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Chronic kidney disease (CKD) is a serious global health problem with high 
mortality rates, often due to late diagnosis. Early detection and classification 
are essential to improve treatment outcomes and slow disease progression. 
This study evaluates the performance of four machine learning algorithms—
linear discriminant analysis (LDA), Naïve Bayes, C4.5 decision tree, and 
Random Forest—in classifying CKD using a Kaggle dataset containing 1,659 
instances and 52 features, covering demographic, lifestyle, and clinical data. 
After data pre-processing, the classification accuracies of the algorithms 
were assessed. LDA showed the highest accuracy at 92.8%, followed by Naïve 
Bayes (92.1%), C4.5 (92.0%), and Random Forest (91.9%) before 
hyperparameter tuning. After tuning, C4.5 achieved the highest accuracy of 
92.5%, followed by Random Forest (92.2%), with Naïve Bayes remaining at 
92.1%. However, even after tuning, LDA remained the most accurate, 
demonstrating superior performance. The key features contributing to CKD 
classification were serum creatinine, glomerular filtration rate (GFR), muscle 
cramps, protein in urine, fasting blood sugar, itching, systolic blood pressure, 
blood urea nitrogen (BUN), HbA1c, edema, total cholesterol, body mass index 
(BMI), and gender. These findings confirm that LDA outperforms other 
algorithms in CKD classification without the need for tuning, emphasizing the 
value of machine learning in improving early diagnosis and management of 
CKD. 
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1. Introduction 

*Chronic kidney disease is a silent assassin with a 
high risk of fatality due to its delayed symptoms 
which may also vary from one patient to another 
(Owens et al., 2020). Early detection and diagnosis 
with high accuracy at the early level show promising 
results in terms of effective medication, and 
mitigation of symptoms becoming worse (Senturk, 
2020). 

Prediction is increasingly gaining popularity 
across diverse fields such as; predicting chronic 
disease (Debal and Sitote, 2022), cancer prognosis 
and prediction (Shaikh and Rao, 2022), 
environmental science for monitoring and predicting 
ecological changes (Hakim et al., 2024), and the 
medical and mental health sectors for diagnosing 
and managing conditions (Chung and Teo, 2022). 
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Prediction plays a pivotal role in the field of 
medicine, particularly in diagnosing illnesses which 
affects proper and accurate decision-making and its 
outcome. Machine learning is a technique that is 
highly used for disease classification and early 
diagnoses of disease (Anqui, 2023). It is a paradigm 
to obtain useful information from a humongous 
amount of data and eventually use this information 
to produce valuable outcomes in addressing certain 
societal issues (Delima, 2019).  

Discriminant analysis, decision trees, Naïve 
Bayes, and random forest are among the numerous 
machine learning techniques that can be utilized for 
classification to extract valuable information from 
large datasets (Dennis and Strafella, 2024). Linear 
Discriminant Analysis (LDA) is a popular technique 
for classification and prediction (Cui et al., 2023), 
based on linear regression (Anqui, 2023). As a 
supervised learning method, it aims to develop a 
discriminant function by applying regression 
analysis. The derived discriminant function is then 
used to assign the regression value to a particular 
category. In discriminant analysis, the dependent 
variable is always categorical, whereas the 
independent variable is continuous by nature. To 
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evaluate the classification accuracy of LDA, this 
study undertakes a comparative analysis. 
Specifically, it examines how well LDA performs by 
comparing its results with those generated by three 
other widely recognized and highly effective 
prediction techniques: The Naïve Bayes algorithm, 
C4.5, and Random Forest. These three methods are 
chosen for their reputation for producing optimal 
outcomes across a range of classification problems, 
making them suitable benchmarks for assessing the 
efficacy of LDA (Sano et al., 2023; Wang et al., 2019; 
Meher et al., 2024). 

