International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 4, Issue 12 (December 2017), Pages: 145-150

----------------------------------------------

 Original Research Paper

 Title: Unified laguerre-based poly-Apostol-type polynomials

 Author(s): Burak Kurt *

 Affiliation(s):

 Department of Mathematics, Faculty of Educations University of Akdeniz, TR-07058 Antalya, Turkey

 https://doi.org/10.21833/ijaas.2017.012.025

 Full Text - PDF          XML

 Abstract:

In this paper, we define and investigate the unified Laguerre-based poly-Apostol type polynomials. We obtain some identities and recurrence relations for these polynomials. Some symmetry identities and multiplication formula are also given. 

 © 2017 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Polylogarithm functions, Poly-Bernoulli polynomials, Hermite polynomials, Unified Apostol-Bernoulli, Euler and genocchi polynomials, Unified laguerre-based poly-Apostol type polynomials

 Article History: Received 9 August 2017, Received in revised form 4 October 2017, Accepted 5 October 2017

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2017.012.025

 Citation:

 Kurt B (2017). Unified laguerre-based poly-Apostol-type polynomials. International Journal of Advanced and Applied Sciences, 4(12): 145-150

 Permanent Link:

 http://www.science-gate.com/IJAAS/V4I12/Kurt.html

----------------------------------------------

 References (18)

  1. Bayad A and Hamahata Y (2011). Polylogarithms and poly-Bernoulli polynomials. Kyushu Journal of Mathematics, 65(1): 15-24. https://doi.org/10.2206/kyushujm.65.15 
  2. Dattoli G and Torre A (1998). Operational methods and two variable Laguerre polynomials. Atti della Reale Accademia delle Scienze di Torino, 132: 1-7.     
  3. Hamahata Y (2014). Poly-euler polynomials and arakawa-kaneko type zeta. Functiones et Approximatio Commentari Math, 51(1): 7-22. https://doi.org/10.7169/facm/2014.51.1.1 
  4. Khan NU and Usman T (2016). A new class of Laguerre-based generalized Apostol polynomials. Fasciculi Mathematici, 57(1): 67-89. https://doi.org/10.1515/fascmath-2016-0017 
  5. Kim D and Kim T (2015). A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials. Russian Journal of Mathematical Physics, 22(1): 26-33. https://doi.org/10.1134/S1061920815010057 
  6. Kim T, Jang YS, and Seo JJ (2014). A note on poly-Genocchi numbers and polynomials. Applied Mathematical Sciences, 8(96): 4475-4781. https://doi.org/10.12988/ams.2014.46465 
  7. Kurt V (2016a). Some symmetry ıdentities for the unified Apostol-type polynomials and multiple power sums. Filomat, 30(3): 583-892. https://doi.org/10.2298/FIL1603583K 
  8. Kurt V (2016b). On the unified family of generalized Apostol-type polynomials of higher order and multiple power sums. Filomat, 30(4): 929-935. https://doi.org/10.2298/FIL1604929K 
  9. Luo QM (2009). The multiplication formulas for the Apostol–Bernoulli and Apostol–Euler polynomials of higher order. Integral Transforms and Special Functions, 20(5): 377-391. https://doi.org/10.1080/10652460802564324 
  10. Luo QM and Srivastava HM (2005). Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials. Journal of Mathematical Analysis and Applications, 308(1): 290-302. https://doi.org/10.1016/j.jmaa.2005.01.020 
  11. Ozarslan MA (2011). Unified Apostol–bernoulli, euler and genocchi polynomials. Computers and Mathematics with Applications, 62(6): 2452-2462. https://doi.org/10.1016/j.camwa.2011.07.031 
  12. Ozarslan MA (2013). Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials. Advances in Difference Equations, 2013: 116. https://doi.org/10.1186/1687-1847-2013-116 
  13. Ozden H, Simsek Y, and Srivastava HM (2010). A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Computers and Mathematics with Applications, 60(10): 2779-2787. https://doi.org/10.1016/j.camwa.2010.09.031 
  14. Pathan MA and Khan WA (2014). Some implicit summation formulas and symmetric identities for the generalized Hermite-Euler polynomials. East-West Journal of Mathematics, 16(1): 92-109.     
  15. Pathan MA and Khan WA (2015). Some implicit summation formulas and symmetric identities for the generalized Hermite–Bernoulli polynomials. Mediterranean Journal of Mathematics, 12(3): 679-695. https://doi.org/10.1007/s00009-014-0423-0 
  16. Pathan MA and Khan WA (2016). A new class of generalized polynomials associated with Hermite and Euler polynomials. Mediterranean Journal of Mathematics, 13(3): 913-928. https://doi.org/10.1007/s00009-015-0551-1 
  17. Srivastava H and Manocha HL (1984). Treatise on generating functions. John Wıley and Sons, Inc., New York, USA.     
  18. Srivastava HM (2011). Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Applied Mathematics and Information Sciences, 5(3): 390-444.