International Journal of Advanced and Applied Sciences

Int. j. adv. appl. sci.

EISSN: 2313-3724

Print ISSN: 2313-626X

Volume 4, Issue 2  (February 2017), Pages:  83-90


Title: A review on humanoid robots

Author(s):  Rabbia Mahum *, Faisal Shafique Butt, Kashif Ayyub, Seema Islam, Marriam Nawaz, Daud Abdullah

Affiliation(s):

Department of Computer Science, COMSATS Institute of Information Technology, Wah Cantt, Pakistan

https://doi.org/10.21833/ijaas.2017.02.015

Full Text - PDF          XML

Abstract:

Humanoid robots with artificial intelligence is very captivating field for people, since the robots are introduced. For humanoid robots we can introduce new ideas without any limitations and constraints but in reality there are limitations to implement them. In this paper we are discussing different humanoid robots with their practical applications. Based on their implementation structure detailed comparison of their characteristics is performed and on this bases some limitations and future work has been discussed. 

© 2017 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Humanoid robots, Behaviour

Article History: Received 23 November 2016, Received in revised form 7 February 2017, Accepted 7 February 2017

Digital Object Identifier: 

https://doi.org/10.21833/ijaas.2017.02.015

Citation:

Mahum R, Butt FS, Ayyub K, Islam S, Nawaz M, and Abdullah D (2017). A review on humanoid robots. International Journal of Advanced and Applied Sciences, 4(2): 83-90

http://www.science-gate.com/IJAAS/V4I2/Mahum.html


References:

Ambrose RO, Savely RT, Goza SM, Strawser P, Diftler MA, Spain I, and Radford N (2004). Mobile manipulation using NASA's robonaut. In the IEEE International Conference on Robotics and Automation (ICRA '04), IEEE, New Orleans, USA, 2: 2104-2109. 
https://doi.org/10.1109/robot.2004.1308134
Asfour T, Regenstein K, Azad P, Schroder J, Bierbaum A, Vahrenkamp N, and Dillmann R (2006). ARMAR-III: An integrated humanoid platform for sensory-motor control. In the 6th IEEE-RAS International Conference on Humanoid Robots, IEEE: 169-175.
https://doi.org/10.1109/ichr.2006.321380
Behnke S (2008). Humanoid robots-from fiction to reality?. In the Künstliche Intelligenz Heft, 4, 5–9. Available online at: https://www.ais.uni-bonn.de/papers/KI08_Behnke.pdf
Bluethmann W, Ambrose R, Diftler M, Askew S, Huber E, Goza M, and Magruder D (2003). Robonaut: A robot designed to work with humans in space. Autonomous Robots, 14(2): 179-197.
https://doi.org/10.1023/A:1022231703061
PMid:12703513
Butterfass J, Grebenstein M, Liu H, and Hirzinger G (2001). DLR-Hand II: Next generation of a dextrous robot hand. In the IEEE International Conference on Robotics and Automation (ICRA), IEEE, Seoul, South Korea, 1: 109-114. 
https://doi.org/10.1109/robot.2001.932538
Calinon S and Billard A (2007). Incremental learning of gestures by imitation in a humanoid robot. In the 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI), IEEE: 255-262. 
https://doi.org/10.1145/1228716.1228751
Chestnutt J, Michel P, Kuffner J, and Kanade T (2007). Locomotion among dynamic obstacles for the Honda Asimo. In the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2572-2573. 
https://doi.org/10.1109/iros.2007.4399431
Chua PY, Caldwell DG, Bezdicek M, Gray JO, and Davis S (2006). Tele-operated high speed anthropomorphic dextrous hands with object shape and texture identification. In the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing, China: 4018-4023. 
https://doi.org/10.1109/iros.2006.281861
Collins S, Ruina A, Tedrake R, and Wisse M (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307(5712): 1082-1085.
https://doi.org/10.1126/science.1107799
PMid:15718465
Cypher A and Halbert DC (1993). Watch what I do: programming by demonstration, MIT press, Cambridge, UK.
Dahiya RS, Valle M, and Metta G (2008). System approach: A paradigm for robotic tactile sensing. In the 10th IEEE International Workshop on Advanced Motion Control (AMC '08), IEEE: 110-115. 
https://doi.org/10.1109/amc.2008.4516050
Faber F and Behnke S (2007). Stochastic optimization of bipedal walking using gyro feedback and phase resetting. In the 7th IEEE-RAS International Conference on Humanoid Robots, IEEE: 203-209. 
https://doi.org/10.1109/ichr.2007.4813869
Fernaeus Y, Håkansson M, Jacobsson M, and Ljungblad S (2010). How do you play with a robotic toy animal? a long-term study of Pleo. In the 9th International Conference on Interaction Design and Children (IDC '10), ACM, Barcelona, Spain: 39-48. https://doi.org/10.1145/1810543.1810549
Fong T, Nourbakhsh I, and Dautenhahn K (2003). A survey of socially interactive robots. Robotics and Autonomous Systems, 42(3): 143-166.
https://doi.org/10.1016/S0921-8890(02)00372-X
Gates B (2008). A robot in every home. Scientific American, 18(1): 4-11.
https://doi.org/10.1038/scientificamerican0208-4sp
Gutmann JS, Fukuchi M, and Fujita M (2005). A floor and obstacle height map for 3D navigation of a humanoid robot. In the IEEE International Conference on Robotics and Automation (ICRA), IEEE, Barcelona, Spain: 1066-1071. 
https://doi.org/10.1109/robot.2005.1570257
Hoshi T and Shinoda H (2006). Robot skin based on touch-area-sensitive tactile element. In the IEEE International Conference on Robotics and Automation (ICRA), IEEE, Orlando, USA: 3463-3468. 
https://doi.org/10.1109/robot.2006.1642231
Hyun E, Yoon H, and Son S (2010). Relationships between user experiences and children's perceptions of the education robot. In the 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), IEEE, Osaka, Japan: 199-200. 
https://doi.org/10.1109/hri.2010.5453197
Ichijo K and Kohlbacher F (2008). Tapping tacit local knowledge in emerging markets–the Toyota way. Knowledge Management Research and Practice, 6(3): 173-186.
https://doi.org/10.1057/kmrp.2008.8
Jung Y and Lee KM (2004). Effects of physical embodiment on social presence of social robots. In the 7th Annual International Workshop on PRESENCE, Valencia, Spain: 80-87.
Kanda T, Hirano T, Eaton D, and Ishiguro H (2004). Interactive robots as social partners and peer tutors for children: A field trial. Human-Computer Interaction, 19(1): 61-84.
https://doi.org/10.1207/s15327051hci1901&2_4
Kim HH, Lee HE, Kim YH, Park KH, and Bien ZZ (2007). Automatic generation of conversational robot gestures for human-friendly steward robot. In the 16th IEEE International Symposium on Robot and Human interactive Communication (RO-MAN), IEEE, Jeju, South Korea: 1155-1160. https:// doi.org/10.1109/ROMAN.2007.4415254
https://doi.org/10.1109/roman.2007.4415254
Klamer T, Allouch SB, and Heylen D (2010). "Adventures of Harvey"–Use, acceptance of and relationship building with a social robot in a domestic environment. In the International Conference on Human-Robot Personal Relationship, Springer Berlin Heidelberg: 74-82. https://www.doi.org/10.1007/978-3-642-19385-9_10