2. Review of related literature 

Artificial Intelligence, often referred to as 
machine intelligence, is the ability of machines to 
mimic human thought processes to assist humans 
better perform in the fields of science and 
technology. It involves the accurate interpretation of 
datasets, learning from them, and applying these 
insights to achieve specific objectives (Kaplan and 
Haenlein, 2019). Machine learning, widely regarded 
as a subset of artificial intelligence (Jagdale et al., 
2022), is a method of analyzing vast amounts of data, 
learning from patterns, and eventually performing 
predictions with high efficiency and reliability (Xue 
et al., 2024). One important field that requires highly 
accurate predictions is medical mining (Pareek et al., 
2024), high accuracy prediction is pivotal to the 
medical practitioners to assist them in their 
decision-making such as when diagnosing certain 
illnesses (Mantelakis et al., 2021). The field of 
medicine is increasingly focused on developing new 
approaches that extract knowledge from raw data 
within the medical environment (Chakraborty et al., 
2024), these advancements are poised to have a 
profound impact, benefiting not only medical 
practitioners but also, most importantly to the 
patients (Zampogna et al., 2024). By facilitating 
immediate access to necessary medications, these 
methods help reduce the risk of symptoms becoming 
severe (Wu et al., 2023), and mortality (Yu et al., 
2024). Different machine learning techniques were 
used to predict and prognose diseases such as 
chronic diseases, breast cancer prognosis and 
diagnosis, and Alzheimer among other diseases. The 
study of Bansal et al. (2022) showed that chronic 
diseases like diabetes, cancer, and hypertension are 
crucial for early prevention, with machine learning 
offering predictive capabilities based on medical 
records or checkups. The key to accurate prediction 
lies in data quality, addressing challenges like 
outliers, missing values, and imbalanced data while 
selecting the best machine learning method based on 
performance metrics like accuracy and precision. 
The paper provides a systematic review of machine 
learning techniques, including supervised, ensemble, 
and deep learning, and discusses preprocessing 
approaches to enhance prediction performance. 
Moreover, Rane et al. (2020) explored that breast 
cancer is a leading cancer among women, 
particularly in developing countries where most 

cases are diagnosed at advanced stages. The paper 
compares six machine learning algorithms—Naive 
Bayes, Random Forest, Artificial Neural Networks, K-
Nearest Neighbor, Support Vector Machine, and 
Decision Tree—on the Wisconsin Diagnostic Breast 
Cancer dataset to classify cancer as benign or 
malignant. The best-performing algorithm will serve 
as the backend for a website designed to assist in 
breast cancer diagnosis using MRI data. While, Rani 
et al. (2024) emphasized that Alzheimer’s disease is 
a progressive neurodegenerative disorder affecting 
older adults, and while it has no cure, early diagnosis 
can reduce its impact. This study evaluates the 
performance of decision tree, extreme gradient 
boosting (XGB), and random forest (RF) algorithms 
using the Open Access Series of Imaging Studies 
dataset, with SMOTE applied for balancing. On the 
balanced dataset, the random forest algorithm 
achieved the highest accuracy of 95.03%, making it 
the most effective for predicting Alzheimer’s.  

On the other hand, Rani et al. (2024) 
experimented that Chronic kidney disease (CKD) is a 
lifelong condition that can lead to end-stage kidney 
failure, but early detection and proper treatment can 
slow its progression. This study explores the 
potential of machine learning and predictive 
modeling to identify CKD, narrowing 25 initial 
variables down to the most predictive subset. Among 
the 12 classifiers tested, XgBoost achieved the 
highest performance with accuracy, precision, recall, 
and an F1-score of 0.98, demonstrating the 
effectiveness of advanced machine learning 
techniques for early CKD diagnosis. 

Discriminant Analysis is one of the popular 
machine learning algorithms used for prediction, 
gaining more attention in this big data era (Sun, 
2022). Discriminant analysis is generally employed 
for predictive purposes by which discriminant 
function determines the group membership of a 
particular subject. The process begins with 
formulating the discriminant function by using the 
linear regression concept to determine the predicted 
value, the result is then classified into a specific 
group membership using the cut-off score computed 
using the data set used (Anqui, 2023). Ricciardi et al. 
(2020) used linear discriminant analysis to classify 
patients as either having a coronary artery disease 
or not, results show that LDA alone achieved 84.5% 
accuracy, thus, presenting a practical application of 
data mining technique that helps medical 
practitioners in improving decision-making.  

The Naïve Bayes algorithm is also widely used for 
various prediction tasks, including analyzing tourism 
sentiments. These sentiment predictions are then 
utilized to create visual comparative analyses, 
achieving an accuracy rate of up to 80% (Ricciardi et 
al., 2020). Similarly, the C4.5 algorithm is applied to 
different classification tasks, such as product 
classification in vending machines and secure 
decision support systems. The C4.5 algorithm has 
demonstrated a maximum accuracy of 87%, with the 
lowest recorded accuracy being 67% (Li et al., 2024). 
Based on the findings from the literature review, 
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predicting chronic kidney disease using various 
machine learning techniques offers significant 
advantages, such as helping to prevent the need for 
kidney transplants and dialysis (Chaithra et al., 
2023). Furthermore, to ensure the accuracy of the 
classification algorithm, it is essential to compare its 
results with those of other well-established 
algorithms.  

