Volume 4, Issue 12 (December 2017), Pages: 57-61
----------------------------------------------
Original Research Paper
Title: Single step purification of 2S albumin from Theobroma cacao
Author(s): Nursyuhada Mohamad Zaini 1, Azwan Awang 2, *, Cahyo Budiman 1, Kenneth F. Rodrigues 1
Affiliation(s):
1Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
2Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sabah, Malaysia
https://doi.org/10.21833/ijaas.2017.012.012
Full Text - PDF XML
Abstract:
Diabetes is prevalence in Malaysia affecting 21 % of her adults. The occurrence of this metabolic disease is linked to the excessive intake of high calorie sugar. Although non-sugar sweeteners are available, artificial sweeteners pose adverse side effects to human health while natural sweeteners such as sweet proteins suffer low heat stability thus limiting their utilization in food processing. However, sweet protein mabinlin from the plant mabinlang (Capparis masaikai Levl.) is a promising sugar substitute due to its excellence high heat stability and intense sweetness. Nevertheless, its mass production is hampered by the scarcity of the plant. Recently, 2s albumin in cacao (Theobroma cacao) showed high similarity to mabinlin and has more potential to be produced industrially because cacao are grown by many countries including Malaysia. However, there is no report regarding cocoa mabinlin characteristics, to date. In this study, we had purify 2s albumin, a protein that is correspond to mabinlin in cacao via Ion Exchange Chromatography (IEX). All peaks were pooled and collected, and then run through SDS- PAGE to confirm their purity. Peak 5 eluted from Q HP column in IEX gave a single protein band at 21 kDa after staining with silver nitrate solution. This study hopefully will lead to development of alternative low calorie sweetener from local resources of Malaysia, thus impact on reducing high sugar consumption related diseases, especially diabetes.
© 2017 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Diabetes, Sugar, Theobroma cacao, Sweet Protein, Mabinlin
Article History: Received 7 February 2017, Received in revised form 1 September 2017, Accepted 1 October 2017
Digital Object Identifier:
https://doi.org/10.21833/ijaas.2017.012.012
Citation:
Zaini NM, Awang A, Budiman C, and Rodrigues KF (2017). Single step purification of 2S albumin from Theobroma cacao. International Journal of Advanced and Applied Sciences, 4(12): 57-61
Permanent Link:
http://www.science-gate.com/IJAAS/V4I12/Zaini.html
----------------------------------------------
References (27)
- Agizzio AP, Carvalho AO, Suzanna de Fátima FR, Machado OL, Alves EW, Okorokov LA, Samarão SS, Bloch C, Prates MV, and Gomes VM (2003). A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Archives of Biochemistry and Biophysics, 416(2): 188-195. https://doi.org/10.1016/S0003-9861(03)00313-8
- D'Hondt K, Van Damme J, Van Den Bossche C, Leejeerajumnean S, De Rycke R, Derksen J, Vandekerckhove J, and Krebbers E (1993). Studies of the role of the propeptides of the Arabidopsis thaliana 2S albumin. Plant Physiology, 102(2): 425-433. https://doi.org/10.1104/pp.102.2.425 PMid:8108508 PMCid:PMC158796
- Garino C, Zuidmeer L, Marsh L, Lovegrove A, Morati M, Versteeg S, Schilte P, Shewry P, Arlorio M, and van Ree R (2010). Isolation, cloning, and characterization of the 2S albumin: A new allergen from hazelnut. Molecular Nutrition and Food Research, 54(9): 1257-1265. https://doi.org/10.1002/mnfr.200900456 PMid:20373288
- Gnanavel M and Muthukumar SP (2011). Identification of novel sweet protein for nutritional applications. Bioinformation, 7(3): 112-114. https://doi.org/10.6026/97320630007112 PMid:22125379 PMCid:PMC3218311
- Gu W, Xia Q, Yao J, Fu S, Guo J, and Hu X (2015). Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis. World Journal of Microbiology and Biotechnology, 31(4): 557-567. https://doi.org/10.1007/s11274-015-1809-2 PMid:25649203
- Kochhar S, Gartenmann K, and Juillerat MA (2000). Primary structure of the abundant seed albumin of Theobroma cacao by mass spectrometry. Journal of Agricultural and Food Chemistry, 48(11): 5593-5599. https://doi.org/10.1021/jf0006067 PMid:11087524
- Kochhar S, Gartenmann K, Guilloteau M, and McCarthy J (2001). Isolation and characterization of 2S cocoa seed albumin storage polypeptide and the corresponding cDNA. Journal of Agricultural and Food Chemistry, 49(9): 4470-4477. https://doi.org/10.1021/jf010497b PMid:11559156
