International Journal of Advanced and Applied Sciences

Int. j. adv. appl. sci.

EISSN: 2313-3724

Print ISSN: 2313-626X

Volume 4, Issue 1  (January 2017), Pages:  96-101


Title: Slowly oscillating sequences in locally normal Riesz spaces

Author(s):  Bipan Hazarika 1, *, M. Kemal Ozdemir 2, Ayhan Esi 3

Affiliation(s):

1Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Arunachal Pradesh, India
2Department of Mathematics, Science and Arts Faculty, Inonu University, Malatya, Turkey
3Department of Mathematics, Science and Arts Faculty, Adiyaman University, Adiyaman, Turkey

https://doi.org/10.21833/ijaas.2017.01.014

Full Text - PDF          XML

Abstract:

In the present paper, we are going to introduce and at the same time investigate the notion of slowly oscillating sequences, study on slowly oscillating compactness and slowly oscillating continuous functions in locally normal Riesz space. For this purpose, first of all, we are going to try to put forward some fundamental theorems about oscillating continuity, slowly oscillating compactness, sequential continuity and uniform continuity. Secondly, the newly obtained results in this paper can also be obtained with the definition of quasi-slowly oscillating and Δ-quasi-slowly oscillating sequences in terms of fuzzy points. Finally, most of the related theorems and lemmas are presented clearly. 

© 2017 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Riesz space Continuity, Quasi-Cauchy sequence, Slowly oscillating sequences

Article History: Received 2 November 2016, Received in revised form 23 December 2016, Accepted 9 January 2017

Digital Object Identifier: 

https://doi.org/10.21833/ijaas.2017.01.014

Citation:

Hazarika B, Ozdemir MK, and Esi A (2017). Slowly oscillating sequences in locally normal Riesz spaces. International Journal of Advanced and Applied Sciences, 4(1): 96-101

http://www.science-gate.com/IJAAS/V4I1/Hazarika.html


References:

Albayrak H and Pehlivan S (2012). Statistical convergence and statistical continuity on locally solid Riesz spaces. Topology and its Applications, 159: 1887-1893.
https://doi.org/10.1016/j.topol.2011.04.026
Aliprantis CD and Burkinshaw O (2003). Locally Solid Riesz Spaces with Applications to Economics. 2nd Edition, American Mathematical Society, Providence, RI.
https://doi.org/10.1090/surv/105
Alotaibi A, Hazarika B, and Mohiuddine SA (2014a). On lacunary statistical convergence of double sequences in locally solid Riesz spaces. Journal of Computational Analysis and Applications, 17(1): 156-165.
Alotaibi A, Hazarika B, and Mohiuddine SA (2014b). On the ideal convergence of double sequences in locally solid Riesz spaces. Abstract and Applied Analysis, 2014: Article ID 396254, 6 pages. 
https://doi.org/10.1155/2014/396254
Burton D and Coleman J (2010). Quasi-Cauchy Sequences. American Mathematical Monthly, 117(4): 328-333.
https://doi.org/10.4169/000298910x480793

Cakalli H (2008). Slowly oscillating continuity. Abstract and Applied Analysis, 2008: Article ID 485706, 5 pages.

https://doi.org/10.1155/2008/485706

Cakalli H (2011a). Forward continuity. Journal of Computational Analysis and Applications, 13(2): 225-230.
Cakalli H (2011b). Statistical-quasi-Cauchy sequences. Mathematical and Computer Modelling, 54(5-6): 1620-1624.
https://doi.org/10.1016/j.mcm.2011.04.037
Cakalli H (2011c). On G-continuity. Computers & Mathematics with Applications, 61: 313-318.
https://doi.org/10.1016/j.camwa.2010.11.006
Cakalli H (2011d). δ-quasi-Cauchy sequences. Mathematical and Computer Modelling, 53: 397-401.
https://doi.org/10.1016/j.mcm.2010.09.010
Cakalli H and Das P (2009). Fuzzy compactness via summability. Applied Mathematics Letters, 22(11): 1665-1669.
https://doi.org/10.1016/j.aml.2009.05.015
Cakalli H and Hazarika B (2012). Ideal-quasi-Cauchy sequences. Journal of Inequalities and Applications, 2012: 1-11. 
https://doi.org/10.1186/1029-242X-2012-234
Connor J and Grosse-Erdmann KG (2003). Sequential definitions of continuity for real functions. The Rocky Mountain Journal of Mathematics, 33(1): 93-121.
https://doi.org/10.1216/rmjm/1181069988