3. Methodology 

3.1. Data set 

The data set used in this study is outsourced from 
the Kaggle website† with 1659 instances. The dataset 
has 52 features where features 1 to 51 are input 
features (independent/predictor variables) while 
feature 52 is the output (dependent variable), the 
index description of the dataset is shown in Table 1. 

3.2. Data processing 

Before using the dataset as input to the 
algorithms: LDA, Naïve Bayes, and C4.5, multiple 
data processing steps were conducted and are listed 
as follows: 
 
1. Removal of insignificant variables (Patient ID and 

Doctor in charge). 
2. Converting of Age variable from days to years. 
3. Recoding of categorical and binary variables. 

3.3. Linear discriminant analysis 

LDA is a variant of discriminant analysis that is 
based on linear regression, it discriminates a group 
membership of a specific subject. Steps of LDA are as 
follows: 
 
a. Slope equation. The first step is to get the slope 

value to quantify the relationship between the 
independent and dependent variable using this 
equation: 

 

𝑏1 =
∑(𝑥𝑖 − �̂�)(𝑦𝑖 − �̂�)

∑(𝑥𝑖 − �̂�)2
 

 

where, 𝑏1is the computed slope value; 𝑥𝑖  is the score 
of the predictor variable; �̂� is the mean of all 
predictor variable; 𝑦𝑖  is the score of the dependent 
variable; while �̂� is the mean of the output 
(dependent) variable. 
b. Intercept Equation. The second step of the LDA 

process is to compute the intercept value using 
this equation: 

 
𝑏0 =  ỹ −  𝑏1�̂� 
 

where, 𝑏0 is the computed intercept value, ỹ is the 
mean of all dependent features, 𝑏1is the computed 

                                                 
† https://www.kaggle.com/datasets/rabieelkharoua/chronic-kidney-
disease-dataset-analysis 

slope value, while �̂� is the mean of the predictor 
(independent) variable.  
c. Linear Regression Equation. It is used to compute 

the predicted value of the variable (dependent) 
using the 52-predictor variable, this is also known 
as the discriminant function. To compute the 
discriminant function value, use the previously 
computed intercept and slope values using this 
equation: 

 
𝑌 = 𝑎 + 𝑏1𝑋1 +  𝑏2𝑋2 … 𝑏𝑖𝑋𝑖  
 

where, 𝑌 is the output value; 𝑎 is the priorly 
computed intercept score; 𝑏1 is the slope score; 𝑋𝑖  is 
the respondent’s score on the given predictor 
variable; 𝑖 is the number of predictor features of the 
dataset. 
d. Cut-off score. After determining the discriminant 

function and computing the predicted value of the 
dependent variable, the cut-off score must also be 
determined to distinguish the membership of the 
predicted value to a particular group by using this 
equation: 

 

𝑍𝑐 =  
𝑛𝑎𝑧𝑏 + 𝑛𝑏𝑧𝑎

𝑛𝑎 + 𝑛𝑏
 

 

where, 𝑍𝑐  is the centroid value (membership); 𝑛𝑎  is 
the total number in group a (1); 𝑛𝑏 is the total 
number in group b (0); 𝑧𝑎  is the mean of group a; 
𝑧𝑏is the mean of group b. 
e. Significance of regression coefficients. When the 

discriminant function processes multiple 
variables, it is normal to check which independent 
variables significantly contribute to the process 
after the effects of other features are taken into 
account. This can be checked through the stepwise 
statistics, this will display the variables 
entered/removed. 

