International Journal of Advanced and Applied Sciences
Int. j. adv. appl. sci.
EISSN: 2313-3724
Print ISSN: 2313-626X
Volume 4, Issue 5 (May 2017), Pages: 101-108
Title: The ∫ πͺπππ° statistical convergence of real numbers over Musielak π-metric space
Author(s): M. Kemal Ozdemir 1, *, Subramanian Nagarajan 2, Ayhan Esi 3
Affiliation(s):
1Department of Mathematics, Science and Arts Faculty, Inonu University, 44280, Malatya, Turkey
2Department of Mathematics, SASTRA University, Thanjavur-613 401, India
3Department of Mathematics, Science and Arts Faculty, Adiyaman University, 02040, Adiyaman, Turkey
https://doi.org/10.21833/ijaas.2017.05.018
Abstract:
In this paper, we introduce the concepts of ∫ πͺπππ° statistical convergence and strongly ∫ πͺπππ° of real numbers. It is also shown that ∫ πͺπππ° statistical convergence and strongly ∫ πͺπππ° are equivalent for analytic sequences of real numbers. We introduce certain new double sequence spaces of ∫ πͺπππ° of fuzzy real numbers defined by I - convergence using sequences of Musielak-Orlicz functions and also study some basic topological and algebraic properties of these spaces, investigate the inclusion relations between these spaces.
© 2017 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Analytic sequence, Musielak - modulus function, P- metric space, Ideal convergent, Fuzzy number, De la Vallee-Poussin mean
Article History: Received 24 November 2016, Received in revised form 27 March 2017, Accepted 27 March 2017
Digital Object Identifier:
https://doi.org/10.21833/ijaas.2017.05.018
Citation:
Ozdemir MK, Nagarajan S, and Esi A (2017). The ∫ πͺπππ° statistical convergence of real numbers over Musielak π-metric space. International Journal of Advanced and Applied Sciences, 4(5): 101-108
http://www.science-gate.com/IJAAS/V4I5/Ozdemir.html
References:
Altay B and BaΕar F (2005). Some new spaces of double sequences. Journal of Mathematical Analysis and Applications, 309(1), 70-90. https://doi.org/10.1016/j.jmaa.2004.12.020 |
||||
BaΕar F and Sever Y (2009). The space Lp of double sequences. Mathematical Journal of Okayama University, 51: 149-157. | ||||
Basarir M and Sonalcan O (1999). On some double sequence spaces. The Journal of the Indian Academy of Mathematics, 21(2): 193-200. | ||||
Bromwich TJI (2005). An introduction to the theory of infinite series. 3rd Edition, AMS Chelsea Publishing, American Mathematical Society, Providence, Rhode Island, USA. PMid:15773632 |
||||
Connor JS (1988). The statistical and strong p-Cesàro convergence of sequences. Analysis, 8(1-2): 47-63. https://doi.org/10.1524/anly.1988.8.12.47 |
||||
Et M, Altin Y, and Altinok, H (2005). On almost statistical convergence of generalized difference sequences of fuzzy numbers. Mathematical Modelling and Analysis, 10(4): 345-352. | ||||
Fridy JA (1985). On statistical convergence. Analysis, 5(4): 301-313. https://doi.org/10.1524/anly.1985.5.4.301 |
||||
Gökhan A and Çolak R (2004). The double sequences spaces c2P(p) and c2PB(p). Applied Mathematics and Computation, 157(2): 491-501. https://doi.org/10.1016/j.amc.2003.08.047 |
||||
Gökhan A and Çolak R (2005). Double sequence space β2∞(p). Applied Mathematics and Computation, 160(1): 147–153. https://doi.org/10.1016/j.amc.2003.08.142 |
||||
Hamilton HJ (1936). Transformations of multiple sequences. Duke Mathematical Journal, 2(1): 29-60. https://doi.org/10.1215/S0012-7094-36-00204-1 |
||||
Hardy GH (1904). On the convergence of certain multiple series. Proceedings of the London Mathematical Society, s2-1(1):124-128. https://doi.org/10.1112/plms/s2-1.1.124 |
||||
Hazarika B (2009). Lacunary I- convergent sequence of fuzzy real numbers. Pacific Journal of Science and Technology, 10(2): 203-206. | ||||
Hazarika B (2012a). Fuzzy real valued lacunary I- convergent sequences. Applied Mathematics Letters, 25(3): 466-470. https://doi.org/10.1016/j.aml.2011.09.037 |
||||
Hazarika B (2012b). On generalized difference ideal convergence in random 2-normed spaces. Filomat, 26(6): 1273-1282. https://doi.org/10.2298/FIL1206273H |
||||
Hazarika B (2012c). I- convergence and summability in topological group. Journal of Mathematical Sciences, 4(3): 269-283. | ||||
Hazarika B (2013a). On fuzzy real valued I- convergent double sequence spaces defined by Musielak-Orlicz function. Journal of Intelligent and Fuzzy Systems, 25(1): 9-15. |
||||
Hazarika B (2013b). Lacunary difference ideal convergent sequence spaces of fuzzy numbers. Journal of Intelligent and Fuzzy Systems, 25(1): 157-166. |
||||
Hazarika B (2014a). On σ- uniform density and ideal convergent sequences of fuzzy real numbers. Journal of Intelligent and Fuzzy Systems, 26(2): 793-799. |
