International Journal of Advanced and Applied Sciences

Int. j. adv. appl. sci.

EISSN: 2313-3724

Print ISSN:2313-626X

Volume 3, Issue 7  (July 2016), Pages:  24-34


Title: Down‐regulation of CD68 after simvastatin treatment of isoproterenol‐induced myocardial infarction in rats

Authors:  Muhammad Atteya

Affiliations:

Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia

Department of Histology, Faculty of Medicine, Cairo University, Egypt

http://dx.doi.org/10.21833/ijaas.2016.07.005

Full Text - PDF          XML

Abstract:

Isoproterenol (ISO) induces myocardial injuries in the form of ischemia and infarction (MI). Simvastatin (SIM) is a lipid-soluble inhibitor of hydroxy-3-methylglutaryl coenzyme A reductase with multiple reported therapeutic benefits. The present study was designed to evaluate the effect of pre-treatment with SIM on ISO-induced cardiac infarction in rats. Forty-eight rats were divided into four groups. Group I (control) received normal saline. Group II (SIM) received SIM (10 mg/kg body weight, orally by gavage) for 30 days. Group III (ISO) received ISO (5 mg/kg) intraperitoneally for 7 days to induce cardiac injury. Group IV (ISO/SIM); received SIM (10 mg/kg body weight, orally by gavage) for 30 days and in the last 7 days they received ISO (5 mg/kg) intraperitoneally. Serological analysis for detection of cardiac injury markers (troponin-T and creatine phosphokinase-MB “CPK-MB”) and inflammatory markers (IL-6 and TNF-α) was done. Cardiac tissues were processed for histological examination (H&E and Masson’s trichrome) and for the immunohistological quantitative analysis of CD68. Administration of ISO induced an increase in heart weight to body weight (HW/BW) ratio and elevation of systolic and diastolic blood pressure. Serological analysis revealed an increase of interleukin-6, troponin-T, (CPK-MB), and tumor necrosis factor-α (TNF-α). Histopathological examination of heart tissue revealed thickening of the left ventricle and inter-ventricular septum, large focal areas of sub-endocardial degeneration, mononuclear cellular infiltrations, and massive interstitial fibrosis. In addition, ISO-treated rats exhibited significant up-regulation of CD68. Pre-treatment with SIM significantly attenuated ISO-induced cardiac hypertrophy and necrosis, alleviated the elevated biochemical parameters and CD68 expression, and improved the heart histopathological changes. This study provides evidence that SIM minimizes the ischemic effect of ISO on the heart of rats through inhibition of inflammatory cellular infiltration, especially macrophages, as confirmed by down-regulation of CD68. 

© 2016 The Authors. Published by IASE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Isoproterenol, Simvastatin, Myocardial infarction, CD68

Article History: Received 11 May 2016, Received in revised form 10 July 2016, Accepted 11 July 2016

Digital Object Identifier: http://dx.doi.org/10.21833/ijaas.2016.07.005

Citation:

Atteya M  (2016). Down‐regulation of CD68 after simvastatin treatment of isoproterenol‐induced myocardial infarction in rats. International Journal of Advanced and Applied Sciences, 3(7): 24-34

http://www.science-gate.com/IJAAS/V3I7/Atteya.html


References:

Adameova A, Harcarova A, Matejikova J, Pancza D, Kuzelova M, Carnicka S, Svec P, Bartekova M, Styk J and Ravingerova T (2009). Simvastatin alleviates myocardial contractile dysfunction and lethal ischemic injury in rat heart independent of cholesterol-lowering effects. Physiological Research, 58(3): 449-454.
PMid:19627175
 
Arslan F, Smeets MB, O'Neill LA, Keogh B, McGuirk P, Timmers L, Tersteeg C, Hoefer IE, Doevendans PA, Pasterkamp G and de Kleijn DP (2010). Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation, 121(1): 80-90.
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.880187
PMid:20026776
 
Arthur GD and Belcastro AN (1997). A calcium stimulated cysteine protease involved in isoproterenol induced cardiac hypertrophy. Molecular and Cellular Biochemistry, 176(1-2): 241-248.
http://dx.doi.org/10.1023/A:1006857213829
PMid:9406168
 
