
 International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

208

A framework for blockchain-based management of IoT-driven data sharing

Abdulrahman Alreshidi *

College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 31 August 2024
Received in revised form
21 December 2024
Accepted 9 January 2025

Big data systems rely on acquiring, analyzing, and processing diverse data
sets to enable predictive analytics in decision support systems. The
integration of Internet of Things (IoT) devices generates vast amounts of
data, creating challenges related to security, scalability, and efficient data
management in mobile environments. Traditional IoT data sharing platforms
often depend on Trusted Third Parties (TTPs), which compromise security,
transparency, and trust, while also facing constraints like limited storage,
privacy concerns, and high energy consumption. This research proposes a
blockchain-based IoT data management platform utilizing the InterPlanetary
File System (IPFS) to address these issues. The platform defines data access
roles through smart contracts, ensuring data integrity and security while
modernizing legacy systems. Experimental evaluation demonstrates the
platform's efficiency in energy consumption and storage management for
smart communication contracts. Key contributions include a blockchain-
based architecture, algorithms for implementation, and validation using
satellite-sensed data, advancing decentralized data management solutions.

Keywords:
Blockchain architecture
IoT data management
Data integrity
Smart contracts
Decentralized systems

© 2025 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*The Internet of Things (IoT) represents a
multitude of computational entities (things) that are
interconnected via networking technologies,
integrated via software services and sensors to
facilitate data exchange with other systems and
devices (Hammi et al., 2018). Traditional methods
for secure data sharing often fall short in this context
due to processing a massive volume of data,
heterogeneity of devices, lack of trust, and the
absence of transparency in data management (Liang
et al., 2019). Blockchain systems and technologies
can offer a viable solution for a diverse range of
distributed applications where trust and
transparency are critical. Consequently, there is
growing interest in both industry and academia
regarding the integration of IoT systems with
blockchain technology. Several research initiatives
propose connecting IoT systems directly to
blockchain platforms to address secure data
exchange challenges (Hammi et al., 2018; Liang et al.,
2019). Such approaches apply hybrid storage

* Corresponding Author.
Email Address: ab.alreshidi@uoh.edu.sa
https://doi.org/10.21833/ijaas.2025.01.020

 Corresponding author's ORCID profile:
https://orcid.org/0000-0002-9034-3909
2313-626X/© 2025 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

mechanisms, where a provider maintains the data,
and the blockchain ensures integrity and
trustworthy distribution (Xia et al., 2017). For
example, one approach involves storing access
control policies on the blockchain. When a storage
provider receives a request for data access, it can
refer to these policies to determine whether access
should be granted. This enables the storage provider
as the central entity for policy enforcement, whereas
the blockchain system can preserve policy integrity
and allows for transparency and auditing of any
policy changes (Liang et al., 2019).

In the last decade, the research community has
achieved considerable technical advancements in the
adaptation and enhancement of data-sharing
methodologies (Razzaq, 2022). Facilitating
collaboration and making informed decisions are
essential for advancing research-based initiatives.
Data sharing plays a central role in maximizing the
benefits of scientific progress. However, the timing
of data dissemination is critical and must be
carefully considered before the exchange process
begins. This study examines the utilization of
blockchain technology as a secure means for data
sharing and transactions. Blockchain, characterized
by its distributed ledger system, has emerged as a
significant innovation in information technology,
with applications extending beyond financial
domains to various non-financial sectors (Shrestha
and Vassileva, 2018). Traditionally, centralized
authorities, such as cloud servers, have managed

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ab.alreshidi@uoh.edu.sa
https://doi.org/10.21833/ijaas.2025.01.020
https://orcid.org/0000-0002-9034-3909
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2025.01.020&domain=pdf&

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

209

large volumes of data, which introduces risks,
including the potential for single points of failure. To
prevent such failures, third-party services are often
employed to provide data backups. Blockchain,
however, offers a trust-based and transparent
framework, thereby removing the necessity for
intermediaries. Despite its advantages, challenges
persist, particularly concerning the storage and
processing constraints of individual network nodes.
To mitigate these challenges, the peer-to-peer
architecture of the InterPlanetary File System (IPFS)
is being adopted (Benet, 2014). Considering the
context of peer-to-peer data access protocols IPFS as
a content-based protocol protects IoT data by means
of cryptographic techniques, as shown in Fig. 1.
Specifically, by means of cryptographic hashing the
data of text is preserved as unchangeable and
temper-proof (Benet, 2014). IPFS is also useful as it
provides efficient bandwidth utilization, allowing
faster data transfer, and avoiding data duplication.
By relying on IPFS, IPFS objects can allow up to 256
KB of binary data to be wrapped and shared over the
network. In case of larger data volumes exceeding
256 KB, IPFS can split data to store them into
multiple IPFS objects that are linked to the same IoT
data. As a result, IPFS allows an immutable storage
system where any attempts to modify or temper the
value of a file hash are detectable and can be
avoided. A hash string route is supported by IPFS for
data transport for encryption and additional storage
of the data. An overview of the proposed solution is
illustrated in Fig. 1. Fig. 1 shows a synergy of IoT-
based sensing of data and blockchain-driven security
and management of IoT-sensed data. The system
design, algorithmic implementations, and tool
support represent the primary contributions as well
as the building blocks of the proposed solution.

