International Journal of Advanced and Applied Sciences

Int. j. adv. appl. sci.

EISSN: 2313-3724

Print ISSN: 2313-626X

Volume 4, Issue 4  (April 2017), Pages:  91-95


Title: Flexible parametric survival models: An application to gastric cancer data

Author(s):  Nihal Ata Tutkun 1, *, Müge Yeldan 2, Handan İlhan 2

Affiliation(s):

1Department of Statistics, Faculty of Science, Hacettepe University, Ankara, Turkey
2Department of Actuarial Sciences, Faculty of Science, Hacettepe University, Ankara, Turkey

https://doi.org/10.21833/ijaas.2017.04.014

Full Text - PDF          XML

Abstract:

Flexible parametric survival models using cubic splines become popular in survival data analysis. The property of allowing converging hazard functions leads them to be the alternatives to Cox proportional hazards model and parametric survival models. In this study, flexible parametric survival models are applied to the data set of 106 gastric cancer patients. According to this data set, metastasis and muscle contraction are found as important risk factors on survival. 

© 2017 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Cancer, Parametric, Proportional hazards, Spline

Article History: Received 21 December 2016, Received in revised form 12 February 2017, Accepted 18 February 2017

Digital Object Identifier: 

https://doi.org/10.21833/ijaas.2017.04.014

Citation:

Tutkun NA, Yeldan M, and İlhan H (2017). Flexible parametric survival models: An application to gastric cancer data. International Journal of Advanced and Applied Sciences, 4(4): 91-95

http://www.science-gate.com/IJAAS/V4I4/Tutkun.html


References:

Andersson T, Dickman P, Eloranta S, and Lambert P (2011). Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models. BMC Medical Research Methodology, 11(1).
https://doi.org/10.1186/1471-2288-11-96
PMCid:PMC3145604
Aranda-Ordaz FJ (1981). On two families of transformations to additivity for binary response data. Biometrika, 68(2): 357–363.
https://doi.org/10.1093/biomet/68.2.357
Bantis L, Tsimikas JV, and Georgiou SD (2012). Survival estimation through the cumulative hazard function with monotone natural cubic splines. Lifetime Data Analysis, 18(3): 364–396.
https://doi.org/10.1007/s10985-012-9218-4
PMid:22399231
Bennett S (1983). Analysis of survival data by the proportional odds model. Statistics in Medicine, 2(2): 273–277.
https://doi.org/10.1002/sim.4780020223
PMid:6648142
Collett D (1994).Modeling survival data in medical research. Chapman and Hall, London, UK.
https://doi.org/10.1007/978-1-4899-3115-3
PMCid:PMC1205911
Cox DR (1972). Regression models and life-tables. Journal of the Royal Statistical Society, 34(2): 187-220.
Crowder MJ, Kimber AC, Smith RL, and Sweeting TJ (1991). Statistical analysis of reliability data. Chapman and Hall, London, UK.
https://doi.org/10.1007/978-1-4899-2953-2
Dinse GE and Lagakos SW (1983). Regression analysis of tumor prevalence data. Journal of the Royal Statistical Society, 32(3): 236-248.
Durrelman S and Simon R (1989). Flexible regression models with cubic splines. Statistics in Medicine, 8(5): 551-561.
https://doi.org/10.1002/sim.4780080504
Eroglu A, Altınok M, Ozgen K, and Sertkaya D (1997). A multivariate analysis of clinical and pathological variable in survival after resection of gastric cancer. Turkiye Klinikleri Journal of Case Reports, 15(1): 15-20.
Gamerman D and West M (1987). An application of dynamic survival models in unemployment studies. The Statistician, 36(2/3): 269-274.
https://doi.org/10.2307/2348523
Govindarajulu US, Malloy EJ, Ganguli B, Spiegelman D, and Eisen EA (2009). The comparison of alternative smoothing methods for fitting non-linear exposure–response relationships with Cox models in a simulation study. The International Journal of Biostatistics, 5(1): 1-21.
https://doi.org/10.2202/1557-4679.1104
PMid:20231865 PMCid:PMC2827890
Gray RJ (1992). Flexible methods of analyzing survival data using splines with applications to breast cancer prognosis. Journal of the American Statistical Association, 87(420): 942-951.
https://doi.org/10.1080/01621459.1992.10476248
Gray RJ (1994). Spline-based tests in survival analysis. Biometrics, 50(3): 640-652.
https://doi.org/10.2307/2532779
PMid:7981391
Hastie T and Tibshirani R (1990a). Exploring the nature of covariate effects in the proportional hazards model. Biometrics, 46(4): 1005-1016.
https://doi.org/10.2307/2532444
PMid:1964808
Hastie TJ and Tibshirani RJ (1990b). Generalized additive models. CRC press, Boca Raton, USA.
Kalbfleisch JD and Prentice RL (1980). The statistical analysis of failure time data. A John Wiley and Sons, New York, USA.
Kirmani SNUA and Gupta RC (2001). On the proportional odds model in survival analysis. Annals of the Institute of Statistical Mathematics, 53(2): 203-216.
https://doi.org/10.1023/A:1012458303498
Kooperberg C and Stone CJ (1992). Logspline density estimation for censored data. Journal of Computational and Graphical Statistics, 1(4): 301-328.
https://doi.org/10.1080/10618600.1992.10474588
Lambert PC and Royston P (2009). Further development of flexible parametric models for survival analysis. Stata Journal, 9(2): 265–290.
Lambert PC, Dickman PW, Nelson CP, and Royston P (2010). Estimating the crude probability of death due to cancer and other causes using relative survival models. Statistics in Medicine, 29(7-8): 885–895.
https://doi.org/10.1002/sim.3762
PMid:20213719
Nelson CP, Lambert PC, Squire IB, and Jones DR (2007). Flexible parametric models for relative survival, with application in coronary heart disease. Statistics in Medicine, 26(30): 5486-5498.
https://doi.org/10.1002/sim.3064
PMid:17893893
O'Sullivan F (1988). Nonparametric estimation of relative risk using splines and cross-validation. SIAM Journal on Scientific and Statistical Computing, 9(3): 531-542.
https://doi.org/10.1137/0909035
Rodriguez G (2007). Lecture notes on generalized linear models. Princeton University, New Jersey, USA. Available online at: http://data.princeton.edu/wws509/notes/c7
Rosenberg PS (1995). Hazard function estimation using B-splines. Biometrics, 51(3):874–887.
https://doi.org/10.2307/2532989
PMid:7548706
Rossini AJ and Tsiatis AA (1996). A semiparametric proportional odds model for the analysis of current status data. Journal of the American Statistical Association, 91(434): 713–721.
https://doi.org/10.1080/01621459.1996.10476939
Royston P (2001). Flexible parametric alternatives to the Cox model, and the more. The Stata Journal, 1(1): 1-28.
Royston P and Parmar MK (2002). Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine, 21(15): 2175– 2197.
https://doi.org/10.1002/sim.1203
PMid:12210632
Rutherford MJ, Crowther MJ, and Lambert PC (2015). Using restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: A simulation study. Journal of Statistical Computational and Simulation, 85(4): 777-793.
https://doi.org/10.1080/00949655.2013.845890
Schoenfeld D (1982). Partial residuals for the proportional hazards model. Biometrika, 69: 51-55.
https://doi.org/10.1093/biomet/69.1.239
Shen XT (1998). Proportional odds regression and sieve maximum likelihood estimation. Biometrika, 85(1): 165–177.
https://doi.org/10.1093/biomet/85.1.165
Sleeper LA and Harrington DP (1990). Regression splines in the cox model with application to covariate effects in liver disease. Journal of the American Statistical Association, 85(412): 941-949.
https://doi.org/10.1080/01621459.1990.10474965
Yang S and Prentice RL (1999). Semiparametric inference in the proportional odds regression model. Journal of the American Statistical Association, 94(445): 125–136.
https://doi.org/10.1080/01621459.1999.10473829
Younes N and Lachin J (1997). Link-based models for survival data with interval and continuous time censoring. Biometrics, 53(4): 1199–1211.
https://doi.org/10.2307/2533490
Zucker DM and Karr AF (1990). Nonparametric survival analysis with time-dependent covariate effects: A penalized partial likelihood approach. The Annals of Statistics, 18(1): 329-353.
https://doi.org/10.1214/aos/1176347503