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The presence of missing data in machine learning (ML) datasets remains a 
major challenge in building reliable models. This study explores various 
strategies to handle missing data and provides a framework to evaluate their 
effectiveness. The research focuses on commonly used techniques such as 
zero-filling, deletion, and imputation methods, including mean, median, 
mode, regression, k-nearest neighbors (KNN), and flagging. To assess these 
methods, a detailed evaluation framework is proposed, considering factors 
such as data completeness, model performance, stability, bias, variance, 
robustness to new data, computational efficiency, and domain-specific needs. 
This comprehensive approach allows for a thorough comparison of methods, 
helping to identify the most suitable technique for specific datasets and tasks. 
The findings highlight the importance of considering the unique features of 
the dataset and the goals of the analysis when choosing a method. While 
basic techniques like deletion and zero-filling may be effective in some cases, 
advanced imputation methods often preserve data quality and improve 
model accuracy. By applying the proposed evaluation criteria, researchers 
and practitioners can make better decisions on handling missing data, 
leading to more accurate, reliable, and adaptable ML models. 
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1. Introduction 

*The quality of datasets constitutes a pivotal 
component in the training, validation, and testing of 
ML models, ultimately enabling their effective 
generalization and performance (Alzubaidi et al., 
2023; Sharma et al., 2023; Liu et al., 2023). In 
addition, datasets of superior quality accurately 
mirror real-world variation, enhancing the model's 
capacity to generalize beyond its training examples 
and empowering models to identify patterns and 
make precise predictions (Shamji et al., 2023; 
Pagano et al., 2023). Furthermore, datasets play a 
pivotal role in feature extraction (Kadhim and Radhi, 
2023) and are indispensable in addressing biases, 
ensuring fairness, and preventing the amplification 
of societal biases (Pagano et al., 2023). 

Missing values in datasets can occur due to 
errors, non-response, or technical difficulties. These 
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missing values may be sporadic or widespread, and 
their patterns can vary. Ultimately, the 
characteristics of datasets significantly impact the 
effectiveness of ML models (Albahri et al., 2023; 
Buttia et al., 2023; Mitra et al., 2023). 

When assessing the potential ramifications of 
missing data on ML models, it is imperative to 
comprehend the underlying reasons for its absence. 
To this end, these data can be classified into three 
distinct categories (Jaradat et al., 2024): Missing 
completely at random (MCAR), where the absence of 
data is entirely random; missing at random (MAR), 
where the missingness is correlated with observed 
data; and not missing at random (NMAR), where the 
missingness is correlated with the unobserved data 
itself. A comprehensive understanding of these 
categories is instrumental in devising effective 
strategies for handling missing data. 

The possession of key characteristics is 
indispensable for ensuring the accuracy and 
reliability of model training and predictions. Firstly, 
the relevance and appropriateness of the datasets 
employed for the given problem or task constitute 
essential considerations. Secondly, the overall 
quality and reliability of the datasets, encompassing 
factors such as accuracy, completeness, and 
consistency, are paramount. Thirdly, the diversity of 
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the datasets ensures that they capture a broad 
spectrum of perspectives and scenarios. 
Furthermore, the sufficiency of the datasets provides 
adequate coverage and representation of the 
problem domain (Parhi and Patro, 2023; Liguori et 
al., 2023). 

Additionally, the representativeness of the 
datasets guarantees that they accurately reflect the 
real-world distribution and characteristics of the 
data (Agarwal, 2023). Finally, the balance of the 
datasets is crucial, avoiding biases or skewed 
distributions that could adversely impact model 
performance. Moreover, the fundamental availability 
and accessibility of high-quality datasets that can be 
effectively utilized for model training and evaluation 
are essential. 

Standard techniques employed to impute missing 
values in datasets encompass zero-filling, deletion, 
and imputation utilizing the mean, median, or mode. 
While zero-filling presents a simplistic approach, it 
can introduce biases and distort distributions. On the 
other hand, deletion preserves the observed 
statistics but results in a reduction of sample size. 
Central tendency imputation methods, such as the 
mean, median, and mode, capitalize on informational 
patterns, maintain the structural integrity of the 
data, and are adaptable to various variables. 
However, these methods may still introduce biases 
and distributional shifts. 

The limitations inherent in simple replacement 
methods necessitate the exploration of more 
advanced calculations, such as regression or KNN, to 
address complex scenarios. Regression offers a 
plethora of advantages, including predictive power, 
flexibility, interpretability, and scalability. However, 
it has drawbacks, such as data assumptions, 
sensitivity to outliers, multicollinearity issues, and 
less effectiveness when dealing with categorical 
variables. In contrast, KNN represents a non-
parametric approach capable of handling numerical 
and categorical variables. By leveraging local 
information, KNN offers a relatively simple solution. 
However, it may encounter challenges when dealing 
with high-dimensional datasets, be sensitive to the 
choice of k, and can be computationally complex. 

A plethora of studies have delved into the 
complexities associated with missing data within the 
realm of ML, offering practical methodologies to 
address these challenges. These studies underscore 
the paramount importance of selecting suitable 
approaches based on the unique characteristics of 
the data to optimize outcomes in ML tasks 
(Emmanuel et al., 2021; Palanivinayagam and 
Damaševičius, 2023; Abidin et al., 2018). 

Several publications have employed imputation 
methods to handle missing values in datasets for ML 
tasks effectively (Li et al., 2024; Huang et al., 2024). 
Notably, certain publications have indicated that in 
specific domains of ML, the adoption of more 
straightforward imputation methods could 
potentially yield superior benefits due to the 
distinctive characteristics involved (Chen and 
McCoy, 2024; Liu et al., 2024; Sierra-Porta, 2024). 

Some researchers have posited that simple mean 
imputation can more effectively address missing 
data in ML portfolios characterized by cross-
sectional predictors than complex methodologies 
(Liu et al., 2024). 

Other studies have explored the intricacies of 
handling missing data and imbalanced classes within 
the context of ML to predict consumer preferences. 
These studies discuss various techniques and 
emphasize the criticality of selecting the most 
appropriate approach for specific data and 
objectives. A noteworthy study proposes a system 
that synergizes deep learning and dead reckoning to 
address missing AIS data within maritime traffic 
monitoring effectively. This innovative approach 
aims to enhance the accuracy and robustness of real-
time vessel tracking systems (Sedaghat et al., 2024). 

