of Advanced and Applied Sciences, 4(8): 84-97

http://www.science-gate.com/IJAAS/V4I8/Samsudin.html


References:

  1. Abdullah AR (1995). Environmental pollution in Malaysia: Trends and prospects. TRAC Trends in Analytical Chemistry, 14(5): 191-198. https://doi.org/10.1016/0165-9936(95)91369-4
  2. Al-Mamun A and Zainuddin Z (2013). Sustainable river water quality management in Malaysia. IIUM Engineering Journal, 14(1): 29-42.
  3. Besterfield DH (2009). Quality control 8th Edition. Pearson Education, Upper Saddle River, USA.
  4. Brodnjak-Vonˇcina B, Dobˇcnik D, Noviˇc M, and Zupan J (2002). Chemometrics characterisation of the quality of river water. Analytica Chimica Acta, 462(1): 87–100. https://doi.org/10.1016/S0003-2670(02)00298-2
  5. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, and Smith VH (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3): 559–568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
  6. Corbett CJ and Pan J (2002). Evaluating environmental performance using statistical process control techniques. European Journal of Operational Research, 139(1): 68-83. https://doi.org/10.1016/S0377-2217(01)00155-2
  7. DID (2000). Integrated River Water Management Manual for Malaysia. Department of Irrigation and Drainage, Ministry of Agriculture, Malaysia.
  8. Dominick D, Juahir H, Latif MT, Zain SM, and Aris AZ (2012). Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, 60: 172-181. https://doi.org/10.1016/j.atmosenv.2012.06.021
  9. Dorofki M, Elshafie AH, Jaafar O, Karim OA, and Mastura S (2012). Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data. International Proceedings of Chemical, Biological and Environmental Engineering, 33: 39-44.
  10. Douglas CM (2009). Introduction to statistical quality control. John Wiley and Sons, Hoboken, USA
  11. Durell GS, Seavey JA, and Higman J (2004). Sediment quality in the lower St. Johns River and Cedar-Ortega River Basin: Chemical contaminant characteristics. Battelle, Duxbury, USA.
  12. Felipe-Sotelo M, Andrade JM, Carlosena A, and Tauler R (2007). Temporal characterisation of river waters in urban and semi-urban areas using physico-chemical parameters and chemometric methods. Analytica Chimica Acta, 583(1): 128–137. https://doi.org/10.1016/j.aca.2006.10.011    PMid:17386537
  13. Gazzaz NM, Yusoff MK, Ramli MF, Aris AZ, and Juahir H (2012). Characterization of spatial patterns in river water quality using chemometric pattern recognition techniques. Marine Pollution Bulletin, 64(4): 688-698. https://doi.org/10.1016/j.marpolbul.2012.01.032     PMid:22330076
  14. Guille’n-Casla V, Noelia Rosales-Conrado N, Leo’n-Gonza’lez ME, Pe’rez-Arribas LV, and Polo-Dı’ez LM (2011). Principal component analysis (PCA) and multiple linear regression (MLR) statistical tools to evaluate the effect of E-beam irradiation on ready-to-eat food. Journal of Food Composition and Analysis, 24(3): 456–464. https://doi.org/10.1016/j.jfca.2010.11.010
  15. Ho SC (1996). Vision 2020: Towards an environmental sound and sustainable development of freshwater resources in Malaysia. Geosciences Journal, 40(1): 73-84. https://doi.org/10.1007/BF00222534
  16. Ismail Z (2011) Monitoring trends of nitrate, chloride and phosphate levels in an urban river. International Journal of Water Resources and Environmental Engineering, 3(7): 132-138
  17. Juahir H, Zain MS, Aris AZ, Yusof MK, Samah MAA, and Mokhtar M (2010b). Hydrological trend analysis due to land use changes at Langat River Basin. Environment Asia, 3: 20-31.