Blockchain

Ingesting
Sensor Data

Propagating
Sensor Data

 IoT
Snsor

Data
Analytics

Blockchain-based IoT-driven Data Sharing

Algorithms

Framework
Architecture

Framework
Implementation

Framework
Evaluation

Fig. 1: A generic overview of the proposed solution

As shown in Fig. 1, the system is presented using

a layered architecture design, that helps system
designers and developers to maintain the layer of

abstraction. The primary contributions of this
research are:

 Blockchain-based framework and architecture that

provides a blueprint and design principles to
architect, implement, and validate IoT-driven data
sharing platform.

 Algorithmic implementation modularizes the
solution such that a set of algorithms can be
developed to automate and parameterize the
proposed solution.

 Experimental validation of the solution by
evaluating a variety of scenarios to assess
solutions’ efficiency in terms of algorithmic
execution performance, gas consumption, query
execution, and response time.

To have an overview and streamlines the

relevant related work on (i) blockchain systems for
digital assets, and (ii) applications of blockchain in
smart systems, the following summarization can be
outlined:

A. Blockchain solutions for IoT-based digital asset

management: In the context of asset digitization,
the Swedish government employed blockchain for
digitizing the real estate industry, particularly in
managing land papers and titles. This approach
aims to enhance the reliability and security of
document updates and exchanges among
stakeholders, enabling user identity confirmation
through smart contracts (Liang et al., 2019). While
the model is in testing, the recordskeeper has
proposed a solution based on public access which
is open-source and protects the documents
(Steichen et al., 2018). This technology offers
heightened security and accessibility across peer
groups, unlike conventional database systems, as it
creates immutable records (Razzaq, 2022).
Records Keeper provides a rigorous framework for
blockchain-based document storage (Nizamuddin
et al., 2019), allowing validation at any time.

B. Blockchain in IoT and smart city systems: Iron
Mountain, a global organization, employs
blockchain technology to securely save and
manage digital data and ensure the network
storage is reliable. This blockchain-assisted
framework serves as an audit trail or version
tracking system, allowing approved network
members to monitor changes, overcoming
concerns of digital asset authenticity and reliance
on untrustworthy third parties. Eleks Labs has
created a unique technique using Ethereum to
secure document transmission for various types of
sensitive data, eliminating the need for third-party
intermediaries. Their permissionless blockchain
enables safe storage and transmission of
documents, including legal agreements, with
cryptographic technology and Ethereum-enabled
smart contracts ensuring security and efficiency
(Razzaq, 2022). Considering the recent research
and development on big data for remote sensing,
capable developments are emerging. A typical

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

210

example of such a case is Analysis Ready Data
(ARD) which is being recommended by the
Committee on Earth Observation Satellites (CEOS),
although challenges remain in data aligning
formats (Ahmad et al., 2023; 2024).

2. Background: Blockchain and IoT in big data
systems

This section provides background information to
contextualize and explain the key concepts of the
proposed solution, based on the illustration in Fig. 2.
It discusses the role of blockchain in big data
systems (Section 2A) and explores the use of IoT in
data analytics (Section 2B). The section introduces
fundamental concepts and technical aspects that will
be referenced throughout the paper.

A. Blockchain Systems in Big Data: First, we
examine the main components of blockchain-based
and IoT-driven platforms designed for the secure
management of IoT-generated data. Additionally, we
review relevant literature that supports and justifies
the contributions of the proposed solution. Kokoris-
Kogias et al. (2021) introduced CALYPSO, a system
for auditable sharing of privacy-sensitive data.
CALYPSO allows data to be stored on the blockchain,
while data access is controlled through a smart
contract. However, one of its limitations is its
inability to handle large volumes of data, which is
essential in real-world applications.

A similar approach by Shafagh et al. (2017)
enables the sharing of time-series data. This solution
allows data owners to define transaction policies
each time they share data with external entities.
Once the data is shared, only the data owner has the
authority to update the transaction policy.

In real-world IoT data-sharing platforms, data
volume and transmission speed are critical
considerations. Existing research and industry
solutions have proposed various data exchange
policies, but few have explored incentive-driven
mechanisms for data sharing.

To address this gap, Rowhani et al. (2017)
investigated the incentivization of secure and private
data sharing for health-critical data. Their study
examined the impact of incentives on the quantity
and success rate of shared medical records. The
findings suggest that further research is needed to
systematically and empirically evaluate incentive
mechanisms for data sharing.

B. IoT for Data Analytics: Data-driven intelligence
and automation in daily life increasingly depend on
IoT systems. IoT devices, sensors, and nodes
generate, consume, and exchange data over
networks (Razzaq, 2020). For IoT systems to
function effectively, they must be designed with
built-in security and privacy, ensuring that end users
and devices can share data securely and with trust.

