International Journal of Advanced and Applied Sciences

Int. j. adv. appl. sci.

EISSN: 2313-3724

Print ISSN:2313-626X

Volume 3, Issue 8  (August 2016), Pages:  36-42


Title: Numerical solution of fuzzy initial value problem (FIVP) using optimization

Authors:  Ali Asghar Behroozpoor *, Ali Vahidian Kamyad, Mohammad Mehdi Mazarei

Affiliation(s):

Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, International Campus, Mashhad, Iran

http://dx.doi.org/10.21833/ijaas.2016.08.007

Full Text - PDF          XML

Abstract:

In this paper, we introduce a new approach to obtain a novel numerical solution of fuzzy initial value problem (FIVP). This technique is based on optimization problem. In fact, the optimal solution of optimization problem is approximated solution of fuzzy initial value problem. Theoretical consideration is discussed and some examples are presented to show the ability of the method for fuzzy initial value problem. 

© 2016 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Fuzzy, Initial value problem, Optimization, Linear programming, Numerical solution

Article History: Received 2 June 2016, Received in revised form 13 August 2016, Accepted 16 August 2016

Digital Object Identifier: http://dx.doi.org/10.21833/ijaas.2016.08.007

Citation:

Behroozpoor AS, Vahidian Kamyad A, and Mazarei MM (2016). Numerical solution of fuzzy initial value problem (FIVP) using optimization. International Journal of Advanced and Applied Sciences, 3(8): 36-42

http://www.science-gate.com/IJAAS/V3I8/Behroozpoor.html


References:

Abbasbandy S and Viranloo TA (2002). Numerical solutions of fuzzy differential equations by Taylor method. Computational Methods in Applied Mathematics, 2(2): 113-124.
http://dx.doi.org/10.2478/cmam-2002-0006
Abbasbandy S, Viranloo TA, Lopez-Pouso O and Nieto JJ (2004). Numerical methods for fuzzy differential inclusions. Computers and Mathematics with Applications, 48(10): 1633-1641.
http://dx.doi.org/10.1016/j.camwa.2004.03.009
Allahviranloo T (2004). Numerical methods for fuzzy system of linear equations. Applied Mathematics and Computation, 155(2): 493-502.
http://dx.doi.org/10.1016/S0096-3003(03)00793-8
Allahviranloo T (2005a). Successive over relaxation iterative method for fuzzy system of linear equations. Applied Mathematics and Computation, 162(1): 189-196.
http://dx.doi.org/10.1016/j.amc.2003.12.085
Allahviranloo T (2005b). The Adomian decomposition method for fuzzy system of linear equations. Applied Mathematics and Computation, 163(2), 553-563.
http://dx.doi.org/10.1016/j.amc.2004.02.020
Allahviranloo T, Ahmady N and Ahmady E (2006). Two step method for fuzzy differential equations. In International Mathematical Forum, 1(17-20): 823-832.
http://dx.doi.org/10.12988/imf.2006.06069
Allahviranloo T, Ahmady N and Ahmady E (2007). Numerical solution of fuzzy differential equations by predictor–corrector method. Information Sciences, 177(7): 1633-1647.
http://dx.doi.org/10.1016/j.ins.2006.09.015
Bede B and Gal SG (2005). Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems, 151(3): 581-599.
http://dx.doi.org/10.1016/j.fss.2004.08.001
Bede B and Stefanini L (2013). Generalized differentiability of fuzzy-valued functions. Fuzzy Sets and Systems, 230: 119-141.
http://dx.doi.org/10.1016/j.fss.2012.10.003
Diamond P (2000). Stability and periodicity in fuzzy differential equations. IEEE Transactions on Fuzzy Systems, 8(5): 583-590.
http://dx.doi.org/10.1109/91.873581
Dubios D and Prade H (1982). Towards Fuzzy Differential Calclus: Part 3, differentiation. Fuzzy Sets and Systems (8): 225-233.
http://dx.doi.org/10.1016/S0165-0114(82)80001-8
Friedman M, Ming M and Kandel A (1998). Fuzzy linear systems. Fuzzy Sets and Systems, 96(2): 201-209.
http://dx.doi.org/10.1016/S0165-0114(96)00270-9
http://dx.doi.org/10.1016/S0165-0114(97)00416-8
Hüllermeier E (1999). Numerical methods for fuzzy initial value problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 7(05): 439-461.
http://dx.doi.org/10.1142/S0218488599000404
Kaleva O (1987). Fuzzy differential equations. Fuzzy Sets and Systems, 24(3): 301-317.
http://dx.doi.org/10.1016/0165-0114(87)90029-7
Kaleva O (1990). The Cauchy problem for fuzzy differential equations. Fuzzy sets and systems, 35(3): 389-396.
http://dx.doi.org/10.1016/0165-0114(90)90010-4
Ma M, Friedman M and Kandel A (1999). Numerical solutions of fuzzy differential equations. Fuzzy Sets and Systems, 105(1): 133-138.
http://dx.doi.org/10.1016/S0165-0114(97)00233-9
Mizukoshi MT, Barros LC, Chalco-Cano Y, Román-Flores H and Bassanezi RC (2007). Fuzzy differential equations and the extension principle. Information Sciences, 177(17): 3627-3635.
http://dx.doi.org/10.1016/j.ins.2007.02.039
Puri ML and Ralescu DA (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications, 91(2): 552-558.
http://dx.doi.org/10.1016/0022-247X(83)90169-5
Seikkala S (1987). On the fuzzy initial value problem. Fuzzy Sets and Systems, 24(3): 319-330.
http://dx.doi.org/10.1016/0165-0114(87)90030-3
Vroman A, Deschrijver G and Kerre EE (2008). Using parametric functions to solve systems of linear fuzzy equations with a symmetric matrix. International Journal of Computational Intelligence Systems, 1(3): 248-261.
http://dx.doi.org/10.2991/ijcis.2008.1.3.5
http://dx.doi.org/10.1080/18756891.2008.9727622
http://dx.doi.org/10.2991/jnmp.2008.1.3.5
Zadeh LA (1965). Fuzzy sets. Information and Control, 8(3): 338-353.
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
Zimmermann HJ (1996). Fuzzy Control. In Fuzzy Set Theory—and Its Applications. Springer Netherlands: 203-240.
http://dx.doi.org/10.1007/978-94-015-8702-0_11