  18. Juahir H, Zain MS, Aris AZ, Yusoff MK, and Mokhtar M (2010a). Spatial assessment of Langat River water quality using chemometrics. Journal of Environmental Monitoring, 12(1): 287-295. https://doi.org/10.1039/B907306J     PMid:20082024
  19. Juahir H, Zain MS, Yusoff MK, Ismail TTH, Samah A MA, Toriman ME, and Mokhtar M (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Mnitoring and Assessment, 173(1): 625–641. https://doi.org/10.1007/s10661-010-1411-x     PMid:20339961
  20. Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WAR, and Moradi A (2012). An artificial neural network model for flood simulation using GIS Johor River Basin, Malaysia. Environmental Earth Sciences, 67(1): 251-264. https://doi.org/10.1007/s12665-011-1504-z
  21. Kowalkowski T, Zbytniewski R, Szpejna J, and Buszewski B (2006). Application of chemometrics in river water classification. Water Research, 40(4): 744–752. https://doi.org/10.1016/j.watres.2005.11.042    PMid:16442142
  22. Krishna AK, Satyanarayanan M, and Govil PK (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials, 167(1): 366-373. https://doi.org/10.1016/j.jhazmat.2008.12.131    PMid:19304387
  23. Lenntech (2014). Cadmium Cd: Chemical properties of cadmium-Health effects of cadmium-Environmental effects of cadmium, Lenntech B.V., Delft, Netherlands. Available online at: http://www.lenntech.com/periodic/elements/cd.htm#ixzz4lY6Y4epL
  24. Liu CW, Lin KH, and Kuo YM (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science in the Total Environment, 313(1): 77-89. https://doi.org/10.1016/S0048-9697(02)00683-6
  25. Madu CN (1996). Managing green technologies for global competitiveness. Praeger, Westport, USA.
  26. Maurer D, Mengel M, Robertson G, Gerlinger T, and Lissner A (1999). Statistical process control in sediment pollutant analysis. Environmental Pollution, 104(1): 21-29. https://doi.org/10.1016/S0269-7491(98)00162-6
  27. Mohd I, Mansor MA, Awaluddin MRA, Nasir MFM, Samsudin MS, Juahir H, and Ramli N (2011). Pattern recognition of kedah river water quality data implementation of principal component analysis. World Applied Sciences Journal, 14: 66-72.
  28. Nasir MFM, Samsudin MS, Mohamad I, Awaluddin MRA, Mansor MA, Juahir H, and Ramli N (2011). River water quality modeling using combined principle component analysis (PCA) and multiple linear regressions (MLR): A case study at Klang River, Malaysia. World Applied Sciences Journal, 14: 73-82.
  29. Osman R, Saim N, Juahir H, and Abdullah MP (2012). Chemometric application in identifying sources of organic contaminants in Langat river basin. Environmental Monitoring and Assessment, 184(2): 1001-1014. https://doi.org/10.1007/s10661-011-2016-8     PMid:21494831
  30. Pere´-Trepat E, Olivella L, Ginebreda A, Caixach J, and Tauler R (2006). Chemometrics modelling of organic contaminants in fish and sediment river samples. Science of The Total Environment, 371(1-3): 223-237. https://doi.org/10.1016/j.scitotenv.2006.04.005     PMid:16762399
  31. Retnam A, Zakaria MP, Juahir H, Aris AZ, Zali MA, and Kasim MF (2013). Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia. Marine Pollution Bulletin, 69(1): 55–66. https://doi.org/10.1016/j.marpolbul.2013.01.009      PMid:23452623
  32. Saim N, Osman R, Spian DRSA, Jaafar MZ, Juahir H, Abdullah MP, and Ghani FA (2009). Chemometric approach to validating faecal sterols as source tracer for faecal contamination in water. Water Research, 43(20): 5023–5030. https://doi.org/10.1016/j.watres.2009.08.052     PMid:19896157
  33. Samsudin MS, Juahir H, Zain SM, and Adnan NH (2011). Surface river water quality interpretation using environmetric techniques: Case study at Perlis River Basin, Malaysia. International Journal of Environmental Protection, 1(5): 1-8.