To promote the adoption of secure-by-design IoT
systems, Hammi et al. (2018) proposed a blockchain-
based decentralized data-sharing model, known as
the "bubble of trust." While this solution enhances
secure data exchange, it has limitations, including

challenges in real-time data exchange and a lack of
adaptability to cryptocurrency rate fluctuations.
Furthermore, storing IoT data on blockchain
platforms presents issues such as data privacy risks,
high maintenance costs, and difficulties in
monitoring IoT networks.

To address these challenges, Liang et al. (2019)
introduced a fabric-based data transport system.
This system organizes and manages IoT data using
dynamically linked records (chains of data) based on
a data consensus mechanism. While this approach
improves the security of real-time data transmission,
it remains inadequate for processing large volumes
of data.

There is a significant storage issue with the
blockchain, especially when a lot of data needs to be
kept on network nodes. The storage capacity of the
terminal node is limited since it cannot support the
storage of very large data. Many issues arise from
this paradox, including the requirement for
extremely powerful computers and the high expense
of handling enormous volumes of data. Steichen et al.
(2018) have introduced a decentralized storage
approach utilizing IPFS to address these issues.
Every node has segments containing the files.
However, a file cannot be seen until users are
authorized with the necessary permissions. This is a
very resourceful way to safeguard private data. Due
to blockchain involvement, the recommended
schemes experience latency when receiving files
from the server.

API Gateway

Sensor Data
Retrieval

Data Storage

BlockchainSmart Contract

Data
administrator

Data User

IoT Server

Fig. 2: Blockchain and IoT in data analytics systems

Nizamuddin et al. (2019) proposed a blockchain-

based data sharing platform. The version
management of the documents is aided by a
framework, which allows for easy tracking of
modifications. On a blockchain network, several
users may collaborate to negotiate document
modifications. Consequently, several versions of
documents may be maintained on a network without
the help of a third party. Additionally, a
decentralized storage system called IPFS is used to
store the data. Ethereum smart contracts facilitate
communication between several parties, including
users and document owners. Based on the
aforementioned current research, we are motivated

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

211

to work on blockchain-based digital data exchange.
Even though most researchers have worked in
related fields, there is still much that can be done to
advance and modify earlier studies to benefit the
research community.

3. Research method and solution overview

This section details the research method that is
used to conduct this study, presented in section 3A.

The overview of the three phases of the research
method is presented in Fig. 3. Fig. 3 shows three
phases as an increment-driven method to enable the
designing, implementation, and validation of the
solution, with each step detailed below. We also
present an overview of the proposed solution that
provides a design framework for solution
implementation. The solution overview is
demonstrated in Fig. 4.

Phase I

Literature Analysis

Phase II
Architecture and Algorithms

Phase III
Solution Evaluation

Energy Efficiency

Data Storage

Solution Architecture

Implementation Algorithms

Literature Review

Mapping Analysis

Evaluation DataSolution

Prototype

State-of-the-Art

Review

Fig. 3: Three phases of the research method

A. Research method: Fig. 3 presents a summary of the
research methodology, illustrating the three
distinct phases involved in the process. Each of the
phases is detailed below, as per the illustration of
methodological steps in Fig. 3.

 Phase I: Literature analysis: Our research journey

commences with an extensive literature review to
gain a profound understanding of the existing
published research and analyze state-of-the-art in
the field. This initial phase focuses on conducting a
thorough comparative analysis between the
existing solutions and our proposed approach. You
can delve deeper into the findings of this literature
review in Section VI, where we provide a
comprehensive discussion.

 Phase II: Architecture representation and
algorithmic design: In the subsequent stage, we
transition from knowledge gathering to the
creation of a blueprint for our solution’s
architecture. Simultaneously, we design the
algorithms that constitute the core of our
approach. Section III offers a detailed insight into
the architectural aspects, while the modularized
implementation of our algorithms is elaborated
upon in Section IV.

 Phase III: Solution evaluation: The final stage of our
research methodology focuses on rigorously
evaluating the efficiency and suitability of our
proposed solution. This phase, outlined in Section
IV, ensures that our approach not only aligns with
our research objectives but also proves its mettle
in addressing real-world challenges.

B. The architecture of the proposed solution: This
section discusses the overall architecture of the
proposed solution that is demonstrated in Fig. 4.
As per Fig. 4, the process of storing the data
ingested by IoT sensors is preserved in the
blockchain that is managed via a smart contract.
When IoT data is passed to IPFS, a package file
containing the hash key is generated that is
uploaded to DApp. DApp allows two types of file
upload that include i) manual upload by the
administrator, and ii) automatic upload by the
system. In the manual uploading type, the
administrator initiates the upload of the IoT data
package file to IPFS and receives the hash key
along with other necessary data that is kept in the
blockchain. Alternatively, if a new package file is
received from any of the deployed IoT servers, the
system uploads it straight. The system then
manages to download the file from the deployed
IoT server and uploads it to IPFS, and obtains the
hash of the file that is stored on the blockchain via
a smart contract. Both of these upload methods of
execution are identical; however, one involves a
human manually uploading data, while the other
involves the machine automatically doing it.

The process of transferring digital data is

initiated by the manual or system by generating
metadata for the source file. Metadata encompasses
information regarding the file, including its name,
type, description, and size. When the metadata is
finished, the whole data file is then uploaded to IPFS.
Fig. 5 provides an illustration of a file upload to IPFS.

