International Journal of Advanced and Applied Sciences
Int. j. adv. appl. sci.
EISSN: 2313-3724
Print ISSN: 2313-626X
Volume 4, Issue 4 (April 2017), Pages: 91-95
Title: Flexible parametric survival models: An application to gastric cancer data
Author(s): Nihal Ata Tutkun 1, *, Müge Yeldan 2, Handan İlhan 2
Affiliation(s):
1Department of Statistics, Faculty of Science, Hacettepe University, Ankara, Turkey
2Department of Actuarial Sciences, Faculty of Science, Hacettepe University, Ankara, Turkey
https://doi.org/10.21833/ijaas.2017.04.014
Abstract:
Flexible parametric survival models using cubic splines become popular in survival data analysis. The property of allowing converging hazard functions leads them to be the alternatives to Cox proportional hazards model and parametric survival models. In this study, flexible parametric survival models are applied to the data set of 106 gastric cancer patients. According to this data set, metastasis and muscle contraction are found as important risk factors on survival.
© 2017 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Cancer, Parametric, Proportional hazards, Spline
Article History: Received 21 December 2016, Received in revised form 12 February 2017, Accepted 18 February 2017
Digital Object Identifier:
https://doi.org/10.21833/ijaas.2017.04.014
Citation:
Tutkun NA, Yeldan M, and İlhan H (2017). Flexible parametric survival models: An application to gastric cancer data. International Journal of Advanced and Applied Sciences, 4(4): 91-95
http://www.science-gate.com/IJAAS/V4I4/Tutkun.html
References:
Andersson T, Dickman P, Eloranta S, and Lambert P (2011). Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models. BMC Medical Research Methodology, 11(1). https://doi.org/10.1186/1471-2288-11-96 PMCid:PMC3145604 |
||||
Aranda-Ordaz FJ (1981). On two families of transformations to additivity for binary response data. Biometrika, 68(2): 357–363. https://doi.org/10.1093/biomet/68.2.357 |
||||
Bantis L, Tsimikas JV, and Georgiou SD (2012). Survival estimation through the cumulative hazard function with monotone natural cubic splines. Lifetime Data Analysis, 18(3): 364–396. https://doi.org/10.1007/s10985-012-9218-4 PMid:22399231 |
||||
Bennett S (1983). Analysis of survival data by the proportional odds model. Statistics in Medicine, 2(2): 273–277. https://doi.org/10.1002/sim.4780020223 PMid:6648142 |
||||
Collett D (1994).Modeling survival data in medical research. Chapman and Hall, London, UK. https://doi.org/10.1007/978-1-4899-3115-3 PMCid:PMC1205911 |
||||
Cox DR (1972). Regression models and life-tables. Journal of the Royal Statistical Society, 34(2): 187-220. | ||||
Crowder MJ, Kimber AC, Smith RL, and Sweeting TJ (1991). Statistical analysis of reliability data. Chapman and Hall, London, UK. https://doi.org/10.1007/978-1-4899-2953-2 |
||||
Dinse GE and Lagakos SW (1983). Regression analysis of tumor prevalence data. Journal of the Royal Statistical Society, 32(3): 236-248. | ||||
Durrelman S and Simon R (1989). Flexible regression models with cubic splines. Statistics in Medicine, 8(5): 551-561. https://doi.org/10.1002/sim.4780080504 |
||||
Eroglu A, Altınok M, Ozgen K, and Sertkaya D (1997). A multivariate analysis of clinical and pathological variable in survival after resection of gastric cancer. Turkiye Klinikleri Journal of Case Reports, 15(1): 15-20. | ||||
Gamerman D and West M (1987). An application of dynamic survival models in unemployment studies. The Statistician, 36(2/3): 269-274. https://doi.org/10.2307/2348523 |
||||
Govindarajulu US, Malloy EJ, Ganguli B, Spiegelman D, and Eisen EA (2009). The comparison of alternative smoothing methods for fitting non-linear exposure–response relationships with Cox models in a simulation study. The International Journal of Biostatistics, 5(1): 1-21. https://doi.org/10.2202/1557-4679.1104 PMid:20231865 PMCid:PMC2827890 |
||||
Gray RJ (1992). Flexible methods of analyzing survival data using splines with applications to breast cancer prognosis. Journal of the American Statistical Association, 87(420): 942-951. https://doi.org/10.1080/01621459.1992.10476248 |