Imputation techniques are vital in preserving 
sample size and dataset integrity, facilitating 
effective analysis. Common approaches include 
mean/median imputation, regression imputation, 
and KNN. Although zero-imputation may appear 
convenient, it has the potential to introduce biases. 
Deletion methods, while simplifying the process, can 
also reduce sample size and lead to biases. 
Imputation helps retain important information but 
comes with a degree of uncertainty. The selection of 
an imputation method should be based on the 
specific dataset and the problem being addressed. 
Employing a structured evaluation framework is 
crucial to ensure the selected technique's 
effectiveness and to validate results through 
iterative experimentation. The article evaluates each 
technique based on its simplicity, noise reduction, 
efficiency, sample size reduction, bias introduction, 
loss of information, and preservation of statistical 
properties. 

Assessing techniques for handling missing data 
necessitates a thorough approach. Important metrics 
include data completeness, model performance, 
stability, bias, variance, robustness, computational 
efficiency, and factors specific to the domain. These 
metrics are instrumental in evaluating the 
effectiveness of various techniques, considering 
trade-offs and alignment with project objectives. 
Although these metrics have their advantages, they 
also come with limitations. Multiple metrics can 
yield a more holistic understanding but may 
introduce computational complexity. 

The article seeks to simplify the evaluation 
metrics of ML models through clear mathematical 
notations and a comprehensive explanation of how 
to evaluate their effectiveness—whether positive, 
negative, or zero. It provides a robust framework for 
understanding these metrics in practical contexts, 
supported by compelling real-world examples 
illustrating their importance. This contribution 
stands out from others (Nezami et al., 2024; Pagano 
et al., 2023; Kazemi et al., 2024; Albahri et al., 2023; 
Munshi, 2024) by clarifying and including the 
metrics in actual use cases. In doing so, it enables 
readers to understand their importance in real-
world applications, enhances their understanding of 



Ibrahim Atoum/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 112-124 

114 
 

model performance evaluation, and establishes itself 
as an essential resource for researchers and 
practitioners navigating the complexities of ML. 

This article focuses on exploring how missing 
data can impact model performance and 
interpretability within the realm of ML. By 
considering the specific characteristics of the data 
and the task at hand, this article delves into 
strategies for evaluating various approaches to 
handling missing data. Rather than focusing on other 
areas, the article concentrates on the potential 
consequences of missing data on model performance 
and interpretability, offering valuable insights for 
researchers and practitioners. 

This discourse is structured into Three distinct 
sections: Section One presents the analysis of 
missing date techniques. Section Two presents a 
comparative analysis of missing data mitigation 
techniques tailored explicitly for ML Datasets. 
Finally, Section Three concludes with a 
comprehensive summary of the findings and future 
works. 

2. Navigating missing data: A comparative 
analysis of handling techniques 

Imputation techniques, designed to estimate 
missing values within datasets, offer the significant 
advantage of preserving sample size and ensuring 
the integrity of the dataset for subsequent analysis. 
Common strategies employed for this purpose 
include mean/median imputation, mode imputation, 
regression imputation, KNN imputation, and flagging 
(Aubaidan et al., 2024). The optimal choice among 
these techniques is contingent upon the specific 
characteristics of the dataset and the nature of the 
problem at hand. Therefore, a judicious 
consideration of the data context and the goals of the 
analysis is essential to make an informed decision. 

While the expedient approach of zero-imputation 
may initially appear viable, it is imperative to 
exercise caution as it can inadvertently introduce 
biases or distortions into the analysis. Before its 
application, a meticulous examination of the dataset 
and the underlying causes of missing values is 
imperative. Zeros may need to accurately represent 
the true nature of missing data, thereby leading to 
erroneous conclusions. Moreover, the domain-
specific context and significance of the data must be 
carefully considered. For instance, within medical 
data (Tahyudin et al., 2024), a zero value for a vital 
sign such as blood pressure might accurately reflect 
a critical health concern. However, in the context of 
financial data, a zero-stock price could signal a 
significant event, such as a company bankruptcy 
(Alzyadat et al., 2024). The imputation of zeros in 
such instances can distort the analysis, failing to 
capture historical trends accurately. 

In contrast, deletion methods, designed to 
address missing values within datasets, involve the 
removal of observations or variables characterized 
by missingness. While these methods offer the 
advantages of simplicity and the preservation of 

observed data, they can also introduce significant 
drawbacks. These methods can lead to a reduction in 
sample size, potentially compromising the analysis's 
statistical power and generalizability. Furthermore, 
they can introduce biases into the estimates, mainly 
if the missingness is not randomly distributed. 
Additionally, deletion methods may 
disproportionately affect specific subgroups or 
conditions characterized by high rates of missing 
values, leading to biased representation and 
hindering meaningful subgroup analyses. 

The repertoire of deletion methods for 
addressing missing values within datasets 
encompasses listwise deletion, pairwise deletion, 
and column-wise deletion. Listwise deletion involves 
the removal of rows containing missing values, 
resulting in a reduction of the dataset without 
compromising the integrity of the remaining values. 
However, this approach can lead to a loss of 
information if the missingness is reasonably random. 
Pairwise deletion judiciously ignores pairs of 
missing values, enabling analysis with available data 
but potentially leading to varying sample sizes. 
Column-wise deletion involves the removal of 
columns or variables that exceed a predetermined 
threshold or percentage of missing values, which can 
be beneficial for irrelevant variables characterized 
by high levels of missingness. 

Imputation techniques, designed to estimate 
missing values within datasets, offer the significant 
advantage of preserving sample size and ensuring 
the integrity of the dataset for subsequent analysis 
(Sun et al., 2023). By considering the 
interrelationships among variables, these techniques 
reduce bias and capture the underlying patterns of 
missing data (Sierra-Porta, 2024; Zhou et al., 2023). 
Compared to deletion methods, which involve the 
removal of observations characterized by missing 
values, imputation techniques are generally 
preferred due to their ability to retain valuable 
information and mitigate the introduction of biases. 