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

212

Blockchain

Data administrator

IoT Data
Server

Smart Contract

Automated Upload

Manual Upload

Data + Sensor
Information

Upoad File
to IPFS

Fig. 4: Blockchain-based storage of the IoT-driven data

1: var UploadingType = ReactSession.get ("uploadingType")
2: var location = locationid.options[locationid.selectedIndex].value;
3: const Sensor = this.sensorid.value;
4: const Description = this.descriptionid.value;
5: ipfs.add(this.state.buffer, (error, result) => {
6: console.log ('Ipfs result', result)
7: if (error) {

8: console.error(error)
9: Return

10: }
12: this.props.AddDataPackegeRecord(Sensor, location, result[0]. hash, Description, UploadingType)

})

Fig. 5: The source code snippet to upload data via IPFS

When a file is uploaded to IPFS and then returned
to the administrator or system, a hash of its contents
is created. When IPFS transmits the hash to the
administrator or system, the hash key is mapped
using the available parameters. If this is an
administrator-initiated operation, they will choose
the IoT data package file and use the assigned
system to upload it to IPFS. IPFS will thereafter
supply a hash key. The necessary parameters
(sensor, location, and description) will be associated
by the administrator using the supplied input form.
This information will then be sent to a smart
contract, which will store all of the data on the
blockchain. The system uploading procedure will be
initiated using the same execution method. The
system will obtain the most recent file meant for
upload from the IoT data server by navigating along
the designated path. After that, it will upload the file
directly to IPFS, where it will receive a hash key. This
key will be connected to the existing data and stored
on the blockchain through a smart contract.

 Phase 1 refers to sensor data that IoT nodes have

ingested. There are also many kinds of sensor data.
For an IoT data package, the information has been
compressed into a file for a predetermined
duration of time—roughly ten minutes—but it

might be longer or shorter based on the predefined
parameter. This packet of IoT data was sent to the
IoT server via the gateway service.

 Phase 2 relates to services at the system level:
There are two distinct DApp categories where IoT
data can be uploaded. In order to replace manual
uploading with a system, we have developed a
system uploading service, also referred to as an
auto uploading service. The system service, which
runs on the server's backend, asks the IoT server
for the most recent package file containing IoT
data. The system service obtains the package file
from the server, uploads it to an IPFS server, and
then returns the file's hash to the system. The
system service provides the file hash and other
required information to the smart contract, which
oversees the blockchain's data storage process.

 Phase 3 comprises the system administrator's
manual uploading of the data. The admin still
performs this step manually, but the process for
uploading an IoT package file to IPFS and having it
saved on the blockchain through a smart contract
is the same.

 Phase 4 relates to the uploaded data's public
accessibility. On this public portal, users are able to
explore, view, and download any IoT data package
at no cost. One way to obtain IoT data is through a

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

213

web portal. The user will have several alternatives
for getting access to the data, depending on what
they need.

4. Algorithmic specifications and tools support
for solution implementation

The details of the implementation are covered in
this section. The private Ethereum blockchain
network is the recommended solution. An open-
source distributed network that effectively utilizes
Solidity is called Ethereum. a language for
programming that enables smart contracts.

A. Overviewing the algorithms-based

implementation: In order to implement the
algorithms, there is a need to set up a platform that
allows us to execute the algorithms. This
subsection outlines the technical details of the
platform for algorithmic implementation and
execution.

 Microsoft Visual Studio Code: It is commonly

referred to as VSC, which is a lightweight code
editor that operates across multiple platforms,
including Windows, Linux, and macOS. This dual-
licensed source-code editor is designed to enhance
the coding experience with features such as code
refactoring, integrated Git version control, syntax
highlighting, intelligent code completion, and
advanced debugging capabilities.

 Ganache: It provides an extensive array of tests
and commands that act as an emulator built on the
blockchain. It is possible to perform tests, launch
apps, and create contracts using the personal
Ethereum blockchain executed via Ganache. It
controls how the blockchain operates by
examining the system's states. Ganache is the new
name for it; Test RPC was its previous name.

 Metamask: It is an add-on for a browser that
enables access to a dispersed web. It does not
execute the entire Ethereum node; instead, it
facilitates the execution of Ethereum decentralized
applications directly within the browser. Users can
access their Ethereum wallets through a web
browser.

 IPFS: Data can be moved across IPFS, a distributed
open storage system, by using a hash string path.
Data that is encrypted and contains additional
information is kept there. The paths work in a
similar manner as the traditional universal

resource locator on the web. As a result, by
employing their hash, all IoT data is always
accessible.

B. Algorithmic specifications: The phases of

computation, data storage, and algorithm flow are
shown in Fig. 6. The suggested solution (Fig. 6) and
algorithmic specifications remain consistent since
the operations are mapped using algorithmic
stages.

 Algorithm 1: Creation of the smart contract:

Algorithm 1 displays the uploading feature, which
is discussed in this section. This method involves
uploading data to IPFS while storing the file hash
and mapping several additional attributes within a
smart contract. Many parameters (location of the
sensor, description of sensor, type of upload, and
date of upload) are mapped using a hash of the
submitted data.