||||
Hazarika B (2014b). Some classes of ideal convergent difference sequence spaces of fuzzy numbers defined by Orlicz function. Fasciculi Mathematici, 52: 45-63. | ||||
Hazarika B (2014c). Classes of generalized difference ideal convergent sequence of fuzzy numbers. Annals of Fuzzy Mathematics and Informatics, 7(1): 155-172. | ||||
Hazarika B (2014d). On ideal convergent sequences in fuzzy normed linear spaces. Afrika Matematika, 25(4): 987-999. https://doi.org/10.1007/s13370-013-0168-0 |
||||
Hazarika B and Kumar V (2014). Fuzzy real valued I- convergent double sequences in fuzzy normed spaces. Journal of Intelligent and Fuzzy Systems, 26(5): 2323-2332. | ||||
Hazarika B and Savas E (2011). Some I- convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions. Mathematical and Computer Modelling, 54(11-12): 2986-2998. https://doi.org/10.1016/j.mcm.2011.07.026 |
||||
Hazarika B, Tamang K, and Singh BK (2014). Zweier ideal convergent sequence spaces defined by Orlicz function. Journal of Mathematics and Computer Science, 8: 307-318. https://doi.org/10.1016/j.joems.2013.08.005 |
||||
Kamthan PK and Gupta M (1981). Sequence spaces and series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, USA. | ||||
KΔ±zmaz H (1981). On certain sequence spaces. Canadian Mathematical Bulletin, 24: 169–176. https://doi.org/10.4153/CMB-1981-027-5 |
||||
Kostyrko P, Salat T, and Wilczynski W (2000). I- convergence. Real Analysis Exchange, 26(2): 669-686. | ||||
Kumar V (2007). On I and I^*-convergence of double sequences. Mathematical Communications, 12(2): 171-181. | ||||
Kumar V and Kumar K (2008). On the ideal convergence of sequences of fuzzy numbers. Information Sciences, 178(24): 4670-4678. https://doi.org/10.1016/j.ins.2008.08.013 |
||||
Kwon JS and Shim HT (2001). Remark on lacunary statistical convergence of fuzzy numbers. The Journal of Fuzzy Mathematics, 123(1): 85-88. https://doi.org/10.1016/s0165-0114(00)00089-0 |
||||
Lindenstrauss J and Tzafriri L (1971). On Orlicz sequence spaces. On Orlicz sequence spaces. Israel Journal of Mathematics, 10(3): 379-390. https://doi.org/10.1007/BF02771656 |
||||
Maddox IJ (1986). Sequence spaces defined by a modulus. Mathematical Proceedings of the Cambridge Philosophical Society, 101(1), 161-166. https://doi.org/10.1017/ S0305004100065968 https://doi.org/10.1017/S0305004100065968 |
||||
Moricz F (1991). Extentions of the spaces c and from single to double sequences. Acta Mathematica Hungarica, 57(1-2): 129-136. https://doi.org/10.1007/BF01903811 |
||||
Moricz F and Rhoades BE (1988). Almost convergence of double sequences and strong regularity of summability matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 104(2): 283-294. https://doi.org/10.1017/S0305004100065464 |
||||
Mursaleen M and Edely OHH (2003). Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288(1): 223-231. https://doi.org/10.1016/j.jmaa.2003.08.004 |
||||
Nuray F and Savas E (1995). Statistical convergence of sequences of fuzzy numbers. Mathematica Slovaca, 45(3): 269-273. | ||||
Pringsheim A (1900). Zur theorie der zweifach unendlichen Zahlenfolgen. Mathematische Annalen, 53(3): 289-321. https://doi.org/10.1007/BF01448977 |
||||
Salat T (1980). On statistically convergent sequences of real numbers. Mathematica Slovaca, 30(2): 139-150. | ||||
Subramanian N and Misra UK (2011). Characterization of gai sequences via double Orlicz space. Southeast Asian Bulletin of Mathematics, 35(4): 687-697. | ||||
Tripathy BC (2003). On statistically convergent double sequences. Tamkang Journal of Mathematics, 34(3): 231-237. | ||||
Tripathy BC and Hazarika B (2008). I- convergent sequence spaces associated with multiplier sequences. Mathematical Inequalities and Applications, 11(3): 543-548. https://doi.org/10.7153/mia-11-43 |
||||
Tripathy BC and Hazarika B (2009). Paranorm I- convergent sequence spaces. Mathematica Slovaca, 59(4): 485-494. https://doi.org/10.2478/s12175-009-0141-4 |
||||
Tripathy BC and Hazarika B (2011). Some I- convergent sequence spaces defined by Orlicz functions. Acta Mathematicae Applicatae Sinica, 27(1): 149-154. https://doi.org/10.1007/s10255-011-0048-z |
||||
Turkmenoglu A (1999). Matrix transformation between some classes of double sequences. Journal of Institute of Mathematics & Computer Sciences, 12(1): 23-31. | ||||
Wilansky A (1984). Summability through functional analysis. North-Holland Mathematical Studies, North-Holland publishing, Amsterdam. | ||||
Zeltser M (2001). Investigation of double sequence spaces by soft and hard analytical methods. Ph.D. Dissertation, Tartu University Press, Tartu, Estonia. |