Baldwin KM, Ernst SB, Mullin WJ, Schrader LF and Herrick RE (1982). Exercise capacity and cardiac function of rats with drug-induced cardiac enlargement. Journal of Applied Physiology, 52(3): 591-595.
PMid:6461621
 
Bowling N, Wyss VL, Gengo PJ, Utterback B, Kauffman RF and Hayes JS (1990). Cardiac inotropic responses to calcium and forskolin are not altered by prolonged isoproterenol infusion. European Journal of Pharmacology, 187(2): 155-164.
http://dx.doi.org/10.1016/0014-2999(90)90002-N
 
Brooks WW and Conrad CH (2009). Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: structural and functional correlates. Comparative Medicine, 59(4): 339-343.
PMid:19712573 PMCid:PMC2779208
 
Bu PL, Zhao XQ, Wang LL, Zhao YX, Li CB and Zhang Y (2008). Tong-xin-luo capsule inhibits left ventricular remodeling in spontaneously hypertensive rats by enhancing PPAR-gamma expression and suppressing NF-kappaB activity. Chinese Medical Journal-Beijing-English Edition, 121(2): 147-154.
 
Chang J, Nair V, Luk A and Butany J (2013). Pathology of myocardial infarction. Diagnostic Histopathology, 19(1): 7-12.
http://dx.doi.org/10.1016/j.mpdhp.2012.11.001
 
Chen LY, Pan CS, Wei XH, Li L, Han JY and Huang L (2013). Sang-qi Granula Reduces Blood Pressure and Myocardial Fibrosis by Suppressing Inflammatory Responses Associated with the Peroxisome Proliferator-Activated Receptors and Nuclear Factor kappa B Protein in Spontaneously Hypertensive Rats. Evidence-Based Complementary and Alternative Medicine, 2013: Article ID 721729, 12 pages.
 
Chen Y-Q, Zhao L-Y, Zhang W-Z and Li T (2015). Simvastatin reverses cardiomyocyte hypertrophy via the upregulation of phosphatase and tensin homolog expression. Experimental and Therapeutic Medicine, 10(2): 797-803.
http://dx.doi.org/10.3892/etm.2015.2550
 
Cihak R, Kolar F, Pelouch V, Prochazka J, Ostadal B and Widimsky J (1992). Functional changes in the right and left ventricle during development of cardiac hypertrophy and after its regression. Cardiovascular Research, 26(9): 845-850.
http://dx.doi.org/10.1093/cvr/26.9.845
PMid:1451161
 
Crowther M, Brown NJ, Bishop ET and Lewis CE (2001). Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. Journal of Leukocyte Biology, 70(4): 478-490.
PMid:11590184
 
Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Stromberg A, van Veldhuisen DJ, Atar D, Hoes AW, Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K and Guidelines ESCCfP (2008). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). European Journal of Heart Failure, 10(10): 933-989.
http://dx.doi.org/10.1016/j.ejheart.2008.08.005
PMid:18826876
 
Ennis IL, Escudero EM, Console GM, Camihort G, Dumm CG, Seidler RW, Camilion de Hurtado MC and Cingolani HE (2003). Regression of isoproterenol-induced cardiac hypertrophy by Na+/H+ exchanger inhibition. Hypertension, 41(6): 1324-1329.
http://dx.doi.org/10.1161/01.HYP.0000071180.12012.6E
PMid:12732584
 
Goyal SN, Arora S, Sharma AK, Joshi S, Ray R, Bhatia J, Kumari S and Arya DS (2010). Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastuctural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine, 17(3-4): 227-232.
http://dx.doi.org/10.1016/j.phymed.2009.08.009
PMid:19747807
 
Haunstetter A and Izumo S (1998). Apoptosis: basic mechanisms and implications for cardiovascular disease. Circulation research, 82(11): 1111-1129.
http://dx.doi.org/10.1161/01.RES.82.11.1111
PMid:9633912
 
