International Journal of Advanced and Applied Sciences
Int. j. adv. appl. sci.
EISSN: 2313-3724
Print ISSN: 2313-626X
Volume 4, Issue 5 (May 2017), Pages: 138-143
Title: On paranorm intuitionistic fuzzy I-convergent sequence spaces defined by compact operator
Author(s): Vakeel A. Khan 1, Yasmeen Khan 1, Henna Altaf 1, Ayhan Esi 2,*, Ayaz Ahamd 3
Affiliation(s):
1Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
2Department of Mathematics, Adiyaman University, Adiyaman, Turkey
3Department of Mathematics, National Institute of Technology, Patna, India
https://doi.org/10.21833/ijaas.2017.05.024
Abstract:
The purpose of this paper is to introduce paranorm intuitionistic fuzzy I-convergent sequence spaces defined by compact operator and study the fuzzy topology on the said spaces. We defined more general type of paranorm intuitionistic fuzzy I-convergent sequence 𝑆(𝜇,𝜈) 𝐼 = (𝑇)(𝑝) and 𝑆(0,𝜈) 𝐼 = (𝑇)(𝑝) spaces by using compact operators. Moreover, we established some topological properties concerning with those spaces.
© 2017 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: I-convergence, Fuzzy set, Bounded linear operator, Compact linear operator, Paranorm
Article History: Received 29 December 2016, Received in revised form 19 March 2017, Accepted 23 March 2017
Digital Object Identifier:
https://doi.org/10.21833/ijaas.2017.05.024
Citation:
Khan VA, Yasmeen K, Altaf H, Esi A, and Ahamd A (2017). On paranorm intuitionistic fuzzy I-convergent sequence spaces defined by compact operator. International Journal of Advanced and Applied Sciences, 4(5): 138-143
http://www.science-gate.com/IJAAS/V4I5/Khan.html
References:
Alotaibi A, Hazarika B, and Mohiuddine SA (2014). On the ideal convergence of double sequences in locally solid Riesz spaces. Abstract and Applied Analysis, 2014: 1-6. http://dx.doi.org/10.1155/2014/396254. https://doi.org/10.1155/2014/396254 |
||||
Barros LC, Bassanezi RC, and Tonelli PA (2000). Fuzzy modelling in population dynamics. Ecological Modelling, 128(1): 27-33. https://doi.org/10.1016/S0304-3800(99)00223-9 |
||||
Das P, Kostyrko P, Wilczyński W, and Malik P (2008). I and I*-convergence of double sequences. Mathematica Slovaca, 58(5): 605-620. https://doi.org/10.2478/s12175-008-0096-x |
||||
Edely OH (2003). Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288(1): 223-231. https://doi.org/10.1016/j.jmaa.2003.08.004 |
||||
Esi A and Özdemir MK (2016). On some real valued I-convergent -summable diffrence sequence spaces defined by sequences of Orlicz functions. Information Sciences Letters, 5(2): 47-51. https://doi.org/10.18576/isl/050202 |
||||
Fast H (1951). Sur la convergence statistique. In Colloquium Mathematicae, 2(3-4): 241-244 | ||||
Fradkov AL and Evans RJ (2005). Control of chaos: methods and applications in engineering. Annual Reviews in Control, 29(1): 33-56. https://doi.org/10.1016/j.arcontrol.2005.01.001 |
||||
Giles R (1980). A computer program for fuzzy reasoning. Fuzzy Sets and Systems, 4(3): 221-234. https://doi.org/10.1016/0165-0114(80)90012-3 |
||||
Hazarika B and Mohiuddine SA (2013). Ideal convergence of random variables. Journal of Function Spaces and Applications, 2013: 1-7. http://dx.doi.org/10.1155/2013/ 148249. | ||||
Hong L and Sun JQ (2006). Bifurcations of fuzzy nonlinear dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 11(1): 1-12. https://doi.org/10.1016/j.cnsns.2004.11.001 |
