International Journal of Advanced and Applied Sciences

Int. j. adv. appl. sci.

EISSN: 2313-3724

Print ISSN: 2313-626X

Volume 4, Issue 5  (May 2017), Pages:  101-108


Title: The ∫ πšͺπŸπ€π‘° statistical convergence of real numbers over Musielak 𝒑-metric space

Author(s):  M. Kemal Ozdemir 1, *, Subramanian Nagarajan 2, Ayhan Esi 3

Affiliation(s):

1Department of Mathematics, Science and Arts Faculty, Inonu University, 44280, Malatya, Turkey
2Department of Mathematics, SASTRA University, Thanjavur-613 401, India

3Department of Mathematics, Science and Arts Faculty, Adiyaman University, 02040, Adiyaman, Turkey

https://doi.org/10.21833/ijaas.2017.05.018

Full Text - PDF          XML

Abstract:

In this paper, we introduce the concepts of ∫ πšͺπŸπ€π‘°  statistical convergence and strongly ∫ πšͺπŸπ€π‘°  of real numbers. It is also shown that ∫ πšͺπŸπ€π‘°  statistical convergence and strongly ∫ πšͺπŸπ€π‘°  are equivalent for analytic sequences of real numbers. We introduce certain new double sequence spaces of ∫ πšͺπŸπ€π‘°  of fuzzy real numbers defined by I - convergence using sequences of Musielak-Orlicz functions and also study some basic topological and algebraic properties of these spaces, investigate the inclusion relations between these spaces. 

© 2017 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Analytic sequence, Musielak - modulus function, P- metric space, Ideal convergent, Fuzzy number, De la Vallee-Poussin mean

Article History: Received 24 November 2016, Received in revised form 27 March 2017, Accepted 27 March 2017

Digital Object Identifier: 

https://doi.org/10.21833/ijaas.2017.05.018

Citation:

Ozdemir MK, Nagarajan S, and Esi A (2017). The ∫ πšͺπŸπ€π‘° statistical convergence of real numbers over Musielak 𝒑-metric space. International Journal of Advanced and Applied Sciences, 4(5): 101-108

http://www.science-gate.com/IJAAS/V4I5/Ozdemir.html


References:

Altay B and Başar F (2005). Some new spaces of double sequences. Journal of Mathematical Analysis and Applications, 309(1), 70-90.
https://doi.org/10.1016/j.jmaa.2004.12.020
Başar F and Sever Y (2009). The space Lp of double sequences. Mathematical Journal of Okayama University, 51: 149-157.
Basarir M and Sonalcan O (1999). On some double sequence spaces. The Journal of the Indian Academy of Mathematics, 21(2): 193-200.
Bromwich TJI (2005). An introduction to the theory of infinite series. 3rd Edition, AMS Chelsea Publishing, American Mathematical Society, Providence, Rhode Island, USA.
PMid:15773632
Connor JS (1988). The statistical and strong p-Cesàro convergence of sequences. Analysis, 8(1-2): 47-63.
https://doi.org/10.1524/anly.1988.8.12.47
Et M, Altin Y, and Altinok, H (2005). On almost statistical convergence of generalized difference sequences of fuzzy numbers. Mathematical Modelling and Analysis, 10(4): 345-352.
Fridy JA (1985). On statistical convergence. Analysis, 5(4): 301-313.
https://doi.org/10.1524/anly.1985.5.4.301
Gökhan A and Çolak R (2004). The double sequences spaces c2P(p) and c2PB(p). Applied Mathematics and Computation, 157(2): 491-501.
https://doi.org/10.1016/j.amc.2003.08.047
Gökhan A and Çolak R (2005). Double sequence space β„“2∞(p). Applied Mathematics and Computation, 160(1): 147–153.
https://doi.org/10.1016/j.amc.2003.08.142
Hamilton HJ (1936). Transformations of multiple sequences. Duke Mathematical Journal, 2(1): 29-60.
https://doi.org/10.1215/S0012-7094-36-00204-1
Hardy GH (1904). On the convergence of certain multiple series. Proceedings of the London Mathematical Society, s2-1(1):124-128. 
https://doi.org/10.1112/plms/s2-1.1.124
Hazarika B (2009). Lacunary I- convergent sequence of fuzzy real numbers. Pacific Journal of Science and Technology, 10(2): 203-206.
Hazarika B (2012a). Fuzzy real valued lacunary I- convergent sequences. Applied Mathematics Letters, 25(3): 466-470.
https://doi.org/10.1016/j.aml.2011.09.037
Hazarika B (2012b). On generalized difference ideal convergence in random 2-normed spaces. Filomat, 26(6): 1273-1282.
https://doi.org/10.2298/FIL1206273H
Hazarika B (2012c). I- convergence and summability in topological group. Journal of Mathematical Sciences, 4(3): 269-283.