 Input(s): A hash key is assigned to the parameters

based on the input received by the algorithm.
 Processing: Upon reading the IoT data file and

converting it into a buffer, the hash key is returned.
Subsequently, this buffer package is uploaded to
IPFS, designated as an IoT data file. The hash key of
the uploaded data, as well as the additional
attributes such as Sensor, Location, Description,
Uploading Type, and Date, is stored on the
blockchain through a smart contract.

 Output: The ultimate goal is to store the mapped
data within the blockchain.

 Algorithm 2: Uploading IoT-driven data to

blockchain platform: This section describes and
algorithm 2 validates the data accessing
functionality. The program retrieves the data from
the blockchain and makes it accessible to the user
as public information. The user can retrieve data
from the blockchain based on the necessary
specifications.

 Input(s): The mapping of the parameters for data

access is done through the algorithm's input.
 Processing: Based on many criteria, such as the

location of the sensor, location, date, and sensor
mapping with a place, the data might be retrieved
from the blockchain.

 Output: The mapping data output is accessible to
the general audience.

Algorithm 1: Creation of the smart contract

1: Input: σ, ℒ,ℎ(γ℘), Δ𝑝, 𝜓, ρD, ϕ𝑝 ▷ Sensor, Location, Hash, Description
2: ▷ Uploading Type, Dat,e Blockchain Address
3: Output: bool
4: procedure SMARTCONTRACT
5: If msg.sender is not ϕ𝑝 then ▷ Get Blockchain address to execute the smart

Contract
6: throw;
7: end if
8: mapping ℎ(γ℘) to (σ/ℒ/ρD) ▷ Map with each parameter
9: end procedure

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

214

Sensors Actuator

S
II
M

Data

Packaging

Data

Unpackaging

IoT Server

Data

File-Hash
Paramet

ers

Mapping with

Parameters

Web ServerIoT Data Data Storage

BlockChain

Database Server

S
m

a
rt

C
o
n

tr
ac

ts

Data Access
Fig. 6: A layered architecture view of the proposed solution

Algorithm 2: Uploading IoT-driven data to blockchain platform

1:

Input: σ, ℒ, Δ𝑝, 𝜓, ρD, θλ ▷ Sensor, Location, Description

2: ▷ Uploading Type, Date, Meta Data File
3: Output: ℛ ▷ Uploading Message
4: procedure DATAUPLOADINGMODULE ▷ Event based function
5: if 𝜓 == User ‖ 𝜓 == System then ▷ Uploading User OR System
6: 𝓕𝑺 ← File(θλ) ▷ Get File stream 𝓕𝑺
7: 𝓕𝑩 ← Bffer.form(𝓕𝑺) ▷ Convert 𝓕𝑺 to Buffer 𝓕𝑩
8: 𝓕𝑯 ← IPFS.add(𝓕𝑩) ▷ Get Hash of Uploaded Data 𝓕𝑯
9: ℛ ← 𝑺𝑩𝑪 (σ, ℒ, 𝓕𝑯, Δ𝑝, 𝜓, ρD) ▷ Store Data to Blockchain with file hash

10: end if
11: end procedure

 Algorithm 3: Secure access of the blockchain-based
data: The case study as shown in Fig. 7
demonstrates the platform where all scenarios are
executed successfully together with the generated
algorithms. Figs. 8a and 8b show how stakeholders
can use custom queries to retrieve IoT data from
an on-premises server and donate IoT datasets to
IPFS's decentralized storage. When the custom
query runs successfully, IPFS receives the data
publication. The start and finish dates, the list of
sensors, and the list of locations where each sensor
is deployed are some of the custom parameters
that the custom query makes use of. The history of
stakeholder-created custom datasets is displayed
in Fig. 7.

 Input(s): The sensor, its position, and the date the
data was sensed are the inputs fed into the
algorithm.

 Processing: The interface receives the processed
data in order to deliver it to the end user. Based on
many criteria, such as the location of the sensor,
description of the sensor, type of upload, and date
of upload, the data might be retrieved from the
blockchain.

 Output: The updated data on the user interface is
the output.

C. Tools and technologies used to implement the

algorithms: This section summarizes the
complementary role of relevant tools and
technology for the proposed solution. The goal of
this discussion is to increase the reader's general
comprehension of technology. The technologies
and tools are stacked, as seen in Fig. 9. The process
of creating a hash key involves placing the sensor
data into a CSV file, encrypting it, and then

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

215

uploading it to the IPFS network. The NodeJS
framework provides numerous tools for the

development of server-side applications. We
employed VSC to launch the NodeJS application.