While imputation techniques offer several 
advantages, it is imperative to acknowledge their 
inherent limitations. Estimating missing values 
introduces uncertainty, as it is predicated upon 
assumptions and statistical models (Blázquez-García 
et al., 2023). Certain imputation methods, mainly 
those reliant on regression or predictive models, 
may inadvertently distort the variability of the 
imputed values towards the mean or predicted 
values. This phenomenon, known as regression to 
the mean, can result in an underestimation of the 
true variability within the dataset, potentially 
compromising the accuracy of statistical analyses, 
such as hypothesis testing or confidence interval 
estimation (Başakın et al., 2023). 

Furthermore, imputation techniques rely heavily 
on assumptions regarding the missingness 
mechanism and the interrelationships between 
observed and missing data (Sierra-Porta, 2024). If 
these assumptions are violated or the imputation 
model is misspecified, the imputed values may not 
accurately reflect the true values for the missing 
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data. Consequently, meticulous consideration and 
evaluation of the imputation model and its 
underlying assumptions are essential to ensure the 
validity and reliability of the results. 

Additionally, while imputation aims to mitigate 
bias, there remains a potential for bias to persist if 
the imputation model or assumptions are not 
appropriate for the data. Inaccurately imputing 
missing values can propagate biases or distort the 
dataset's characteristics (Li et al., 2023). Therefore, 
conducting a thorough assessment of the imputation 
method and performing sensitivity analyses to 
evaluate its impact on the results is imperative. 

The range of imputation strategies includes 
various methods such as mean/median imputation, 
mode imputation, regression imputation, KNN 
imputation, and flagging. In mean/median 
imputation, missing numerical values are replaced 
with the mean or median of the available data. Mode 
imputation is used for categorical variables, 
replacing missing values with the most common 
category. Regression imputation is a more advanced 
method that uses a regression model to predict 
missing values based on the relationships between 
variables. KNN imputation estimates missing values 
by considering the values of the KNN of the data 
point with missing values, making it effective when 
an appropriate distance metric is available. Lastly, 
flagging involves creating a binary feature to indicate 
whether a value is missing, which can be helpful 
when the fact that a value is missing holds useful 
information for the prediction task. Choosing an 

appropriate imputation method requires careful 
consideration of the dataset's characteristics and the 
specific problem being addressed. It is important to 
select methods that minimize bias and prevent 
distortions in the data. Additionally, the effect of 
missing values on the performance of the machine 
learning algorithm should be evaluated, along with 
the factors that cause the missing data. 

Addressing missing data requires acknowledging 
that no single solution fits all situations. The most 
appropriate method depends on the specific analysis 
being performed. Researchers might choose 
deletion, imputation, or a combination of both to 
ensure reliable results. While deletion is a quick 
method, it can reduce the dataset size and introduce 
bias if the missing data is not random. Table 1 
summarizes the trade-offs between deletion and 
imputation techniques.  

Comparing methods for handling missing values 
in machine learning (ML) datasets involves carefully 
assessing their effectiveness in maintaining data 
quality and minimizing their impact on model 
performance. The first step is to define the 
evaluation metrics for measuring ML model 
performance. These metrics could include accuracy, 
precision, recall, F1-score, or other problem-specific 
measures.  

After defining the metrics, the next step is to 
select suitable methods for addressing missing 
values. These methods might include using mean, 
median, mode, or ML-based approaches for 
imputation. 

 
Table 1: Deletion vs. imputation 

Technique Simplicity 
Reduction of 

noise 
Efficiency 

Reduction in 
sample size 

Introducing 
bias 

Loss of 
information 

Preservation of 
statistical properties 

Zero-filling Yes Yes Yes No Yes No No 
Deletion approach Yes Yes Depends Yes Depends Yes No 

Advanced approaches No Yes Depends No No No Yes 

 

The dataset should be partitioned into training 
and validation/test sets to ensure a reliable 
evaluation. This division enables the training of 
models on the modified datasets and the subsequent 
evaluation of their performance on the 
validation/test set. If applicable, the selected 
techniques can be applied to the training set, 
addressing missing values within both the input 
features and target variables. This process entails 
the creation of modified datasets while preserving 
the original dataset as a baseline for comparative 
analysis. ML models can be constructed and 
evaluated upon dataset preparation using modified 
and original datasets. The performance of these 
models can be assessed by employing the selected 
evaluation metrics on the validation/test set, thereby 
facilitating a comparative analysis of performance 
across the various techniques. Statistical tests, such 
as t-tests or ANOVA, can be conducted to delve 
deeper into model performance and identify any 
significant disparities among the methods. Beyond 
the sole consideration of model performance, it is 
imperative to evaluate other pertinent factors when 
selecting the most appropriate technique for the 

given dataset and problem. These factors may 
encompass the complexity of the method, its ease of 
implementation, and the underlying assumptions 
associated with each technique. 

It is strongly recommended that the findings be 
iterated and validated through repeated 
experimentation to ensure the reliability and 
generalizability of the results. This can be 
accomplished by employing different evaluation 
metrics, train-test splits, or additional datasets. This 
iterative process reinforces the robustness and 
applicability of the results to a broader range of 
scenarios. 

3. Evaluation metrics for machine learning 
techniques 

A comprehensive comparison of various 
techniques for addressing missing data within the 
realm of ML necessitates a meticulous evaluation of 
their efficacy in preserving data integrity and 
minimizing their impact on model performance. To 
achieve this objective, it is imperative to define 
evaluation metrics that accurately capture the 
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influence of these techniques on ML models. The 
subsequent subsections offer a systematic approach 
for determining such evaluation metrics, as 
illustrated in Table 2.  