- Kratzer U, Frank R, Kalbacher H, Biehl B, Wöstemeyer J, and Voigt J (2009). Subunit structure of the vicilin-like globular storage protein of cocoa seeds and the origin of cocoa- and chocolate-specific aroma precursors. Food Chemistry, 113: 903 -913. https://doi.org/10.1016/j.foodchem.2008.08.017
- Kunishima JN, Shimada Y, Tsuji Y, Sato Y, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, and Morikawa K (2000). Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature, 407(6807): 971-977. https://doi.org/10.1038/35039564 PMid:11069170
- Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259): 680-685. https://doi.org/10.1038/227680a0 PMid:5432063
- Lerceteau E, Rogers J, Pétiard V, and Crouzillat D (1999). Evolution of cacao bean proteins during fermentation: a study by two-dimensional electrophoresis. Journal of the Science of Food and Agriculture, 79(4): 619-625. https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<619::AID-JSFA230>3.0.CO;2-O
- Li X, Staszewski L, Xu H, Durick K, Zoller M, and Adler E (2002). Human receptors for sweet and umami taste. Proceedings of the National Academy of Sciences, 99(7): 4692-4696. https://doi.org/10.1073/pnas.072090199 PMid:11917125 PMCid:PMC123709
- Liu X, Hu Z, Maeda S, Aiuchi T, Nakaya K, and Kurihara Y (1993). Purification, complete amino acid sequence and structural characterization of the heat‐stable sweet protein, mabinlin II. European Journal of Biochemistry, 211(1-2): 281-287. https://doi.org/10.1111/j.1432-1033.1993.tb19896.x PMid:8425538
- Margolskee RF (2002). Molecular mechanisms of bitter and sweet taste transduction. Journal of Biological Chemistry, 277(1): 1-4. https://doi.org/10.1074/jbc.R100054200 PMid:11696554
- Masuda T and Kitabatake N (2006). Developments in biotechnological production of sweet proteins. Journal of Bioscience and Bioengineering, 102(5): 375-389. https://doi.org/10.1263/jbb.102.375 PMid:17189164
- Matano M, Nakajima K, Kashiwagi Y, Udaka S, and Maehashi (2015). Sweetness characterization of recombinant human lysozyme. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 188: 8-14. https://doi.org/10.1016/j.cbpb.2015.05.009 PMid:26027787
- Monsalve RI, Villalba M, Rico M, Shewry PR, and Rodríguez R (2004). Plant Food Allergens. Blackwell Publishing Ltd, Hoboken, USA. PMid:15628306
- Moreno FJ and Clemente A (2008). 2S albumin storage proteins: what makes them food allergens?. The Open Biochemistry Journal, 2(1): 16-28. https://doi.org/10.2174/1874091X00802010016 PMid:18949071 PMCid:PMC2570561
- Muto T, Tsuchiya D, Morikawa K, and Jingami H (2007). Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proceedings of the National Academy of Sciences, 104(10): 3759–3764. https://doi.org/10.1073/pnas.0611577104 PMid:17360426 PMCid:PMC1820657
- Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Rhyba NJ, and Zuker CS (2001). Mammalian sweet taste receptors. Cell, 106(3): 381-390. https://doi.org/10.1016/S0092-8674(01)00451-2
- Niemenak N, Kaiser E, Maximova SN, Laremore T, and Guiltinan MJ (2015). Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao. Journal of Plant Physiology, 180: 49-60. https://doi.org/10.1016/j.jplph.2015.02.011 PMid:25889873
- Nirasawa S, Nishino T, Katahira M, Uesugi S, Hu Z, and Kurihara Y (1994). Structures of heat‐stable and unstable homologues of the sweet protein mabinlin. The FEBS Journal, 223(3): 989-995.
- Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, and Yamamoto M (2000). Crystal structure of rhodopsin: AG protein-coupled receptor. Science, 289(5480):739-745. https://doi.org/10.1126/science.289.5480.739 PMid:10926528
- Picone D and Temussi PA (2012). Dissimilar sweet proteins from plants: Oddities or normal components?. Plant Science, 195: 135-142. https://doi.org/10.1016/j.plantsci.2012.07.001 PMid:22921007
- Pin JP, Kniazeff J, Goudet C, Bessis AS, Liu J, Galvez T, Acher F, Ronard P, and Prezeu L (2004). The activation mechanism of class‐CG‐protein coupled receptors. Biology of the Cell, 96(5): 335-342. https://doi.org/10.1111/j.1768-322X.2004.tb01423.x PMid:15207901
- Rega MF, Di Monaco R, Leone S, Donnarumma F, Spadaccini R, Cavella S, and Picone D (2015). Design of sweet protein based sweeteners: hints from structure–function relationships. Food Chemistry, 173: 1179-86. https://doi.org/10.1016/j.foodchem.2014.10.151 PMid:25466141
- Schiffman SS (2012). Rationale for further medical and health research on high-potency sweeteners. Chemical Senses, 37(8): 671-679. https://doi.org/10.1093/chemse/bjs053 PMid:22539626 PMCid:PMC3440882
|