 CONTRACT ADDRESS

 DatasetsStoring 0xc9Ef8B8B5339Be517392d5034185B3dfD89f72A1

 FUNCTION

 AddCustomDataset(_name:string, _loc: string, _sensor: string, _sdate: string, _edate: string, _edate: string, _fhash: string)

 INPUTS

 My Custome Dataset, All-Locations, All-Sensors, , , QmNb8B8t15DAkyVhVk1gCj9UyfEk8131o6ELhFWrCrX6rZ

Fig. 7: Representation of IoT data in blockchain-based ledger

Algorithm 3: Secure access to the blockchain-based data
1: Input: σ, ℒ, Δ𝑝,ρD ▷ Sensor, Location, Date
2: Output: ℛ, 𝜇 ▷ Display Data
3: procedure INTERFACEMODULE ▷ Event based function
4: if σ == 𝒩 then
5: 𝜇 ← GetData(σ) ▷ Get Data against Sensor
 ρD == 𝒩

6: 𝜇 ← GetData(ρD) ▷ Get Data against given Location
 ℒ == 𝒩

7: 𝜇 ← GetData(ℒ) ▷ Get Data against Location
8: 𝜇 ← GetData(σ, ℒ) ▷ Get Data against Sensor Location
9: end if

10: ℛ ← UpdateDashboard(𝜇) ▷ Update available data on user screen
11: end procedure

UPLOAD DATASET

Upload IoT Data Package Choose file

Sensors List Available Locations

Select...

Browse

Select...

a

MAKE CUSTOM DATASET

Sensors List Available Locations

Select... Select...

Select Data Range (Start) Select Data Range (End)

mm/dd/yyyy mm/dd/yyyy

b

Fig. 8: Case study-based trial for (a) data packaging and (b) selection of IoT sensors

Blockchain

Smart Contract

Data Packaging

TERABLU

Ethereum Metamask

Fig. 9: A layered architecture view of tools and technologies for algorithmic implementation

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

216

5. Evaluation and validity threats

This section outlines the outcomes associated
with the proposed solution. First, the assessment
environment; next, the smart contract's fuel
utilization functioning is evaluated. Next, we
quantify and assess query response (i.e.,
performance), algorithmic execution employing
criteria (i.e., efficiency), and data uploading and
storage to the blockchain. The ISO/IEC-9126 model
(Estdale and Georgiadou, 2018), which is used to
evaluate the quality of software-intensive systems,
serves as the foundation for the assessment criteria.
Potential boundaries that need to be considered are
examined, along with risks to the validity of the
research.

A. Setting up the evaluation environment for the

solution: In the evaluation environment, the
solution is executed on a variety of hardware and
software resources, tracking all of the execution
steps and outcomes along the way. Specifically,
hardware evaluation tests were conducted for
both automatic IoT data uploading and manual
user input using the Windows Platform (core i7
with 16 GB of runtime memory). System testing is
automated by execution evaluation, which is also
known as evaluation scripts in the software
industry. Visual Studio Code was used to run
similar NodeJS scripts built in the ReactJS
programming language. Furthermore, the review
process leverages several pre-existing libraries,
such as (react, web3, ipfs.http), among others. For
example, tracking CPU utilization during data
uploads to IPFS and blockchain storage, as well as
during data retrieval from the blockchain, is done
via a JavaScript performance library script. A
Ganache suite serves the purpose of creating a
local Ethereum blockchain environment, and links
to distributed websites are made possible with the
use of a browser extension called Metamask. Using
gas transaction fees, The Ganache suite, along with
the Metamask extension, facilitates the connection
of local Ethereum accounts to perform system
activities.

B. Evaluating the energy efficiency–gas consumption:
In order for the Ethereum smart contract to
function, it is necessary to compensate for the fuel
utilized. The fuel consumption associated with the
initial data upload was measured to facilitate a
comparison of the fuel demands between the two
distinct methods of uploading the data. The
smallest Ethereum currency, known as Gwei, is
used to quantify fuel use. 109 Wei is referred to as
Gwei. In our suggested solution, the cost of
contract migration execution is shown (Table 1).
The cost is stated in Ether and includes the used
Gas. One unit of ether is equal to the quantity of
gas used multiplied by the price of gas. The gas
used in this arrangement represents the ongoing
expense of computing. In order to adjust for
differences in the value, the network has adjusted
the cost of the system prototype that is now in use

and has an automatic gas restriction set. The total
amount of gas used is 2027188, and the cost of
generating the contract is 0.04054376 in ether.
Contract creation is necessary for the migration,
and it only consumes 28636 gas and costs
0.1926345 (Ether). The overall costs can be
further decreased if the input data is small.

Table 1: Cost analysis for data storage (price of gas=2

Gwei)
Type of execution Utilization of gas Ether cost

Creation of contract 2027188 0.04054376
Call for contract

migration
28636 0.1926345

Cost of contract
(initial)

24723 0.0549561

Cost of migration
(initial)

44656 0.0192457

C. Evaluation environment: The final test item
examined how long it takes users to share
information with others. Data sharing time is
defined as the total amount of time spent reading,
remembering, and sharing data. Fig. 10 shows the
results of multiple sets of experiments we
conducted using an average data size. The average
fuel consumption is around 671,807 Gas for
uploading 450 bytes of data and 1,942,901 Gas for
storing 1500 bytes of data. This illustrates how
fuel consumption increases in tandem with data
size. But when the IoT data was moved to IPFS
using the recommended method, there was no
appreciable change in fuel use, despite the fact that
the volume of data increased.