3.4. Naïve Bayes classifier 

Naïve Bayes algorithm that is based on Bayes’ 
theorem with strong (Naïve) independence 
assumptions between the features. Primarily Naïve 
Bayes is used for classification tasks using the 
following equation: 
 

𝑃(𝐶|𝑋) =  
𝑃(𝐶) 𝑃(𝑥1|𝑐) 𝑃(𝑥2|𝑐) … . . 𝑃(𝑥𝑛|𝑐) 

𝑃(𝑋)
 

 

where, 𝑃(𝐶|𝑋) is the posterior probability of class C 
given the feature vector X; 𝑃(𝐶) is the prior 
probability of class C; 𝑃(𝑥𝑖|𝑐) is the likelihood of 
feature 𝑥𝑖  given class C; 𝑃(𝑋) is the marginal 
likelihood of the feature vector 𝑋.  

3.5. C4.5 classifier 

The C4.5 algorithm is a widely used decision tree 
algorithm and an extension of the earlier ID3 
algorithm, which is commonly applied in machine 
learning for classification tasks. The C4.5 algorithm 

https://www.kaggle.com/datasets/rabieelkharoua/chronic-kidney-disease-dataset-analysis
https://www.kaggle.com/datasets/rabieelkharoua/chronic-kidney-disease-dataset-analysis
https://www.kaggle.com/datasets/rabieelkharoua/chronic-kidney-disease-dataset-analysis
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utilizes the concept of information gain ratio to 
determine the most suitable attribute for splitting 
the data, using the following equation: 
 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝐴) =  
𝐺𝑎𝑖𝑛 (𝐴)

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝐴)
 

 
where, 𝐺𝑎𝑖𝑛 (𝐴) is the information gain obtained by 
using attribute 𝐴 to split the data; while 
𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝐴) is a measure of how 
uniformly the attribute 𝐴 splits the data. 

3.6. Random forest 

Random Forest is a widely used ensemble 
learning method in machine learning that combines 
multiple decision trees to make more accurate and 
robust predictions. It operates by creating a 
collection, or forest, of decision trees, where each 

tree is trained on a different subset of the data and a 
different subset of features. The final prediction is an 
aggregation of the predictions made by the 
individual trees, it makes predictions by majority 
voting for classification or averaging for regression, 
with the general formula: 
 

ŷ =   ∑ 1(𝑇𝑖(𝑥) = 𝑦)

𝑚

𝑖=1

𝑦∈𝑌
𝑎𝑟𝑔𝑚𝑎𝑥

 

 

where, ŷ is the predicted class label, 𝑌 is the set of 
possible class labels, while 𝑇𝑖(𝑥) is the prediction of 
the 𝑖 − 𝑡ℎ tree for input 𝑥.While 𝑚 is the number of 
trees in the forest. On the other hand, 1(𝑇𝑖(𝑥) = 𝑦) is 
the indicator function that is 1 if tree 𝑇𝑖  predicts class 
𝑦, and 0 otherwise. The sum counts how many trees 
predicted each class, and the argmax function selects 
the class with the most votes. 

 
Table 1: Data set 

No. Variable Type 
1 Age Int - years 
2 Gender Categorial: 0: Male, 1: Female 
3 Ethnicity Categorical; 0: Caucasian 1: African American, 2: Asian, 3: Other 
4 Socioeconomic status Categorical; 0: Low, 1: Middle, 2: High 
5 Education level Categorical: 0: None, 1: High School, 2: Bachelors, 3: Higher 
6 BMI Int - continuous 
7 Smoking Binary 
8 Alcohol consumption Int - continuous 
9 Physical activity Int - continuous 

10 Diet quality Int - continuous 
11 Sleep quality Int - continuous 
12 Family history of kidney disease Binary 
13 Family history hypertension Binary 
14 Family history diabetes Binary 
15 Previous acute kidney injury Binary 
16 Urinary tract infection Binary 
17 Systolic BP Int - continuous 
18 Diastolic BP Int - continuous 
19 Fasting blood sugar Int - continuous 
20 HbA1c Int - continuous 
21 Serum creatine Int - continuous 
22 Blood urea nitrogen (BUN) levels Int - continuous 
23 Glomerular filtration rate (GFR) Int - continuous 
24 Protein in urine Int - continuous 
25 ACR Int - continuous 
26 Serum electrolytes sodium Int - continuous 
27 Serum electrolytes potassium Int - continuous 
28 Serum electrolytes calcium Int - continuous 
29 Serum electrolytes phosphorus Int - continuous 
30 Hemoglobin levels Int - continuous 
31 Cholesterol total Int - continuous 
32 Cholesterol LDL Int - continuous 
33 Cholesterol HDL Int - continuous 
34 Cholesterol triglycerides Int - continuous 
35 ACE inhibitors Binary 
36 Diuretics Binary 
37 NSAIDs use Int - continuous 
38 Statins Binary 
39 Antidiabetic medication Binary 
40 Edema Binary 
41 Fatigue levels Int - continuous 
42 Nausea vomiting Int - continuous 
43 Muscle cramps Int - continuous 
44 Itching Int - continuous 
45 Quality of life score Int - continuous 
46 Heavy metal exposure Binary 
47 Occupational exposure chemicals Binary 
48 Water quality Categorical: 0: Good, 1: Poor 
49 Medical checkups frequency Int - continuous 
50 Medication adherence Int - continuous 
51 Health literacy Int - continuous 
52 Diagnosis (absence or presence of CKD) Binary 
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3.7. Hyperparameter tuning 