3.1. Data completeness metric 

The data completeness metric quantifies the 
percentage of missing values within the dataset prior 
to and after applying each technique, thereby 

providing a measure of its effectiveness (Munshi, 
2024). This metric indicates the extent to which each 
technique successfully addresses missing values and 
ensures the completeness of the data. Let 
𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑏𝑒𝑓𝑜𝑟𝑒  denote the percentage of missing 

values in the dataset prior to the application of a 
technique, and let 𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑎𝑓𝑡𝑒𝑟  denote the 

percentage of missing values after the technique is 
applied. These values can be calculated as follows: 

  

𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑏𝑒𝑓𝑜𝑟𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠
∗ 100% 

𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑎𝑓𝑡𝑒𝑟 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑎𝑓𝑡𝑒𝑟 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑒𝑐ℎ𝑛𝑞𝑖𝑢𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠
∗ 100% 

  
 

The effectiveness of the technique can be 
quantified as follows: 
 
 If 𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑎𝑓𝑡𝑒𝑟<𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑏𝑒𝑓𝑜𝑟𝑒 , the technique is 

deemed effective in addressing missing values. 
 If 𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑎𝑓𝑡𝑒𝑟=𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑏𝑒𝑓𝑜𝑟𝑒 , the technique is 

considered to have no impact on missing values. 
 If 𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑎𝑓𝑡𝑒𝑟>𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑏𝑒𝑓𝑜𝑟𝑒 , the technique 

indicates the introduction of new missing values or 
a failure to effectively handle existing ones, 
suggesting the necessity for reevaluation and 
exploring alternative approaches. 

 
For instance, consider a healthcare organization 

implementing an imputation technique to address 
missing patient records. Initially, the dataset 
comprised 1,000 records, with 200 entries lacking 
critical health information, resulting in a Missingbefore 
value of 20% (200/1000). Upon applying a mean 
imputation technique, the organization successfully 
reduced the missing values to just 5%, yielding a 
Missingafter value of 5%. This marked improvement 
demonstrates the technique's effectiveness, as 
evidenced by the condition Missingafter<Missingbefore 
(5%<20%). Such an increase in data completeness 
reinforces the integrity of patient information and 
plays a vital role in enhancing clinical outcomes. 
Consequently, the data completeness metric is a 
robust indicator of the technique's success, 
highlighting its crucial role in upholding high-quality 
data standards in healthcare. 

3.2. Model performance 

 
This metric evaluates the impact of missing data 

handling techniques on the performance of your ML 
models (Nezami et al., 2024). This can be done by 
assessing relevant performance metrics such as 
accuracy, precision, recall, F1-score, mean squared 
error (MSE), or any other appropriate metrics based 
on the specific task (classification, regression, etc.). 
To comprehend the impact of each technique, we 
compare the performance of models trained on the 
original dataset (without missed values), the dataset 

with deleted values, and the imputed dataset (after 
applying the imputation method). Let's denote the 
performance of the model trained on the original 
dataset as POriginal, the performance of the model 
trained on the deleted dataset as PDeleted, and the 
performance of the model trained on the imputed 
dataset as PImputed.  

To compare the impact of each technique, we can 
calculate the difference in performance between 
these datasets as follows: 
 
𝐼𝑚𝑝𝑎𝑐𝑡𝑑𝑒𝑙𝑒𝑡𝑒𝑑 = 𝑃𝑑𝑒𝑙𝑒𝑡𝑒𝑑 − 𝑃𝑂𝑟𝑔𝑖𝑛𝑎𝑙   

𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑚𝑝𝑢𝑡𝑒𝑑 = 𝑃𝐼𝑚𝑝𝑢𝑡𝑒𝑑 − 𝑃𝑂𝑟𝑔𝑖𝑛𝑎𝑙 

 

 If  𝐼𝑚𝑝𝑎𝑐𝑡𝑑𝑒𝑙𝑒𝑡𝑒𝑑<0 indicates information loss or 
decreased performance due to missing value 
removal. This means the model's performance on 
the dataset with deleted values is worse than the 
original dataset's. 

 If 𝐼𝑚𝑝𝑎𝑐𝑡𝑑𝑒𝑙𝑒𝑡𝑒𝑑=0, there is no difference in 
performance between the model trained on the 
dataset with deleted values and the model trained 
on the original dataset (without missing values). In 
this case, the removal of missing values did not 
have any impact on the model's performance. 

 If 𝐼𝑚𝑝𝑎𝑐𝑡𝑑𝑒𝑙𝑒𝑡𝑒𝑑>0 indicates a positive difference in 
performance between the model trained on the 
dataset with deleted values and the model trained 
on the original dataset without missing values. In 
other words, removing the missing values has led 
to an improvement in the model's performance. 

 If 𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑚𝑝𝑢𝑡𝑒𝑑>0. This indicates that the model's 

performance on the imputed dataset is better than 
the model trained on the original dataset without 
missing values. It suggests that the missing value 
imputation techniques have improved the model's 
performance or resulted in a similar performance 
to the original dataset. 

 If 𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑚𝑝𝑢𝑡𝑒𝑑=0 means that the performance of 

the model trained on the imputed dataset is the 
same as that of the model trained on the original 
dataset without missing values. It suggests that the 
missing value imputation techniques have 
preserved the model's performance, maintaining it 
at the same level as the original dataset. 



Ibrahim Atoum/International Journal of Advanced and Applied Sciences, 12(1) 2025, Pages: 112-124 

117 
 

 If 𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑚𝑝𝑢𝑡𝑒𝑑<0 indicates that the performance 

of the model trained on the imputed dataset is 
worse than that of the model trained on the 
original dataset without missing values. It suggests 
that the missing value imputation techniques may 
have introduced noise or incorrect information, 
leading to a decrease in the model's performance 
compared to the original dataset. 

 
Consider, for instance, a retail company 

developing a customer churn prediction model. The 
initial dataset comprises 10,000 records, with 15% 
missing values in key features. The model trained on 
this complete dataset achieves an impressive 
accuracy of 85% (POriginal). This baseline performance 
underscores the critical role that data integrity plays 
in the effectiveness of predictive modeling. To 
address the missing values, the company tests two 
strategies. The first approach involves deleting 
records with missing values, which results in a 
reduced dataset of 8,500 records. However, this 
method yields a lower accuracy of 80% (PDeleted). The 
second strategy employs mean imputation, which 
slightly mitigates the data loss, leading to an 
accuracy of 84% (PImputed). The impact calculations 
reveal significant insights: ImpactDeleted=80%-85%=-
5% decline for the deletion method, and ImpactImputed 

= 84%-85%=-1% drop for the imputation method. 
Both techniques result in diminished model 
performance compared to the original dataset, 
highlighting the adverse effects of missing data on 
predictive accuracy. This decline in performance is 
not merely a numerical loss; it signifies potential 
information loss or the introduction of noise, which 
can adversely affect business decisions and 
strategies. In a competitive retail landscape, even a 
slight reduction in accuracy can lead to missed 
opportunities in customer retention and 
engagement. Thus, maintaining high data quality is 
paramount, as it directly influences the reliability 
and effectiveness of predictive models, ultimately 
impacting a company's bottom line. 