Iwakura K, Ito H, Kawano S, Okamura A, Kurotobi T, Date M, Inoue K and Fujii K (2006). Chronic pre-treatment of statins is associated with the reduction of the no-reflow phenomenon in the patients with reperfused acute myocardial infarction. European Heart Journal, 27(5): 534-539.
http://dx.doi.org/10.1093/eurheartj/ehi715
PMid:16401674
 
Jaffe AS, Landt Y, Parvin CA, Abendschein DR, Geltman EM and Ladenson JH (1996). Comparative sensitivity of cardiac troponin I and lactate dehydrogenase isoenzymes for diagnosing acute myocardial infarction. Clinical Chemistry, 42(11): 1770-1776.
PMid:8906075
 
Kaden J (2007). IL-6 determination in serum of kidney graft recipients by a new bedside test: its diagnostic relevance. In Transplantation Proceedings, 39(2): 511-513.
http://dx.doi.org/10.1016/j.transproceed.2006.12.015
PMid:17362770
 
Kapur NK and Musunuru K (2008). Clinical efficacy and safety of statins in managing cardiovascular risk. Vascular Health and Risk Management, 4(2): 341-353.
PMid:18561510 PMCid:PMC2496987
 
Koh KK, Sakuma I and Quon MJ (2011). Differential metabolic effects of distinct statins. Atherosclerosis, 215(1): 1-8.
http://dx.doi.org/10.1016/j.atherosclerosis.2010.10.036
PMid:21130454
 
Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ and Sabbadini RA (1996). Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. Journal of Clinical Investigation, 98(12): 2854-2865.
http://dx.doi.org/10.1172/JCI119114
PMid:8981934 PMCid:PMC507753
 
Lewis CE and Pollard JW (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2): 605-612.
http://dx.doi.org/10.1158/0008-5472.CAN-05-4005
PMid:16423985
 
Lin YC (1973). Hemodynamics in the rat with isoproterenol induced cardiac hypertrophy. Research Communications in Chemical Pathology And Pharmacology, 6(1): 213-220.
PMid:4270173
 
Liu J, Shen Q and Wu Y (2008). Simvastatin prevents cardiac hypertrophy in vitro and in vivo via JAK/STAT pathway. Life Sciences, 82(19-20): 991-996.
http://dx.doi.org/10.1016/j.lfs.2008.02.012
PMid:18400235
 
Lopez AD (1992). Assessing the burden of mortality from cardiovascular diseases. World Health Statistics Quarterly. Rapport Trimestriel de Statistiques Sanitaires Mondiales, 46(2): 91-96.
 
Lorell BH and Carabello BA (2000). Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation, 102(4): 470-479.
http://dx.doi.org/10.1161/01.CIR.102.4.470
PMid:10908222
 
Manickavasagam S, Ye Y, Lin Y, Perez-Polo RJ, Huang MH, Lui CY, Hughes MG, McAdoo DJ, Uretsky BF and Birnbaum Y (2007). The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation. Cardiovascular Drugs and Therapy, 21(5): 321-330.
http://dx.doi.org/10.1007/s10557-007-6036-0
PMid:17620005
 
Merla R, Ye Y, Lin Y, Manickavasagam S, Huang MH, Perez-Polo RJ, Uretsky BF and Birnbaum Y (2007). The central role of adenosine in statin-induced ERK1/2, Akt, and eNOS phosphorylation. American Journal of Physiology-Heart and Circulatory Physiology, 293(3): H1918-H1928.
http://dx.doi.org/10.1152/ajpheart.00416.2007
PMid:17616749
 
Molojavyi A, Lindecke A, Raupach A, Moellendorf S, Kohrer K and Godecke A (2010). Myoglobin-deficient mice activate a distinct cardiac gene expression program in response to isoproterenol-induced hypertrophy. Physiological Genomics, 41(2): 137-145.
http://dx.doi.org/10.1152/physiolgenomics.90297.2008
PMid:20145201
 
Nian M, Lee P, Khaper N and Liu P (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94(12): 1543-1553.
http://dx.doi.org/10.1161/01.RES.0000130526.20854.fa
PMid:15217919
 