Koay KL, Syrdal DS, Walters ML, and Dautenhahn K (2007). Living with robots: Investigating the habituation effect in participants' preferences during a longitudinal human-robot interaction study. In the 16th IEEE International Symposium on Robot and Human interactive Communication (RO-MAN), IEEE, Jeju, South Korea: 564-569. https://doi.org/10.1109/ROMAN.2007.4415149
Kozima H, Michalowski MP, and Nakagawa C (2009). Keepon. International Journal of Social Robotics, 1(1): 3-18.
https://doi.org/10.1007/s12369-008-0009-8
Lee KM, Jung Y, Kim J, and Kim SR (2006). Are physically embodied social agents better than disembodied social agents? The effects of physical embodiment, tactile interaction, and people's loneliness in human–robot interaction. International Journal of Human-Computer Studies, 64(10): 962-973.
https://doi.org/10.1016/j.ijhcs.2006.05.002
Leite I, Martinho C, and Paiva A (2013). Social robots for long-term interaction: a survey. International Journal of Social Robotics, 5(2): 291-308.
https://doi.org/10.1007/s12369-013-0178-y
Lungarella M and Sporns O (2006). Mapping information flow in sensorimotor networks. PLoS Computational Biology, 2(10): e144. https://doi.org/10.1371/journal.pcbi.0020144
https://doi.org/10.1371/journal.pcbi.0020144
PMid:17069456 PMCid:PMC1626158
McGeer T (1990). Passive dynamic walking. The International journal of Robotics Research, 9(2): 62-82.
https://doi.org/10.1177/027836499000900206
Mirza NA, Nehaniv CL, Dautenhahn K, and Te Boekhorst R (2008). Anticipating future experience using grounded sensorimotor informational relationships. In the Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, MIT Press, Cambridge, UK.
Miwa H, Itoh K, Matsumoto M, Zecca M, Takanobu H, Rocella S, and Takanishi A (2004). Effective emotional expressions with expression humanoid robot WE-4RII: integration of humanoid robot hand rch-1. In the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '04), IEEE, Sendai, Japan, 3: 2203-2208. https://doi.org/10.1109/IROS.2004.1389736
Nakaoka S, Nakazawa A, Kanehiro F, Kaneko K, Morisawa M, Hirukawa H, and Ikeuchi K (2006). Leg task models for reproducing human dance motions on biped humanoid robots. Journal of the Robotics Society of Japan, 24(3): 388-399.
https://doi.org/10.7210/jrsj.24.388
Nishio S, Ishiguro H, and Hagita N (2007). Geminoid: Teleoperated android of an existing person. INTECH Open Access Publisher, Vienna, Austria.
https://doi.org/10.5772/4876
Ohmura Y and Kuniyoshi Y (2007). Humanoid robot which can lift a 30kg box by whole body contact and tactile feedback. In the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE: 1136-1141. https://doi.org/10.1109/ IROS.2007.4399592
https://doi.org/10.1109/iros.2007.4399592
Peters J and Schaal S (2008). Natural actor-critic. Neurocomputing, 71(7): 1180-1190.
https://doi.org/10.1016/j.neucom.2007.11.026
Pfeifer R, Lungarella M, Sporns O, and Kuniyoshi Y (2007). On the information theoretic implications of embodiment–principles and methods. In 50 years of artificial intelligence. Springer Berlin Heidelberg, Germany.
https://doi.org/10.1007/978-3-540-77296-5_8
Ruesch J, Lopes M, Bernardino A, Hornstein J, Santos-Victor J, and Pfeifer R (2008). Multimodal saliency-based bottom-up attention a framework for the humanoid robot iCub. In the IEEE International Conference on Robotics and Automation (ICRA), IEEE: 962-967. https://doi.org/10.1109/ROBOT. 2008.4543329
https://doi.org/10.1109/robot.2008.4543329
Salter T, Dautenhahn K, and Bockhorst R (2004). Robots moving out of the laboratory-detecting interaction levels and human contact in noisy school environments. In the 13th IEEE International Workshop on Robot and Human Interactive Communication (ROMAN), IEEE, Kurashiki, Japan: 563-568. https://doi.org/10.1109/ROMAN.2004.1374822
https://doi.org/10.1109/roman.2004.1374822
Schaal S (1999). Is imitation learning the route to humanoid robots?. Trends in Cognitive Sciences, 3(6): 233-242.
https://doi.org/10.1016/S1364-6613(99)01327-3
Sung J, Christensen HI, and Grinter RE (2009). Robots in the wild: understanding long-term use. In the 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI), IEEE, La Jolla, USA: 45-52.
https://doi.org/10.1145/1514095.1514106
Sung J, Grinter RE, and Christensen HI (2010). Domestic robot ecology. International Journal of Social Robotics, 2(4): 417-429.
https://doi.org/10.1007/s12369-010-0065-8
Sutton RS and Barto AG (1998). Introduction to reinforcement learning. MIT Press, Cambridge, UK.
https://doi.org/10.1109/tnn.1998.712192
Taichi T, Takahiro M, Hiroshi I, and Norihiro H (2006). Automatic categorization of haptic interactions-what are the typical haptic interactions between a human and a robot?. In the 6th IEEE-RAS International Conference on Humanoid Robots, IEEE: 490-496. https://doi.org/10.1109/ICHR.2006.321318
https://doi.org/10.1109/ichr.2006.321318
Tanaka F, Cicourel A, and Movellan JR (2007). Socialization between toddlers and robots at an early childhood education center. Proceedings of the National Academy of Sciences, 104(46): 17954-17958.
https://doi.org/10.1073/pnas.0707769104
PMid:17984068 PMCid:PMC2084278
Tsagarakis NG, Metta G, Sandini G, Vernon D, Beira R, Becchi F, and Caldwell DG (2007). iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Advanced Robotics, 21(10): 1151-1175.
https://doi.org/10.1163/156855307781389419