  34. Shrestha S and Kazama F (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji River Basin, Japan. Environmental Modelling and Software, 22(4): 464-475. https://doi.org/10.1016/j.envsoft.2006.02.001
  35. Simeonov V, Einax JW, Stanimirova I, and Kraft J (2002). Environmetric modeling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry, 374(5): 898–905. https://doi.org/10.1007/s00216-002-1559-5     PMid:12434248
  36. Simeonov V, Simeonova P, and Tsitouridou R (2004). Chemometric quality assessment of surface waters: Two case studies. Chemical and Engineering Ecology, 11(6): 449-469.
  37. Simeonova V, Stratisb JA, Samarac C, Zachariadisb, G., Voutsac D, Anthemidis A, Sofonioub M, and Kouimtzisc TH (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17): 4119–4124. https://doi.org/10.1016/S0043-1354(03)00398-1
  38. Singh KP, Malik A, and Sinha S (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: a case study. Analytica Chimica Acta, 538(1-2): 355-374. https://doi.org/10.1016/j.aca.2005.02.006
  39. Sojka M, Siepak M, Zioła A, Frankowski M, Murat-Błażejewska S, and Siepak J (2008). Application of multivariate statistical techniques to evaluation of water quality in the Mała Wełna River (Western Poland). Environmental Monitoring and Assessment, 147(1): 159–170. https://doi.org/10.1007/s10661-007-0107-3     PMid:18161029
  40. Sousa SIV, Martins FG, Alvim-Ferraz MCM, and Pereira MC (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling and Software, 22(1): 97-103. https://doi.org/10.1016/j.envsoft.2005.12.002
  41. Su S, Junjun Zhi J, Lou L, Huang F, Chen X, and Wu J (2011a). Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques. Physics and Chemistry of the Earth, 36(9): 379–386. https://doi.org/10.1016/j.pce.2010.03.021
  42. Su S, Li D, Zhang Q, Xiao R, Huang F, and Wu J (2011b). Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China. Water Research, 45(4): 1781-1795. https://doi.org/10.1016/j.watres.2010.11.030     PMid:21147494
  43. Vega M, Pardo R, Barrado E, and Debán L (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12): 3581-3592. https://doi.org/10.1016/S0043-1354(98)00138-9
  44. Wang L, Yang Z, Niu J, and Wang J (2009). Characterization, ecological risk assessment and source diagnostics of polycyclic aromatic hydrocarbons in water column of the Yellow River Delta, one of the most plenty biodiversity zones in the world. Journal of Hazardous Materials, 169(1): 460-465.  https://doi.org/10.1016/j.jhazmat.2009.03.125     PMid:19398155
  45. Woodall WH, Hoerl RW, Palm AC, and Wheeler DJ (2000). Controversies and contradictions in statistical process control/Discussion/Response. Journal of Quality Technology, 32(4): 341-350.
  46. Wu B, Zhao D, Zhang Y, Zhang X, and Cheng S (2009). Multivariate statistical study of organic pollutants in Nanjing reaches of Yangtze River. Journal of Hazardous Materials, 169(1): 1093-1098. https://doi.org/10.1016/j.jhazmat.2009.04.065    PMid:19446395
  47. Zali MA, Retnam A, and Juahir H (2011). Spatial characterization of water quality using principal component analysis approach at Juru River Basin, Malaysia. World Applied Sciences Journal, 14: 55-59.
  48. Zhou F, Liu Y, and Guo H (2007). Application of multivariate statistical methods to water quality assessment of the watercourses in Northwestern New Territories, Hong Kong. Environmental Monitoring and Assessment, 132(1): 1-13.  https://doi.org/10.1007/s10661-006-9497-x       PMid:17171256