International Journal of Advanced and Applied Sciences

Int. j. adv. appl. sci.

EISSN: 2313-3724

Print ISSN: 2313-626X

Volume 4, Issue 10  (October 2017), Pages:  106-115


Original Research Paper

Title: Transient and recurrence processes in open system

Author(s): Vladimirsky Eduard Iosifovich *, Ismailov Bahram Israfil

Affiliation(s):

Department of Instrumentation Engineering, Azerbaijan State Oil and Industrial University, Baku, Azerbaijan

https://doi.org/10.21833/ijaas.2017.010.015

Full Text - PDF          XML

Abstract:

The results of studies of transient and recurrent processes in open systems are shown. Questions related to the features of fractional systems - generalized memory are considered. As a criterion for estimating the dynamics of the studied processes, we propose a generalized Poincare spectrum characterizing the dimensionality of the geometric, information, and dynamic properties of transient and recurrent processes. The proposed axiomatic shows the connection between generalized memory and the repetition of Poincare. Developed a mathematical model of the transition process in multidimensional fractional chaotic systems. 

© 2017 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Poincare recurrence, Generalized memory, Tsallis entropy, Fractional hyperchaotic systems

Article History: Received 18 May 2017, Received in revised form 11 August 2017, Accepted 20 August 2017

Digital Object Identifier: 

https://doi.org/10.21833/ijaas.2017.010.015

Citation:

Iosifovich VE and Israfil IB (2017). Transient and recurrence processes in open system. International Journal of Advanced and Applied Sciences, 4(10): 106-115

Permanent Link:

http://www.science-gate.com/IJAAS/V4I10/Iosifovich.html


References (27)

  1. Afrajmovich V, Ugalde Je, and Urias H (2011). Fraktalnye razmernosti dlya vremen vozvrashheniya Puankare. Izhevskij Institut Kompyuternyx Issledovanij, Moscow, Russia. 
  2. Altmann EG and Tél T (2008). Poincaré recurrences from the perspective of transient chaos. Physical Review Letters, 100(17): 174101. https://doi.org/10.1103/PhysRevLett.100.174101 PMid:18518290     
  3. Brox D (2017). The Riemann Hypothesis and Emergent Phase Space. Journal of Modern Physics, 8(4), Article ID: 74714, 24 pages. https://doi.org/10.4236/jmp.2017.84030 
  4. Butkovskiy AG, Postnov SS, and Postnova EA (2013). Drobnoe integrodifferentsialnoe ischislenie i ego prilozheniya v teorii upravleniya. I Matematicheskie Osnovyi i Problema Interpretatsii, AiT, 4: 3-42.     
  5. Chirikov BV (1979). A universal instability of many-dimensional oscillator systems. Physics reports, 52(5): 263-379. https://doi.org/10.1016/0370-1573(79)90023-1 
  6. Grigorenko I and Grigorenko E (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91(3): 034101. https://doi.org/10.1103/PhysRevLett.91.034101    PMid:12906418     
  7. Ibedou I and Miyata T (2008). The theorem of Pontrjagin-Schnirelmann and approximate sequences. New Zealand Journal of Mathematics, 38: 121-128.     
  8. Ismailov BI (2016). Poincare recurrence in open systems. Journal of Multidisciplinary Engineer in Science and Technology, 3(9): 5565-5569.     
  9. Kusch HA and Ottino JM (1992). Experiments on mixing in continuous chaotic flows. Journal of Fluid Mechanics, 236: 319-348. https://doi.org/10.1017/S0022112092001435 
  10. Lahlou TA and Oppenheim AV (2014). Spectral representation of transient signals. In the IEEE Global Conference Signal and Information Processing, IEEE, Atlanta, USA: 660-663.  https://doi.org/10.1109/GlobalSIP.2014.7032200 
  11. Lekien F, Shadden SC, and Marsden JE (2007). Lagrangian coherent structures in n-dimensional systems. Journal of Mathematical Physics, 48(6): 065404. https://doi.org/10.1063/1.2740025 
  12. Leonov GA and Kuznetsov NV (2011). Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems. IFAC Proceedings Volumes, 44(1): 2494-2505. https://doi.org/10.3182/20110828-6-IT-1002.03315 
  13. Liu J and Teel AR (2014). Hybrid systems with memory: modelling and stability analysis via generalized solutions. IFAC Proceedings Volumes, 47(3): 6019-6024. https://doi.org/10.3182/20140824-6-ZA-1003.02085 
  14. Marwan N, Romano MC, Thiel M, and Kurths J (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5): 237-329. https://doi.org/10.1016/j.physrep.2006.11.001 
  15. Nigmatullin RR (1992). Drobnyj integral. Teoreticheskaya i matematicheskaya fizika, 90(3): 354-367.     
  16. Norris JR (1998). Markov chains. Cambridge University Press, Cambridge, UK.     
  17. Riesz M (1949). L'intégrale de Riemann-Liouville et le problème de Cauchy. Acta mathematica, 81(1): 1-222. https://doi.org/10.1007/BF02395016 
  18. Shadden SC (2011). Lagrangian coherent structures. In: Grigoriev R (Ed.), Transport and mixing in laminar flows: from Microfluidics to Oceanic Currents: 59–89. Wiley-VCH, Weinheim, Germany. https://doi.org/10.1002/9783527639748.ch3 
  19. Sierociuk D and Ziubinski P (2014). Fractional order estimation schemes for fractional and integer order systems with constant and variable fractional order colored noise. Circuits, Systems, and Signal Processing, 33(12): 3861-3882. https://doi.org/10.1007/s00034-014-9835-0 
  20. Tarasov VE (2010). Fractional dynamics of open quantum systems. In: Fractional Dynamics. Nonlinear Physical Science: pp.467-490. Springer, Berlin, Heidelberg, Germany.  https://doi.org/10.1007/978-3-642-14003-7_20 
  21. Teo CHG (2012). Brownian motion and Liouville's theorem. Available online at: http://math.uchicago.edu/~may/ REU2012/REUPapers/Teo.pdf     
  22. Tsallis C and Tirnakli U (2010). Nonadditive entropy and nonextensive statistical mechanics–Some central concepts and recent applications. Journal of Physics: Conference Series, 201(1): 1-15. https://doi.org/10.1088/1742-6596/201/1/012001 
  23. Vaidyanathan S and Volos C (2017). Advances in memristors, memristive devices and systems. Springer International Publishing, Berlin, Germany. https://doi.org/10.1007/978-3-319-51724-7 
  24. Vladimirsky EI and Ismailov BI (2015). Synchronization, control and stability of fractional order hyper chaotic systems in the context of the generalized memory. International Journal of New Technology and Research, 1(8): 42-48.     
  25. Vladimirsky EI and Ismailov BI (2016). Fractional-order chaotic filter with generalized memory. International Journal of Contemporary Applied Sciences 3(4): 46-61.     
  26. Weng T, Small M, Zhang J, and Hui P (2015). Lévy walk navigation in complex networks: A distinct relation between optimal transport exponent and network dimension. Scientific Reports. https://doi.org/10.1038/srep17309 
  27. Zaslavsky GM (2002). Chaos, fractional kinetics, and anomalous transport. Physics Reports, 371(6): 461-580. https://doi.org/10.1016/S0370-1573(02)00331-9