Hazarika B (2013a). On fuzzy real valued I- convergent double sequence spaces defined by Musielak-Orlicz function. Journal of Intelligent and Fuzzy Systems, 25(1): 9-15.

https://doi.org/10.3233/IFS-2012-0609

Hazarika B (2013b). Lacunary difference ideal convergent sequence spaces of fuzzy numbers. Journal of Intelligent and Fuzzy Systems, 25(1): 157-166.

https://doi.org/10.3233/IFS-2012-0622

Hazarika B (2014a). On σ- uniform density and ideal convergent sequences of fuzzy real numbers. Journal of Intelligent and Fuzzy Systems, 26(2): 793-799.

https://doi.org/10.3233/IFS-130769

Hazarika B (2014b). Some classes of ideal convergent difference sequence spaces of fuzzy numbers defined by Orlicz function. Fasciculi Mathematici, 52: 45-63.
Hazarika B (2014c). Classes of generalized difference ideal convergent sequence of fuzzy numbers. Annals of Fuzzy Mathematics and Informatics, 7(1): 155-172.
Hazarika B (2014d). On ideal convergent sequences in fuzzy normed linear spaces. Afrika Matematika, 25(4): 987-999.
https://doi.org/10.1007/s13370-013-0168-0
Hazarika B and Kumar V (2014). Fuzzy real valued I- convergent double sequences in fuzzy normed spaces. Journal of Intelligent and Fuzzy Systems, 26(5): 2323-2332.
Hazarika B and Savas E (2011). Some I- convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions. Mathematical and Computer Modelling, 54(11-12): 2986-2998.
https://doi.org/10.1016/j.mcm.2011.07.026
Hazarika B, Tamang K, and Singh BK (2014). Zweier ideal convergent sequence spaces defined by Orlicz function. Journal of Mathematics and Computer Science, 8: 307-318.
https://doi.org/10.1016/j.joems.2013.08.005
Kamthan PK and Gupta M (1981). Sequence spaces and series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, USA.
KΔ±zmaz H (1981). On certain sequence spaces. Canadian Mathematical Bulletin, 24: 169–176.
https://doi.org/10.4153/CMB-1981-027-5
Kostyrko P, Salat T, and Wilczynski W (2000). I- convergence. Real Analysis Exchange, 26(2): 669-686.
Kumar V (2007). On I and I^*-convergence of double sequences. Mathematical Communications, 12(2): 171-181.
Kumar V and Kumar K (2008). On the ideal convergence of sequences of fuzzy numbers. Information Sciences, 178(24): 4670-4678.
https://doi.org/10.1016/j.ins.2008.08.013
Kwon JS and Shim HT (2001). Remark on lacunary statistical convergence of fuzzy numbers. The Journal of Fuzzy Mathematics, 123(1): 85-88.
https://doi.org/10.1016/s0165-0114(00)00089-0
Lindenstrauss J and Tzafriri L (1971). On Orlicz sequence spaces. On Orlicz sequence spaces. Israel Journal of Mathematics, 10(3): 379-390.
https://doi.org/10.1007/BF02771656
Maddox IJ (1986). Sequence spaces defined by a modulus. Mathematical Proceedings of the Cambridge Philosophical Society, 101(1), 161-166. https://doi.org/10.1017/ S0305004100065968
https://doi.org/10.1017/S0305004100065968
Moricz F (1991). Extentions of the spaces c and from single to double sequences. Acta Mathematica Hungarica, 57(1-2): 129-136.
https://doi.org/10.1007/BF01903811
Moricz F and Rhoades BE (1988). Almost convergence of double sequences and strong regularity of summability matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 104(2): 283-294.
https://doi.org/10.1017/S0305004100065464
Mursaleen M and Edely OHH (2003). Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288(1): 223-231.
https://doi.org/10.1016/j.jmaa.2003.08.004
Nuray F and Savas E (1995). Statistical convergence of sequences of fuzzy numbers. Mathematica Slovaca, 45(3): 269-273.
Pringsheim A (1900). Zur theorie der zweifach unendlichen Zahlenfolgen. Mathematische Annalen, 53(3): 289-321.
https://doi.org/10.1007/BF01448977
Salat T (1980). On statistically convergent sequences of real numbers. Mathematica Slovaca, 30(2): 139-150.
Subramanian N and Misra UK (2011). Characterization of gai sequences via double Orlicz space. Southeast Asian Bulletin of Mathematics, 35(4): 687-697.
Tripathy BC (2003). On statistically convergent double sequences. Tamkang Journal of Mathematics, 34(3): 231-237.
Tripathy BC and Hazarika B (2008). I- convergent sequence spaces associated with multiplier sequences. Mathematical Inequalities and Applications, 11(3): 543-548.
https://doi.org/10.7153/mia-11-43
Tripathy BC and Hazarika B (2009). Paranorm I- convergent sequence spaces. Mathematica Slovaca, 59(4): 485-494.
https://doi.org/10.2478/s12175-009-0141-4
Tripathy BC and Hazarika B (2011). Some I- convergent sequence spaces defined by Orlicz functions. Acta Mathematicae Applicatae Sinica, 27(1): 149-154.
https://doi.org/10.1007/s10255-011-0048-z
Turkmenoglu A (1999). Matrix transformation between some classes of double sequences. Journal of Institute of Mathematics & Computer Sciences, 12(1): 23-31.
Wilansky A (1984). Summability through functional analysis. North-Holland Mathematical Studies, North-Holland publishing, Amsterdam.
Zeltser M (2001). Investigation of double sequence spaces by soft and hard analytical methods. Ph.D. Dissertation, Tartu University Press, Tartu, Estonia.