A sequence diagram illustrating each object in the

network and their interactions is presented in Fig.
11. Five distinct entities are present. Only the
administrator, who has direct access to the dataset,
uses the manual upload entity. The dataset-based
time cycle can be uploaded into the system more
easily thanks to the system upload entity. Any
stakeholder with access to the public domain may be
regarded as a user entity and could retrieve the data
using their own unique queries. The execution flow
is depicted in Fig. 12 to aid in the explanation of how
the system works.

D. Evaluations of query response time: Data querying

is necessary for storing IoT data packages to IPFS
and recording details in the blockchain. The query
response time can be used to assess how well the
solution stores and retrieves data from the
blockchain. We examined two distinct approaches:
the query response time for IoT data stored on
IPFS and the query response time for blockchain
records including file hashes. The query response
time in milliseconds is shown in Fig. 13, where the
vertical axis shows the response time in
milliseconds and the horizontal axis shows the two
distinct execution routines. "Complete function"
describes how the entire process is carried out up
until the point of storing the IoT data package on
IPFS and recording the record detail on the
blockchain along with the IoT data file hash. The

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

217

delay caused by the Smart Contract execution call
made using Metamask is displayed by the "Smart
Contract Function." We also assess the
performance of CPU use while a set of functions is
being executed using smart contracts. Similar to

data exchange, we evaluated every phase of every
tactic. There are a few methods, such as uploading
to IPFS storage, calling encryption of the dataset,
and saving information in the blockchain ledger.

Fig. 10: Gas used in relation to transaction count and block size

Manual
Uploading

(admin)

System
Uploading

User IPFS
Smart

Contract

Upload sensor Data New Package By System

Return Hash of Uploaded Package

Store Package Hash Keys and Other Mapping details to Blockchain by system

Upload Sensor Data Package Manually

Return Hash of Uploaded Package

Store Package Hash Keys and Other Mapping details to Blockchain Manually by Admin

Search Data with Options (Sensor/Location/Date)

Return Hash File Key with Details

Access via Hash Key

Data Retrieved

Fig. 11: UML sequence diagram for data sharing process as a sequence of interactions

1 2 3 4 5 6 7 8 9 10 11 12

Block Size in Bytes 450 450 450 500 500 500 670 670 670 1500 1500 1500

Gas Consumption 793988 733018 488416 797081 611681 611681 829717 829717 809715 2076230 1876237 1876237

1, 793988

2, 733018

3, 488416

4, 797081
5, 611681

6, 611681

7, 829717

8, 829717

9, 809715

10, 2076230

11, 1876237

12, 18762371, 450
2, 450

3, 450

4, 500

5, 500 6, 500

7, 670 8, 670 9, 670

10, 1500

11, 1500 12, 1500

0

500000

1000000

1500000

2000000

2500000

G
as

 C
o

n
su

m
p

ti
o

n

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

218

Fig. 12: Trials to assess the computational time taken for storing data in IPFS and blockchain

Fig. 13: CPU time spent performing calculations

6. Conclusion

The IoT consists of widespread systems that
integrate embedded networks, sensors, and
applications to develop intelligent environments and
systems. Establishing an efficient framework for
exchanging and storing IoT data in dynamic and
potentially hazardous environments is crucial. This
study explores the use of Ethereum smart contracts
to facilitate IoT data exchange through blockchain
technology, thereby creating a decentralized and
reliable access control framework.

An Ethereum smart contract was implemented to
provide a secure and distributed access control
system for IoT data sharing. The proposed approach
utilizes the Ethereum blockchain and the
InterPlanetary File System (IPFS) to ensure secure
storage of IoT data. Smart contracts simplify the
management of access permissions, allowing users
to control and preserve access roles effectively. In
this method, IoT data is encrypted and transferred to
IPFS for decentralized storage. A hash value, along
with additional metadata, is then recorded on the
blockchain ledger for security and verification.

To evaluate the system's performance, an
experiment was conducted using datasets of
different sizes to analyze data upload and access
efficiency. The results showed that as data volume

increased, the upload process became faster and
more efficient. Additionally, it was observed that the
fuel consumption associated with the blockchain-
based upload method remained constant regardless
of data size. Future studies will focus on the
following areas:

 Expanding the proposed solution to other

application domains, such as smart healthcare,
financial technology (FinTech), and smart city
systems.

 Conducting diverse case studies to systematically
evaluate the applicability of the proposed
framework. Empirical validation will be necessary,
relying on experimentation and real-world use
cases to establish practical guidelines for
designing, implementing, and validating
blockchain-based solutions for decentralized data
management.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

11 11
13

9 9
10 10

11

34

40

31

25

14

18
16 16

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

F
u

n
ct

io
n

 E
xe

cu
ti

o
n

 T
im

e
(m

s)

Complete Function Smart Contract Function

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7 8 9 10

C
P

U
 U

sa
g

e
 (

%
)

Number of Execution Call

Data Transmission + IPFS Customization Data + IPFS

Abdulrahman Alreshidi/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 208-219

219

References

Ahmad A, Altamimi AB, and Aqib J (2024). A reference
architecture for quantum computing as a service. Journal of
King Saud University-Computer and Information Sciences,
36(6):102094. https://doi.org/10.1016/j.jksuci.2024.102094