3.3. Stability of results 

This metric examines the consistency and 
variability in model performance across different 
deletion or imputation methods. Determine if there 
are significant fluctuations or variations in the 
obtained results from each technique (Santos et al., 
2024). Let's denote the variance of model 
performance for a specific technique as 𝑇𝑒𝑐ℎ𝑣𝑎𝑟 . If 
we have multiple techniques and want to compare 
the stability across them, we can calculate the mean 
variance across all techniques as 𝑀𝑒𝑎𝑛𝑣𝑎𝑟 . Stability 
can be determined by comparing 𝑇𝑒𝑐ℎ𝑣𝑎𝑟  with 
𝑀𝑒𝑎𝑛𝑣𝑎𝑟 . If 𝑇𝑒𝑐ℎ𝑣𝑎𝑟  is significantly lower than 
𝑀𝑒𝑎𝑛𝑣𝑎𝑟 , it indicates higher stability in model 
performance for that technique. Additionally, 
confidence intervals can be calculated to quantify the 
uncertainty in the model performance estimates as 
the following: 

 𝐼𝑓 𝑇𝑒𝑐ℎ𝑣𝑎𝑟<𝑀𝑒𝑎𝑛𝑣𝑎𝑟: Higher stability, consistent 
and reliable results. 

 𝐼𝑓 𝑇𝑒𝑐ℎ𝑣𝑎𝑟>𝑀𝑒𝑎𝑛𝑣𝑎𝑟: Lower stability, more 
variability, and potential inconsistency. 

 𝐼𝑓 𝑇𝑒𝑐ℎ𝑣𝑎𝑟=𝑀𝑒𝑎𝑛𝑣𝑎𝑟: Similar stability as the 
average, consistent, and reliable performance. 

 
Let's denote the Confidence Interval (CI) for a 

specific technique as 𝑇𝑒𝑐ℎ𝐶𝐼 . By comparing the size 
of confidence intervals across different techniques, 
we can assess the stability of the results. If the width 
of 𝑇𝑒𝑐ℎ𝐶𝐼_𝑖

, denoted as W (𝑇𝑒𝑐ℎ𝐶𝐼_𝑖
), is smaller than 

other techniques, indicating lower variability and 
higher stability in the model performance for that 
specific technique. On the other hand, if the width of 
𝑇𝑒𝑐ℎ𝐶𝐼_𝑖

 is larger, it suggests higher variability and 

potentially lower stability in the model performance. 
If the widths of the confidence intervals for different 
techniques are equal, it suggests comparable 
variability and stability in the model performance 
among those techniques.  

Assume a data scientist is evaluating techniques 
for handling missing values in a dataset used for 
predicting customer churn. This dataset includes 
features such as age, income, and purchase history, 
with some entries missing fundamental values. The 
scientist applies three methods: Record deletion, 
mean imputation, and mode imputation. 

After training models using each technique, the 
data scientist records performance metrics, such as 
accuracy, over multiple iterations. The accuracy 
across iterations is [0.82, 0.84, 0.83, 0.81, 0.83] for 
record deletion. For mean imputation, the accuracy 
is [0.78, 0.76, 0.77, 0.79, 0.75], and for mode 
imputation, the accuracy is 
[0.85,0.91,0.87,0.88,0.86]. The variance of model 
performance for each technique (𝑇𝑒𝑐ℎ𝑣𝑎𝑟) is then 
calculated, yielding 0.00013 for record deletion, 
0.00025 for mean imputation, and 0.00053 for mode 
imputation. The mean variance across all methods is 
computed as 𝑀𝑒𝑎𝑛𝑣𝑎𝑟=0.000303. 

By comparing each 𝑇𝑒𝑐ℎ𝑣𝑎𝑟  to 𝑀𝑒𝑎𝑛𝑣𝑎𝑟 , the data 
scientist finds that record deletion (0.00013) and 
mean imputation (0.00025) both indicate lower 
stability, while mode imputation (0.00053) offers 
higher stability. This suggests that mode imputation 
provides the most consistent performance. 
Additionally, the scientist calculates Confidence 
Intervals (CIs) for each technique: Record deletion 
has a CI of [0.8118, 0.8402] (width=0.0284), mean 
imputation has a CI of [0.7504, 0.7896] 
(width=0.0392), and mode imputation has a CI of 
[0.8454, 0.9026] (width=0.0572). The comparison of 
widths shows that record deletion exhibits a smaller 
width than both mean imputation and mode 
imputation, which indicates that it is the most stable 
technique. In contrast, mean imputation has a larger 
width compared to record deletion, suggesting 
reduced stability. Meanwhile, mode imputation has 
the largest width, signifying it is the least stable 
among the three techniques. 
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3.4. Bias and variance 

This metric measures the influence of missing 
data handling techniques on the bias and variance of 
your models (Sedaghat et al., 2024). Evaluate these 
aspects using techniques such as learning curves or 
bias-variance trade-off analysis. Learning curves can 
be used to plot the convergence behavior and final 
performance of models trained on the original and 
modified datasets. Comparable convergence rates 
and performance indicate minimal bias impact. Bias-
variance trade-off analysis involves adjusting 
hyperparameters and architecture to minimize bias 
and variance. Let the impact of missing data handling 
techniques on the bias of models represented as  
𝐵𝑖𝑎𝑠𝑖𝑚𝑝𝑎𝑐𝑡  and the impact on the variance as  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑚𝑝𝑎𝑐𝑡 . To assess the impact of bias, we can 

calculate the difference in bias between the models 
trained on the original dataset and the models 
trained on the modified datasets: 
 
𝐵𝑖𝑎𝑠𝑖𝑚𝑝𝑎𝑐𝑡 =  𝐵𝑖𝑎𝑠𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 -  𝐵𝑖𝑎𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  

 

where, 𝐵𝑖𝑎𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  represents the bias of the model 

trained on the original dataset, and 𝐵𝑖𝑎𝑠𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑  

represents the bias of the model trained on the 
modified dataset (deleted or imputed). A high 
𝐵𝑖𝑎𝑠𝑖𝑚𝑝𝑎𝑐𝑡  indicates a significant difference in bias, 

while a low 𝐵𝑖𝑎𝑠𝑖𝑚𝑝𝑎𝑐𝑡  suggests a minimal difference. 