Papparella I, Ceolotto G, Montemurro D, Antonello M, Garbisa S, Rossi G and Semplicini A (2008). Green tea attenuates angiotensin II-induced cardiac hypertrophy in rats by modulating reactive oxygen species production and the Src/epidermal growth factor receptor/Akt signaling pathway. The Journal of Nutrition, 138(9): 1596-1601.
PMid:18716156
 
Patel V, Upaganlawar A, Zalawadia R and Balaraman R (2010). Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: A biochemical, electrocardiographic and histoarchitectural evaluation. European Journal of Pharmacology, 644(1-3): 160-168.
http://dx.doi.org/10.1016/j.ejphar.2010.06.065
PMid:20624385
 
Pfeffer MA and Braunwald E (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 81(4): 1161-1172.
http://dx.doi.org/10.1161/01.CIR.81.4.1161
PMid:2138525
 
Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D and Gras G (2005). Macrophage activation switching: an asset for the resolution of inflammation. Clinical and Experimental Immunology, 142(3): 481-489.
http://dx.doi.org/10.1111/j.1365-2249.2005.02934.x
 
Prince PS and Rajadurai M (2005). Preventive effect of Aegle marmelos leaf extract on isoprenaline-induced myocardial infarction in rats: biochemical evidence. Journal of Pharmacy and Pharmacology, 57(10): 1353-1357.
http://dx.doi.org/10.1211/jpp.57.10.0015
PMid:16259765
 
Rathore N, John S, Kale M and Bhatnagar D (1998). Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues. Pharmacological Research, 38(4): 297-303.
http://dx.doi.org/10.1006/phrs.1998.0365
PMid:9774493
 
Richey PA and Brown SP (1998). Pathological versus physiological left ventricular hypertrophy: a review. J Sports Sci, 16(2): 129-141.
http://dx.doi.org/10.1080/026404198366849
PMid:9531002
 
Sathish V, Ebenezar KK and Devaki T (2003). Synergistic effect of Nicorandil and Amlodipine on tissue defense system during experimental myocardial infarction in rats. Molecular and Cellular Biochemistry, 243(1-2): 133-138.
http://dx.doi.org/10.1023/A:1021612230000
PMid:12619898
 
Screaton G and Xu XN (2000). T cell life and death signalling via TNF-receptor family members. Current Opinion in Immunology, 12(3): 316-322.
http://dx.doi.org/10.1016/S0952-7915(00)00093-5
 
Steffens S, Montecucco F and Mach F (2009). The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thromb Haemost, 102(2): 240-247.
http://dx.doi.org/10.1160/th08-12-0837
 
Stein B, Bartel S, Kirchhefer U, Kokott S, Krause EG, Neumann J, Schmitz W and Scholz H (1996). Relation between contractile function and regulatory cardiac proteins in hypertrophied hearts. American Journal of Physiology-Heart and Circulatory Physiology, 270(6): H2021-H2028.
 
Steyn K, Sliwa K, Hawken S, Commerford P, Onen C, Damasceno A, Ounpuu S, Yusuf S and Africa IIi (2005). Risk factors associated with myocardial infarction in Africa: the INTERHEART Africa study. Circulation, 112(23): 3554-3561.
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.563452
PMid:16330696
 
Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R and Sorg C (1994). Macrophages and angiogenesis. Journal of Leukocyte Biology, 55(3): 410-422.
PMid:7509844
 
Takayama N, Kai H, Kudo H, Mori T, Fukui D, Takemiya K, Kawai Y, Koga M, Yasukawa H and Imaizumi T (2006). Simvastatin attenuates cardiac hypertrophy, but not myocardial fibrosis, in spontaneously hypertensive rats with and without large blood pressure variability. Journal of Cardiac Failure, 12(8): S162.
http://dx.doi.org/10.1016/j.cardfail.2006.08.091
 
Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, Kitakaze M and Liao JK (2001). Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. The Journal of Clinical Investigation, 108(10): 1429-1437.
http://dx.doi.org/10.1172/JCI13350
PMid:11714734 PMCid:PMC209420
 
Tanaka M, Nakae S, Terry RD, Mokhtari GK, Gunawan F, Balsam LB, Kaneda H, Kofidis T, Tsao PS and Robbins RC (2004). Cardiomyocyte-specific Bcl-2 overexpression attenuates ischemia-reperfusion injury, immune response during acute rejection, and graft coronary artery disease. Blood, 104(12): 3789-3796.
http://dx.doi.org/10.1182/blood-2004-02-0666
PMid:15280201
 