Ahmad A, Waseem M, Liang P, Fahmideh M, Aktar MS, and
Mikkonen T (2023). Towards human-bot collaborative
software architecting with ChatGPT. In the 27th International
Conference on Evaluation and Assessment in Software
Engineering, Association for Computing Machinery, Oulu,
Finland: 279-285.
https://doi.org/10.1145/3593434.3593468

Benet J (2014). IPFS - Content addressed, versioned, P2P file
system. Arxiv Preprint Arxiv:1407.3561.
https://doi.org/10.48550/arXiv.1407.3561

Estdale J and Georgiadou E (2018). Applying the ISO/IEC 25010
quality models to software product. In the 25th European
Conference on Systems, Software and Services Process
Improvement, Springer International Publishing, Bilbao,
Spain: 492-503.
https://doi.org/10.1007/978-3-319-97925-0_42

Hammi MT, Hammi B, Bellot P, and Serhrouchni A (2018). Bubbles
of trust: A decentralized blockchain-based authentication
system for IoT. Computers and Security, 78: 126-142.
https://doi.org/10.1016/j.cose.2018.06.004

Kokoris Kogias E, Alp EC, Gasser L, Jovanovic PS, Syta E, and Ford
BA (2021). CALYPSO: Private data management for
decentralized ledgers. Proceedings of the VLDB Endowment,
14(4): 586-599. https://doi.org/10.14778/3436905.3436917

Liang W, Tang M, Long J, Peng X, Xu J, and Li KC (2019). A secure
fabric blockchain-based data transmission technique for
industrial Internet-of-Things. IEEE Transactions on Industrial
Informatics, 15(6): 3582-3592.
https://doi.org/10.1109/TII.2019.2907092

Nizamuddin N, Salah K, Azad MA, Arshad J, and Rehman MH
(2019). Decentralized document version control using
Ethereum blockchain and IPFS. Computers and Electrical

Engineering, 76: 183-197.
https://doi.org/10.1016/j.compeleceng.2019.03.014

Razzaq A (2020). A systematic review on software architectures
for IoT systems and future direction to the adoption of
microservices architecture. SN Computer Science, 1: 350.
https://doi.org/10.1007/s42979-020-00359-w

Razzaq A (2022). Blockchain-based secure data transmission for
Internet of Underwater Things. Cluster Computing, 25(6):
4495-4514. https://doi.org/10.1007/s10586-022-03701-4

Rowhani-Farid A, Allen M, and Barnett AG (2017). What
incentives increase data sharing in health and medical
research? A systematic review. Research Integrity and Peer
Review, 2: 4.
https://doi.org/10.1186/s41073-017-0028-9
PMid:29451561 PMCid:PMC5803640

Shafagh H, Burkhalter L, Hithnawi A, and Duquennoy S (2017).
Towards blockchain-based auditable storage and sharing of
IoT data. In the Proceedings of the 9th ACM Cloud Computing
Security Workshop (CCSW 2017), Dallas, USA: 45-50.
https://doi.org/10.1145/3140649.3140656

Shrestha AK and Vassileva J (2018). Blockchain-based research
data sharing framework for incentivizing the data owners. In
the Blockchain–ICBC 2018: First International Conference,
Held as Part of the Services Conference Federation, Springer
International Publishing, Seattle, USA: 259-266.
https://doi.org/10.1007/978-3-319-94478-4_19

Steichen M, Fiz B, Norvill R, Shbair W, and State R (2018).
Blockchain-based decentralized access control for IPFS. In the
IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), IEEE, Halifax, Canada: 1499-
1506.
https://doi.org/10.1109/Cybermatics_2018.2018.00253

Xia QI, Sifah EB, Asamoah KO, Gao J, Du X, and Guizani M (2017).
MeDShare: Trust-less medical data sharing among cloud
service providers via blockchain. IEEE Access, 5: 14757-
14767. https://doi.org/10.1109/ACCESS.2017.2730843

https://doi.org/10.1016/j.jksuci.2024.102094
https://doi.org/10.1145/3593434.3593468
https://doi.org/10.48550/arXiv.1407.3561
https://doi.org/10.1007/978-3-319-97925-0_42
https://doi.org/10.1016/j.cose.2018.06.004
https://doi.org/10.14778/3436905.3436917
https://doi.org/10.1109/TII.2019.2907092
https://doi.org/10.1016/j.compeleceng.2019.03.014
https://doi.org/10.1007/s42979-020-00359-w
https://doi.org/10.1007/s10586-022-03701-4
https://doi.org/10.1186/s41073-017-0028-9
https://doi.org/10.1145/3140649.3140656
https://doi.org/10.1007/978-3-319-94478-4_19
https://doi.org/10.1109/Cybermatics_2018.2018.00253
https://doi.org/10.1109/ACCESS.2017.2730843

	A framework for blockchain-based management of IoT-driven data sharing
	1. Introduction
	2. Background: Blockchain and IoT in big datasystems
	3. Research method and solution overview
	4. Algorithmic specifications and tools support for solution implementation
	5. Evaluation and validity threats
	6. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References