Hyperparameter tuning is the process of 
adjusting an algorithm's hyperparameters to achieve 
optimal performance. These hyperparameters, 
which include settings like the learning rate, number 
of layers, or regularization strength, are external 
configurations that control how the model learns 
which may also vary from one algorithm to another. 
Selecting the right hyperparameter values is crucial, 
as they directly influence the model's accuracy, 
speed, and ability to generalize to new data. One 
commonly used technique for hyperparameter 
tuning is Random Search, where hyperparameter 
combinations are randomly sampled from 
predefined ranges, rather than exhaustively tested as 
in grid search. This approach offers a more efficient 
exploration of the hyperparameter space. However, 
even when using Random Search, hyperparameters 
can still be manually adjusted for further fine-tuning, 
allowing for flexibility in optimizing the model's 
performance. 

4. Results and discussion 

The classification analysis of CKD was conducted 
using four well-known machine learning algorithms: 
LDA, Naïve Bayes, C4.5, and Random Forest. The 
objective was to determine which algorithm 
performs best in classifying CKD based on a given set 
of predictor variables. To ensure reliability, 
hyperparameter tuning was applied to optimize the 
classification accuracy and validate the performance 
of each algorithm. 

The dataset comprises 52.4% male and 47.6% 
female individuals. Smoking is prevalent, with 56.3% 
of the population identified as smokers, while 43.7% 
are non-smokers. Additionally, 55.7% of the 
population consumes alcohol, whereas 44.3% do not. 
The average Body Mass Index (BMI) in the dataset is 
27.62, which falls into the overweight category. 
These factors are commonly associated with an 
increased risk of CKD. The dataset includes a diverse 
range of symptoms and contributing factors, making 
it suitable for CKD classification. A total of 1,659 
instances were analyzed to evaluate and compare 

the accuracy of the LDA, Naïve Bayes, C4.5, and 
Random Forest algorithms in classifying CKD. The 
results, presented in Table 2, indicate that LDA 
achieved an accuracy of 92.8% on the test data, with 
a slightly reduced accuracy of 92.6% after cross-
validation. The analysis was conducted using 
Statistical Package for the Social Sciences (SPSS) 
software. 

The author identified in the stepwise statistics 
shown in Table 3 that there are 13 key variables that 
significantly affect the diagnosis of chronic kidney 
disease viz; SerumCreatine, GFR, MuscleCramps, 
ProteinInUrine, FastingBloodSugar, Itching, 
SystolicBP, BUNLevels, HbA1c, Edema, 
CholesterolTotal, BMI, and Gender. LDA is not 
limited to classification; it can also perform feature 
extraction to identify which features statistically 
contribute to the prediction or classification process. 
The stepwise process utilizes Wilks' Lambda to 
select features that best discriminate between 
groups in predicting CKD. Lower Lambda values 
indicate better discriminators, with key variables 
like Serum Creatinine, Glomerular Filtration Rate, 
Muscle Cramps, and Protein in Urine significantly 
reducing Lambda, enhancing the model's accuracy. 
Additional features such as Fasting Blood Sugar, 
Itching, Systolic BP, BUN Levels, and HbA1c further 
refine the model, highlighting their metabolic and 
cardiovascular relevance to CKD. The inclusion of 
features like Edema, Cholesterol, BMI, and Gender in 
later steps continues to improve prediction, though 
with smaller incremental gains. The largest 
reductions in Wilks' Lambda occur in the initial 
steps, with Serum Creatinine reducing it from 1 to 
0.960 and GFR lowering it further to 0.929, 
indicating their strong predictive power for 
diagnosing CKD. As more variables are added, the 
reductions become smaller, such as Muscle Cramps 
to 0.918 and Protein in Urine to 0.909, showing that 
the initial features contribute the most to improving 
model accuracy. This systematic selection process 
ensures the most relevant features are used, 
optimizing the model's predictive power. This 
capability allows the LDA classifier to achieve more 
accurate results, even in the absence of feature 
optimization (Hossain et al., 2022). 