Dik M and Canak I (2010). New types of continuities. Abstract and Applied Analysis, 2010: Article ID 258980, 6 pages.

https://doi.org/10.1155/2010/258980

Fast H (1951). Sur la convergence statistique. Colloquium Mathematicae, 2(3-4): 241-244.
Fridy JA (1985). On statistical convergence. Analysis, 5(4): 301-313.
https://doi.org/10.1524/anly.1985.5.4.301
Hazarika B (2013a). On fuzzy real valued generalized difference I-convergent sequence spaces defined by Musielak-Orlicz function. Journal of Intelligent & Fuzzy Systems, 25(1): 9-15.
Hazarika B (2013b). Lacunary difference ideal convergent sequence spaces of fuzzy numbers. Journal of Intelligent & Fuzzy Systems, 25(1): 157-166.
Hazarika B (2014a). Ideal convergence in locally solid Riesz spaces. Filomat, 28(4): 797-809.
https://doi.org/10.2298/FIL1404797H

Hazarika B (2014b). Second order ideal-ward continuity. International Journal of Analysis, 2014: Article ID 480918, 4 pages.

https://doi.org/10.1155/2014/480918

Hazarika B (2014c). On σ-uniform density and ideal convergent sequences of fuzzy real numbers. Journal of Intelligent & Fuzzy Systems, 26(2): 793-799.
Hazarika B (2016). Ideally Slowly Oscillating sequences. Boletim da Sociedade Paranaense de Matematica, 34(1): 129-139.
https://doi.org/10.5269/bspm.v34i1.24932
Hazarika B and Esi A (2016a). On ideal convergence in locally solid Riesz spaces using lacunary mean. Proceedings of the Jangjeon Mathematical Society, 19(2): 253-262.
Hazarika B and Esi A (2016b). On ϕ-ideal ward continuity. Facta Universitatis, Series: Mathematics and Informatics, 31(3): 681-690.
Hazarika B and Savas E (2011). Some I-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions. Mathematical and Computer Modelling, 54(11-12): 2986-2998.
https://doi.org/10.1016/j.mcm.2011.07.026
Kostyrko P, Šalát T, and Wilczyn'ski W (2000). I-convergence. Real Analysis Exchange, 26(2): 669-686.
Luxemburg WAJ and Zaanen AC (1971). Riesz Spaces I. North-Holland Publishing Company, Amsterdam, Netherlands.
Mohiuddine SA, Alotaibi A, and Mursaleen M (2012). Statistical convergence of double sequences in locally solid Riesz spaces. Abstract and Applied Analysis, 2012: Article ID 719729, 9 pages. 
https://doi.org/10.1155/2012/719729

Mohiuddine SA, Hazarika B and Alotaibi A (2013). Double lacunary density and some inclusion results in locally solid Riesz spaces. Abstract and Applied Analysis, 2013: Article ID 507962, 8 pages.

https://doi.org/10.1155/2013/507962

Riesz F (1928). Sur la décomposition des opérations fonctionelles linéaires. Atti del Congresso Internazionale dei Matematici Bologna, 3: 143-148.
Roberts GT (1952). Topologies in vector lattices. Mathematical Proceedings of the Cambridge Philosophical Society, 48(4): 533-546.
https://doi.org/10.1017/S0305004100076295
Tripathy BC and Baruah A (2010). Nörlund and Riesz mean of sequences of fuzzy real numbers. Applied Mathematics Letters, 23(5): 651-655.
https://doi.org/10.1016/j.aml.2010.02.006
Vallin RW (2011). Creating slowly oscillating sequences and slowly oscillating continuous functions, With an appendix by Vallin and Cakalli. Acta Mathematica Universitatis Comenianae, 58(1): 71-78.
Zannen AC (1997). Introduction to Operator Theory in Riesz Spaces. Springer-Verlag, Berlin, Germany.
https://doi.org/10.1007/978-3-642-60637-3