The interpretation depends on the context and 
desired level of bias in the models. To quantify the 
level of bias impact as "high" or "low," a threshold or 
a criterion specific to your problem domain and 
context must be established. This threshold could be 
based on domain expertise, performance 
requirements, or other relevant considerations for 
your application. For example, you could define a 
threshold value such as "if 𝐵𝑖𝑎𝑠𝑖𝑚𝑝𝑎𝑐𝑡>0.1, then the 

bias impact is considered high; otherwise, it is 
considered low." This threshold value of 0.1 is 
arbitrary and must be determined based on your 
needs and goals. 

To assess the impact on variance, we can 
calculate the difference in variance between the 
models trained on the original dataset and the 
models trained on the modified datasets: 
 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑚𝑝𝑎𝑐𝑡 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 - 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 

 

To evaluate the impact of missing data handling 
techniques, we consider 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  as the 

variance of the model trained on the original dataset 
and 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑  as the variance of the model 

trained on the modified dataset (with deleted or 
imputed data).  

It is necessary to specify a threshold to quantify 
the level of 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑚𝑝𝑎𝑐𝑡 . If 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑚𝑝𝑎𝑐𝑡  

exceeds the threshold (𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑚𝑝𝑎𝑐𝑡>Threshold), 

the missing data handling technique can significantly 
influence the variance of the models, potentially 
causing increased variability or instability in the 
predictions. Conversely, if 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑚𝑝𝑎𝑐𝑡  falls below 

the threshold (𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑚𝑝𝑎𝑐𝑡<Threshold), the 

missing data handling technique has a relatively 
minor effect on model variance, indicating that it 
effectively preserves the underlying variability or 
has minimal impact on stability. Metrics for 
quantifying bias and variance, such as mean squared 
error (MSE) for regression or accuracy for 
classification, may vary based on the task. 
Approaches like k-fold cross-validation or 
bootstrapping can assess bias and variance and are 
tailored to dataset requirements. 

Suppose, for instance, a data scientist is working 
with a dataset to predict house prices, which 
includes features like square footage, number of 
bedrooms, and age of the property but has missing 
values. To handle the missing data, apply three 
different techniques: Record deletion, mean 
imputation and mode imputation. Your goal is to 
analyze how these techniques affect the bias and 
variance of your predictive models.  

The models were trained using three different 
techniques for handling missing values: Record 
deletion, mean imputation, and mode imputation. In 
the case of record deletion, any observations with 
missing values were removed, resulting in a bias of 
𝐵𝑖𝑎𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 0.2. For mean imputation, the missing 

values were replaced with the mean of the available 
data, which led to a bias of 𝐵𝑖𝑎𝑠𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 0.25. 

When mode imputation was applied, missing values 
were filled in with the mode, resulting in a bias of 
𝐵𝑖𝑎𝑠𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 0.3. Next, the bias impact for each 

technique was calculated. For mean imputation, the 
bias impact was determined by subtracting the 
original bias from the modified bias: 𝐵𝑖𝑎𝑠𝑖𝑚𝑝𝑎𝑐𝑡 =

𝐵𝑖𝑎𝑠𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 − 𝐵𝑖𝑎𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 0.05. For mode 

imputation, the calculation was similar: 𝐵𝑖𝑎𝑠𝑖𝑚𝑝𝑎𝑐𝑡 =

𝐵𝑖𝑎𝑠𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 − 𝐵𝑖𝑎𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 0.1. 

A threshold for bias impact was defined at 0.1. 
The results revealed that the bias impact of 0.05 for 
mean imputation is considered low, whereas the bias 
impact of 0.1 for mode imputation may be viewed as 
borderline and potentially high depending on the 
context. Variance was also assessed for each 
technique. For record deletion, the variance was 
found to be 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 0.04. In the case of 

mean imputation, the variance of the modified 
dataset was 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 0.06, and for mode 

imputation, it was recorded as 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =

0.08. 
The variance impact of each technique was 

calculated. Mean imputation showed a variance 
impact of 0.02, while mode imputation had a 
variance impact of 0.04. A threshold of 0.03 was 
established to assess the variance impact. Based on 
this threshold, the variance impact of 0.02 for mean 
imputation is classified as low, whereas the 0.04 
variance impact for mode imputation is considered 
high. These findings highlight the notable effect that 
different methods for handling missing data can 
have on the bias and variance of predictive models. 
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3.5. Robustness to new data 

This metric facilitates the evaluation of model 
generalization by assessing the performance of 
models trained on datasets where values have been 
deleted or imputed. The Employ cross-validation or 
hold-out validation can be used on a separate test set 
to measure each technique's robustness and 
generalization capabilities (Mundargi et al., 2024). 
Cross-validation evaluates ML models by dividing 
the dataset into subsets or folds (Gorriz et al., 2024). 
It helps estimate performance, assess generalization, 
and aid hyperparameter tuning and model selection. 
Hold-out validation is used to evaluate model 
performance and generalization (Veetil et al., 2024). 
The dataset is divided into a training set for model 
training and a validation set for assessment. It is 
commonly employed for initial evaluation, 
hyperparameter tuning, and model comparison. 