 
Table 2: Classification result of LDA 

Classification results 
  

Diagnosis 
Predicted group membership 

Total 
  0 1 

Original 
Count 

0 27 108 135 
1 11 1513 1524 

% 
0 20.0 80.0 100.0 
1 .7 99.3 100.0 

Cross-validated 
Count 

0 23 112 135 
1 11 1513 1524 

% 
0 17.0 83.0 100.0 
1 .7 99.3 100.0 

92.8% of original grouped cases correctly classified; Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the 
functions derived from all cases other than that case; 92.6% of cross-validated grouped cases correctly classified 

 

Table 4 presents the classification results without 
hyperparameter tuning of the Naïve Bayes, C4.5 
algorithms, and Random Forest. Naïve Bayes 
correctly classified 92.1% of instances with a 

precision of 90.9, recall of 92.0 and F1-Score of 91.3, 
while C4.5 correctly classified 92.0% with a 
precision of 89.9, recall of 92.1 and F1-Score of 89.4, 
and Random Forest correctly classified 91.9% with a 
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precision of 92.6, a recall of 91.9 and an F1-Score of 
88.1. In contrast, 7.90% of instances were 
misclassified by Naïve Bayes, 8.0% were 
misclassified by the C4.5 algorithm, and 8.1% were 
misclassified by the Random Forest. Without 
hyperparameter tuning, Naïve Bayes offers the 

highest accuracy and recall, Random Forest excels in 
precision, and C4.5 provides the best balance 
between precision and recall based on the F1-Score. 
All three models perform similarly, with minor 
differences in classification results. 

 
Table 3: Stepwise statistics 

Variables entered/removed 

Step Entered 
Wilks' lambda 

Statistic df1 df2 df3 
Exact F 

Statistic df1 df2 Sig. 
1 Serum creatinine .960 1 1 1657.000 69.853 1 1657.000 .000 
2 GFR .929 2 1 1657.000 63.454 2 1656.000 .000 
3 Muscle cramps .918 3 1 1657.000 48.962 3 1655.000 .000 
4 Protein in urine .909 4 1 1657.000 41.369 4 1654.000 .000 
5 Fasting blood sugar .899 5 1 1657.000 37.022 5 1653.000 .000 
6 Itching .890 6 1 1657.000 33.932 6 1652.000 .000 
7 Systolic BP .881 7 1 1657.000 31.802 7 1651.000 .000 
8 BUN levels .875 8 1 1657.000 29.556 8 1650.000 .000 
9 HbA1c .871 9 1 1657.000 27.100 9 1649.000 .000 

10 Edema .869 10 1 1657.000 24.934 10 1648.000 .000 
11 Cholesterol total .866 11 1 1657.000 23.136 11 1647.000 .000 
12 BMI .864 12 1 1657.000 21.595 12 1646.000 .000 
13 Gender .862 13 1 1657.000 20.308 13 1645.000 .000 

At each step, the variable that minimizes the overall Wilks' lambda is entered; Maximum number of steps is 102; Minimum partial F to enter is 3.84; Maximum 
partial F to remove is 2.71 

 

Table 5 presents the hyperparameter tuning 
process conducted for the Naïve Bayes, C4.5, and 
Random Forest algorithms. It details the tuning 

techniques employed, the manually adjusted 
hyperparameters, and the 10-fold cross-validation 
method used to evaluate model performance. 