||||
Gray RJ (1994). Spline-based tests in survival analysis. Biometrics, 50(3): 640-652. https://doi.org/10.2307/2532779 PMid:7981391 |
||||
Hastie T and Tibshirani R (1990a). Exploring the nature of covariate effects in the proportional hazards model. Biometrics, 46(4): 1005-1016. https://doi.org/10.2307/2532444 PMid:1964808 |
||||
Hastie TJ and Tibshirani RJ (1990b). Generalized additive models. CRC press, Boca Raton, USA. | ||||
Kalbfleisch JD and Prentice RL (1980). The statistical analysis of failure time data. A John Wiley and Sons, New York, USA. | ||||
Kirmani SNUA and Gupta RC (2001). On the proportional odds model in survival analysis. Annals of the Institute of Statistical Mathematics, 53(2): 203-216. https://doi.org/10.1023/A:1012458303498 |
||||
Kooperberg C and Stone CJ (1992). Logspline density estimation for censored data. Journal of Computational and Graphical Statistics, 1(4): 301-328. https://doi.org/10.1080/10618600.1992.10474588 |
||||
Lambert PC and Royston P (2009). Further development of flexible parametric models for survival analysis. Stata Journal, 9(2): 265–290. | ||||
Lambert PC, Dickman PW, Nelson CP, and Royston P (2010). Estimating the crude probability of death due to cancer and other causes using relative survival models. Statistics in Medicine, 29(7-8): 885–895. https://doi.org/10.1002/sim.3762 PMid:20213719 |
||||
Nelson CP, Lambert PC, Squire IB, and Jones DR (2007). Flexible parametric models for relative survival, with application in coronary heart disease. Statistics in Medicine, 26(30): 5486-5498. https://doi.org/10.1002/sim.3064 PMid:17893893 |
||||
O'Sullivan F (1988). Nonparametric estimation of relative risk using splines and cross-validation. SIAM Journal on Scientific and Statistical Computing, 9(3): 531-542. https://doi.org/10.1137/0909035 |
||||
Rodriguez G (2007). Lecture notes on generalized linear models. Princeton University, New Jersey, USA. Available online at: http://data.princeton.edu/wws509/notes/c7 | ||||
Rosenberg PS (1995). Hazard function estimation using B-splines. Biometrics, 51(3):874–887. https://doi.org/10.2307/2532989 PMid:7548706 |
||||
Rossini AJ and Tsiatis AA (1996). A semiparametric proportional odds model for the analysis of current status data. Journal of the American Statistical Association, 91(434): 713–721. https://doi.org/10.1080/01621459.1996.10476939 |
||||
Royston P (2001). Flexible parametric alternatives to the Cox model, and the more. The Stata Journal, 1(1): 1-28. | ||||
Royston P and Parmar MK (2002). Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine, 21(15): 2175– 2197. https://doi.org/10.1002/sim.1203 PMid:12210632 |
||||
Rutherford MJ, Crowther MJ, and Lambert PC (2015). Using restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: A simulation study. Journal of Statistical Computational and Simulation, 85(4): 777-793. https://doi.org/10.1080/00949655.2013.845890 |
||||
Schoenfeld D (1982). Partial residuals for the proportional hazards model. Biometrika, 69: 51-55. https://doi.org/10.1093/biomet/69.1.239 |
||||
Shen XT (1998). Proportional odds regression and sieve maximum likelihood estimation. Biometrika, 85(1): 165–177. https://doi.org/10.1093/biomet/85.1.165 |
||||
Sleeper LA and Harrington DP (1990). Regression splines in the cox model with application to covariate effects in liver disease. Journal of the American Statistical Association, 85(412): 941-949. https://doi.org/10.1080/01621459.1990.10474965 |
||||
Yang S and Prentice RL (1999). Semiparametric inference in the proportional odds regression model. Journal of the American Statistical Association, 94(445): 125–136. https://doi.org/10.1080/01621459.1999.10473829 |
||||
Younes N and Lachin J (1997). Link-based models for survival data with interval and continuous time censoring. Biometrics, 53(4): 1199–1211. https://doi.org/10.2307/2533490 |
||||
Zucker DM and Karr AF (1990). Nonparametric survival analysis with time-dependent covariate effects: A penalized partial likelihood approach. The Annals of Statistics, 18(1): 329-353. https://doi.org/10.1214/aos/1176347503 |