If the generalization performance of models 
trained on deleted or imputed datasets is 
represented as 𝐺𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 , 𝐺𝑃𝑒𝑟𝑓𝑑𝑒𝑙𝑒𝑡𝑒𝑑  to 

represent the 𝐺𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  for models trained on the 

deleted dataset and 𝐺𝑃𝑒𝑟𝑓𝑖𝑚𝑝𝑢𝑡𝑒𝑑  as the 𝐺𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  

for models trained on the imputed dataset. By using 
cross-validation or hold-out validation on a separate 
test set, we can estimate the 𝐺𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  for both 

the deleted and imputed datasets. To compare the 
robustness and generalization capabilities of each 
technique, we can analyze the difference in 
Generalization_performance between the deleted 
and imputed datasets: 
 
𝐺𝑖𝑚𝑝𝑎𝑐𝑡 = 𝐺𝑃𝑒𝑟𝑓𝑖𝑚𝑝𝑢𝑡𝑒𝑑  - 𝐺𝑃𝑒𝑟𝑓𝑑𝑒𝑙𝑒𝑡𝑒𝑑  

 

If 𝐺𝑖𝑚𝑝𝑎𝑐𝑡  is significantly higher, it indicates that 

models trained on the imputed dataset have better 
generalization capabilities and are more robust to 
new, unseen data. If the 𝐺𝑖𝑚𝑝𝑎𝑐𝑡  it is low, suggesting 

that models trained on the imputed dataset may 
have limited generalization capabilities and perform 
poorly on new, unseen data. 

Assume that a professional is working on a 
customer segmentation project using demographic 
and purchase history data to evaluate the robustness 
and generalization capabilities of models trained on 
datasets with missing values. The dataset has 
missing values, prompting the scientist to assess two 
techniques: Record deletion and mean imputation. 

The dataset is split into a training set and a test 
set. Two models are trained: One on the dataset with 
record deletion and the other on the dataset with 
mean imputation, while the test set is reserved for 
evaluating generalization performance. The 
professional employs k-fold cross-validation on the 
training set to estimate 𝐺𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 . After training, 

the model performances are recorded as 
𝐺𝑃𝑒𝑟𝑓𝑑𝑒𝑙𝑒𝑡𝑒𝑑=0.75 and 𝐺𝑃𝑒𝑟𝑓𝑖𝑚𝑝𝑢𝑡𝑒𝑑=0.82. The 

impact of the techniques on generalization 
performance is calculated as 𝐺𝑖𝑚𝑝𝑎𝑐𝑡=0.07. This 

positive 𝐺𝑖𝑚𝑝𝑎𝑐𝑡indicates that the imputed model has 

better generalization capabilities and is more robust 
to new, unseen data. 

3.6. Computational efficiency 

It refers to the ability of a technique to process 
and handle missing values in datasets with minimal 
time and resource requirements (Koukaras et al., 
2024). If the computational efficiency of each 
method is represented as 𝑇𝑒𝑐ℎ𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦 , the time 

required for applying a specific technique as 
𝑇𝑒𝑐ℎ𝑡𝑖𝑚𝑒  and the resource requirements as 
𝑇𝑒𝑐ℎ𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 . If there are multiple techniques, their 
efficiencies can be compared by calculating the ratio 
of time and resource requirements concerning a 
reference technique. This can be expressed as: 
 
𝑇𝑒𝑐ℎ𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦  = 𝑇𝑒𝑐ℎ𝑡𝑖𝑚𝑒 / 𝑇𝑖𝑚𝑒𝑟𝑒𝑓 + 𝑇𝑒𝑐ℎ𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 / 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑟𝑒𝑓 

 

Where, 𝑇𝑖𝑚𝑒𝑟𝑒𝑓  and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑟𝑒𝑓 represent the 

time and resource requirements of the reference 
technique, respectively. By calculating 𝑇𝑒𝑐ℎ𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦  

we can compare the computational efficiency of each 
technique. A lower 𝑇𝑒𝑐ℎ𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦  value signifies that 

a technique necessitates greater computational 
resources or time for data processing and handling. 
This may result in slower execution, higher memory 
usage, or increased computational complexity. 
Conversely, a higher 𝑇𝑒𝑐ℎ𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦  value indicates 

that a technique is more efficient, requiring fewer 
resources or less time for processing. Consequently, 
in most cases, higher computational efficiency values 
are preferred as they signify more efficient and 
faster execution of the technique. 

Consider an individual working on a large dataset 
of customer transactions with missing entries in 
several fields. The individual compares three 
techniques: Record deletion, mean imputation, and 
KNN imputation. The first step involves measuring 
the time and resource requirements for each 
technique. For record deletion, the time taken is 2 
seconds, and the resources required are 100 MB. 
Mean imputation requires 1 second and 50 MB of 
resources, while KNN imputation takes 5 seconds 
and uses 200 MB. The data scientist selects mean 
imputation as the reference technique, which has a 
time of 1 second and resource requirements of 50 
MB. Next, the computational efficiency for each 
technique is calculated using the formula: 
 
𝑇𝑒𝑐ℎ𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦  = 𝑇𝑒𝑐ℎ𝑡𝑖𝑚𝑒 / 𝑇𝑖𝑚𝑒𝑟𝑒𝑓 + 𝑇𝑒𝑐ℎ𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 / 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑟𝑒𝑓 

 

For record deletion, the efficiency is calculated as 
2/1+100/50=4. For mean imputation, the efficiency 
is 1/1+50/50=2. KNN imputation yields an efficiency 
of 5/1+200/50=9. These calculations show that 
mean imputation has the highest computational 
efficiency (the least time and resources), followed by 
record deletion, while KNN imputation has the 
lowest efficiency. 
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3.7. Domain-specific metrics (DSMs) 

They refer to performance measures or 
evaluation criteria that are specifically designed to 
align with the requirements and constraints of a 
particular problem domain (Park et al., 2024). These 
metrics consider the domain's unique 
characteristics, context, and goals. DSMs are crucial 
for meaningful insights into model or system 
performance and success. DSMs can be tailored to 
evaluate data quality, accuracy, completeness, and 
reliability within a specific problem domain. In 
certain domains, stringent regulatory frameworks 
necessitate adherence to particular metrics. These 
metrics ensure compliance with regulations, ethical 
guidelines, and legal requirements.  