||||
Khan VA and Yasmeen K (2016a). Intuitionistic fuzzy zweier I-convergent sequence spaces defined by Modulus function. Cogent Mathematics. Cogent mathematics (Taylors and Francis), 3(1): 1–10. | ||||
Khan VA and Yasmeen K (2016b). Intuitionistic fuzzy zweier I-convergent sequence spaces defined by Orlicz function. Annals of Fuzzy Mathematics and Informatics. Annals of Fuzzy Mathematics and Informatics, 12: 469–478. | ||||
Khan VA and Yasmeen K (2016c). Intuitionistic fuzzy zweier I-convergent double sequence spaces. New Trends in Mathematical Sciences, 4(2): 240-247. https://doi.org/ 10.20852/ntmsci.2016218260 | ||||
Khan VA, Ebadullah K, and Yasmeen K, and Fatima H (2014). On Zweier I-convergent sequence spaces, Proyecciones. Journal of Mathematics, 3(33): 259-276. | ||||
Khan VA, Esi A, Yasmeen K, and Fatima H (2017). On paranorm type intuitionistic fuzzy zweier I-convergent sequence spaces. Annals of Fuzzy Mathematics and Informatics, 13(1): 135-143. | ||||
Khan VA, Shafiq M, and Lafuerza-Guillen B (2015). On paranorm I-convergent sequence spaces defined by a compact operator. Afrika Matematika, 26(7-8): 1387-1398. https://doi.org/10.1007/s13370-014-0287-2 |
||||
Kostyrko P, Wilczyński W, and Šalát T (2000). I-convergence. Real Analysis Exchange, 26(2): 669-686. | ||||
Kreyszig E (1989). Introductory functional analysis with applications. Wiley, New York, USA. | ||||
Mohiuddine SA and Lohani QD (2009). On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos, Solitons and Fractals, 42(3): 1731-1737. https://doi.org/10.1016/j.chaos.2009.03.086 |
||||
Mursaleen M and Lohani QD (2009). Intuitionistic fuzzy 2-normed space and some related concepts. Chaos, Solitons and Fractals, 42(1): 224-234. https://doi.org/10.1016/j.chaos.2008.11.006 |
||||
Mursaleen M and Mohiuddine SA (2009a). On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. Journal of Computational and Applied Mathematics, 233(2): 142-149. https://doi.org/10.1016/j.cam.2009.07.005 |
||||
Mursaleen M and Mohiuddine SA (2009b). Statistical convergence of double sequences in intuitionistic fuzzy normed spaces. Chaos, Solitons and Fractals, 41(5): 2414-2421. https://doi.org/10.1016/j.chaos.2008.09.018 |
||||
Mursaleen M and Mohiuddine SA (2010). On ideal convergence of double sequences in probabilistic normed spaces. Mathematical Reports, 12(62): 359-371. | ||||
Mursaleen M, Mohiuddine SA, and Edely OH (2010). On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces. Computers and Mathematics with Applications, 59(2): 603-611. https://doi.org/10.1016/j.camwa.2009.11.002 |
||||
Mursaleen M, Srivastava HM, and Sharma SK (2016). Generalized statistically convergent sequences of fuzzy numbers. Journal of Intelligent and Fuzzy Systems, 30(3): 1511-1518. https://doi.org/10.3233/IFS-151858 |
||||
Nabiev A, Pehlivan S, and Gürdal M (2007). On I-Cauchy sequences. Taiwanese Journal of Mathematics, 11(2): 569-576. | ||||
Saadati R and Park JH (2006). On the intuitionistic fuzzy topological spaces. Chaos, Solitons and Fractals, 27(2): 331-344. https://doi.org/10.1016/j.chaos.2005.03.019 |
||||
Savas E (2004). On statistically convergent double sequences of fuzzy numbers. Information Sciences, 162(3): 183-192. https://doi.org/10.1016/j.ins.2003.09.005 |
||||
Zadeh LA (1965). Fuzzy sets. Information and control, 8(3): 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X |