 
Table 4: Naïve Bayes, C4.5 results, and random forest results without hyperparameter tuning 

Criteria C4.5 Naïve Bayes Random forest 
Accuracy 92.0% 92.1% 91.9% 
Precision 90.9 89.9 92.6 

Recall 92.0 92.1 91.9 
F1-score 91.3 89.4 88.1 

Correctly classified 1527 1528 1525 
Incorrectly classified 132 131 134 

 
Table 5: Hyperparameter tuning 

Machine learning algorithm Hyperparameter tuning technique Manually adjusted hyperparameter Cross-validation 

C4.5 Random search 
minNumObj = 9 

unpruned = false 
10-Folds Cross-validation 

Naïve Bayes Random search useSupervisedDiscretization=false 10-Folds Cross-validation 

Random forest Random search 
Max-depth = 20 

NumFeatures = 10 
NumIterations = 1000 

10-Folds Cross-validation 

 

Table 6 presents the classification results of the 
machine learning algorithms after hyperparameter 
tuning, the performance results show that C4.5 has 
the highest accuracy at 92.5%, followed by Random 
Forest with 92.2%, and Naïve Bayes slightly behind 
at 92.1%. Random Forest excels in precision with 
92.8%, meaning it is the most accurate in predicting 
positive instances, while C4.5 and Naïve Bayes lag 
behind at 91.4 and 89.8, respectively. C4.5 has the 
best recall at 92.5%, capturing the most actual 
positive cases, while Random Forest and Naïve Bayes 
have similar recall rates of 92.2% and 92.1%. C4.5 
also has the highest F1-Score at 91.8%, indicating 
the best balance between precision and recall, 
whereas Naïve Bayes and Random Forest score 
lower at 89.5 and 88.7, respectively. In terms of 
classification counts, C4.5 correctly classified 1535 
instances, Random Forest 1529, and Naïve Bayes 
1528, with a slightly higher number of 
misclassifications for Naïve Bayes and Random 
Forest. To evaluate the effectiveness of machine 

learning algorithms in predicting CKD, a comparison 
was conducted between LDA, Naïve Bayes, C4.5, and 
random forest as illustrated in Fig. 1. The results 
indicate that LDA outperforms the other three 
algorithms in terms of accuracy without 
hyperparameter tuning. Although all three 
algorithms demonstrate promising results in 
predicting CKD, LDA proved to be the most effective 
among them (Anqui, 2023).  

 
Table 6: Naïve Bayes, C4.5 results, and random forest 

results with hyperparameter tuning 
Criteria C4.5 Naïve Bayes Random forest 

Accuracy 92.5% 92.1% 92.2% 
Precision 91.4 89.8 92.8 

Recall 92.5 92.1 92.2 
F-1 score 91.8 89.5 88.7 

Correctly classified 1535 1528 1529 
Incorrectly classified 124 131 130 

 

Fig. 2 shows the classification accuracy of four 
machine learning algorithms after hyperparameter 
tuning. LDA, which did not undergo hyperparameter 
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tuning but included feature selection, achieved the 
highest accuracy at around 92.6%. C4.5 follows 
closely at just above 92.5%, while Random Forest 
reaches 92.2%. Naïve Bayes, despite undergoing 
hyperparameter tuning, has the lowest accuracy at 
just over 92.1%. Overall, LDA outperforms the other 
algorithms in terms of accuracy (Anqui, 2023; Díaz-
Navarro et al., 2024). 

 

 
Fig. 1: Comparative classification accuracy before 

hyperparameter tuning 
 

 
Fig. 2: Comparative classification accuracy after 

hyperparameter tuning 

5. Conclusion and recommendation 

The primary objective of this study is to evaluate 
the performance of three machine learning 
algorithms in diagnosing CKD, using a specific set of 
predictor variables. Simultaneously, the study aims 
to leverage LDA to determine which features 
significantly contribute to the accuracy of the 
prediction, offering deeper insights into the factors 
that most impact CKD diagnosis. The results of the 
experiment indicate that LDA surpasses the Naïve 
Bayes, C4.5 classifiers, and Random Forest achieving 
an impressive prediction accuracy of 92.6%, 
compared to 92.1%, 92.0%, and 91.9%, respectively 
before hyperparameter tuning, despite tuning the 
hyperparameter LDA still achieved the highest 
accuracy of 92.6% followed by C4.5 with an accuracy 
rate of 92.5%, while random forest achieved 92.2% 
accuracy rate and Naïve Bayes with 92.1% accuracy. 
The findings highlight the effectiveness of LDA as a 
powerful tool for predicting diseases. Future 
research should consider applying LDA to a broader 
range of datasets beyond those used in this study. 
Additionally, integrating optimization techniques, 

such as genetic algorithms and ant colony 
optimization, may improve the model's performance 
and robustness. Exploring these areas could 
significantly advance the field of disease prediction 
and classification through advanced computational 
methods. 
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