Tang L and Taylor PB (1996). Altered contractile function in isoproterenol-induced hypertrophied rat heart. Journal of Hsypertension, 14(6): 751-757.
http://dx.doi.org/10.1097/00004872-199606000-00011
PMid:8793698
 
Taylor PB and Tang Q (1984). Development of isoproterenol-induced cardiac hypertrophy. Can J Physiol Pharmacol, 62(4): 384-389.
http://dx.doi.org/10.1139/y84-061
PMid:6203632
 
Vassallo DV, Vasquez EC and Cabral AM (1988). Contractile performance of papillary muscles of renovascular hypertensive and isoproterenol-pretreated rats. Pharmacological Research Communications, 20(1): 61-72.
http://dx.doi.org/10.1016/S0031-6989(88)80607-6
 
Wan L-H, Chen J, Li L, Xiong W-B and Zhou L-M (2011). Protective effects of Carthamus tinctorius injection on isoprenaline-induced myocardial injury in rats. Pharmaceutical Biology, 49(11): 1204-1209.
http://dx.doi.org/10.3109/13880209.2011.576348
PMid:22014268
 
Wang Q, Cui W, Zhang H-L, Hu H-J, Zhang Y-N, Liu D-M and Liu J (2013). Atorvastatin suppresses aldosterone-induced neonatal rat cardiac fibroblast proliferation by inhibiting ERK1/2 in the genomic pathway. Journal of Cardiovascular Pharmacology, 61(6): 520-527.
http://dx.doi.org/10.1097/FJC.0b013e31828c090e
PMid:23429584
 
Watts JA, Gellar MA, Obraztsova M, Kline JA and Zagorski J (2008). Role of inflammation in right ventricular damage and repair following experimental pulmonary embolism in rats. International Journal of Experimental Pathology, 89(5): 389-399.
http://dx.doi.org/10.1111/j.1365-2613.2008.00610.x
PMid:18808531 PMCid:PMC2613983
 
Wexler BC (1978). Myocardial infarction in young vs old male rats: pathophysiologic changes. American Heart Journal, 96(1): 70-80.
http://dx.doi.org/10.1016/0002-8703(78)90128-X
 
Yeager JC and Iams SG (1981). The hemodynamics of isoproterenol-induced cardiac failure in the rat. Circulatory Shock, 8(2): 151-163.
PMid:7226440
 
Yung CK, Halperin VL, Tomaselli GF and Winslow RL (2004). Gene expression profiles in end-stage human idiopathic dilated cardiomyopathy: altered expression of apoptotic and cytoskeletal genes. Genomics, 83(2): 281-297.
http://dx.doi.org/10.1016/j.ygeno.2003.08.007
PMid:14706457
 
Zhang J, Liao Y, Cheng X, Chen J, Chen P, Gao X and Zhang Z (2006). Myosin specific-T lymphocytes mediated myocardial inflammation in adoptive transferred rats. Cellular and Molecular Immunology, 3(6): 445-451.
PMid:17257498
 
Zhang W, Elimban V, Nijjar MS, Gupta SK and Dhalla NS (2003). Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Experimental and Clinical Cardiology, 8(4): 173-183.
PMid:19649217 PMCid:PMC2719157
 
Zhao JL, Yang YJ, Cui CJ, You SJ and Gao RL (2006). Pretreatment with simvastatin reduces myocardial no-reflow by opening mitochondrial K(ATP) channel. British Journal of Pharmacology, 149(3): 243-249.
http://dx.doi.org/10.1038/sj.bjp.0706862
PMid:16921391 PMCid:PMC2014278
 
Zheng H and Lu GM (2015). Reduction of prohibitin expression contributes to left ventricular hypertrophy via enhancement of mitochondrial reactive oxygen species formation in spontaneous hypertensive rats. Free Radical Research, 49(2): 164-174.
http://dx.doi.org/10.3109/10715762.2014.991724
PMid:25465279