Let the evaluated techniques be used for T1, T2, 
T3, ..., Tn. To make an informed decision, we evaluate 
and compare these techniques using the following 
metrics: Data Quality (DQ), which assesses the 
quality of data for each technique Ti as 𝐷𝑄𝑇𝑖

; 

Accuracy (ACC), which measures the accuracy of 
each technique Ti as 𝐴𝐶𝐶𝑇𝑖

; Data Completeness (DC), 

which quantifies the completeness of data for each 
technique Ti as 𝐷𝐶𝑇𝑖

; and Reliability (REL), which 

assesses the reliability of each technique Ti as 𝑅𝐸𝐿𝑇𝑖
. 

The decision-making process based on these metrics 
can be achieved using a weighted sum approach. 
Let's denote the weights assigned to each metric as 
𝑊𝑑𝑞  for data quality (DQ), 𝑊𝑎𝑐𝑐  for accuracy (ACC), 

𝑊𝑑𝑐  for data completeness (DC), and 𝑊𝑟𝑒𝑙  for 
reliability (REL). The decision can be made by 
calculating a composite score for each technique (Ti) 
using the following formula: 
 
𝑆𝐶𝑂𝑅𝐸𝑇𝑖

= 𝑊𝑑𝑞 * 𝐷𝑄𝑇𝑖
 + 𝑊𝑎𝑐𝑐 * 𝐴𝐶𝐶𝑇𝑖

 + 𝑊𝑑𝑐 * 𝐷𝐶𝑇𝑖
 + 𝑊𝑟𝑒𝑙  * 

𝑅𝐸𝐿𝑇𝑖
 

 

The technique with the highest composite score 
calculated using the weighted sum formula is 
considered the most suitable/optimal choice. The 
technique with the lowest composite score is 
considered the least suitable/optimal choice. The 
weights 𝑊𝑑𝑞 , 𝑊𝑎𝑐𝑐 , 𝑊𝑑𝑐 , and 𝑊𝑟𝑒𝑙  should be 

determined based on the specific goals and 
requirements of the project, reflecting the relative 
importance of each metric in the decision-making 
process. 

To evaluate Domain-Specific Metrics (DSMs) in a 
healthcare context, consider a data scientist tasked 
with developing a predictive model to identify 
patients at risk of developing diabetes. Given the 
critical nature of healthcare data, the scientist 
decides to compare three techniques for handling 
missing data: Record deletion, mean imputation, and 
multiple imputation. The goal is to assess these 
techniques using metrics that align with the 
healthcare sector's unique requirements. 

Initially, relevant metrics are defined as Data 
Quality (DQ), Accuracy (ACC), Data Completeness 
(DC), and Reliability (REL). Then, performance data 
for each technique is collected. For record deletion, 

the metrics are DQT1=0.70, ACCT1=0.75, DCT1=0.60, 
and RELT1=0.80. For mean imputation, the values are 
DQT2=0.85, ACCT2=0.80, DCT2=0.75, and RELT2=0.70. 
And, for multiple imputation, the metrics are 
DQT3=0.90, ACCT3=0.85, DCT3=0.90, and RELT3=0.95. 
Next, the data scientist assigns weights to each 
metric based on the project's specific goals. For 
example, the weights might be 𝑊𝑑𝑞=0.4 for Data 

Quality, 𝑊𝑎𝑐𝑐=0.3 for Accuracy, 𝑊𝑑𝑐=0.2 for Data 
Completeness, and 𝑊𝑟𝑒𝑙=0.1 for Reliability. Using 
these weights, the scientist calculates a composite 
score for each technique with the formula: 
 
𝑆𝐶𝑂𝑅𝐸𝑇𝑖

= 𝑊𝑑𝑞 * 𝐷𝑄𝑇𝑖
 + 𝑊𝑎𝑐𝑐 * 𝐴𝐶𝐶𝑇𝑖

 + 𝑊𝑑𝑐 * 𝐷𝐶𝑇𝑖
 + 𝑊𝑟𝑒𝑙  * 

𝑅𝐸𝐿𝑇𝑖
 

 

The calculations yield SCORET1=0.705 for record 
deletion; for mean imputation, SCORET2=0.8; and for 
multiple imputation, SCORET3=0.89. Based on the 
scores obtained, the most suitable technique for 
handling missing data is Multiple Imputation, which 
achieved a score of 0.89. This method demonstrates 
the best performance according to the evaluated 
metrics. In contrast, Record Deletion is the least 
suitable technique, with a score of 0.705, indicating 
that it does not perform as well compared to the 
other methods. 

3.8. Metrics integration 

Synthesizing the results from the different 
evaluation metrics to understand the impact of each 
technique on your ML models (Kazemi et al., 2024). 
These metrics include data completeness, model 
performance, stability, and computational efficiency. 
It is important to consider the trade-offs associated 
with various metrics to make an informed decision. 
A well-informed decision can be made that balances 
the trade-offs and aligns with the specific goals and 
requirements of the ML project. Let D represent the 
data completeness achieved by a specific technique. 
Let P represent the model performance obtained 
with the technique. Let S represent the stability of 
the results. Let C represent the computational 
efficiency required. To make an informed decision, 
we aim to optimize a composite objective function 
that incorporates these factors. This objective 
function can be defined as: 
 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑤1 ∗ 𝐷 + 𝑤2 ∗ 𝑃 + 𝑤3 ∗ 𝑆 + 𝑤4 ∗ 𝐶 
 

where, 𝑤1, 𝑤2, 𝑤3, and 𝑤4 are the weights assigned to 
each factor, representing their relative importance. 
These weights can be determined based on domain 
expertise, project requirements, or stakeholder 
preferences. A high objective means a higher 
composite score, which indicates the technique is 
more optimal or suitable based on the weighted 
evaluation of the different performance metrics 
(data completeness, model performance, stability, 
and computational efficiency). A low objective means 
a lower composite score, which indicates the 
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technique is less optimal or suitable based on the 
weighted evaluation of the performance metrics. 

Suppose that in an ML project to predict 
customer churn for a subscription service, a data 
scientist evaluates three techniques for handling 
missing data: Record deletion, mean imputation, and 
multiple imputations. To understand the overall 
impact of each method on the model, the scientist 
seeks to synthesize results across various evaluation 
metrics, including data completeness, model 
performance, stability, and computational efficiency. 

For record deletion, the metrics indicate D=0.60 
(60% data completeness), P=0.75 (75% for model 
accuracy), S=0.70 (70% for stability score), and 
C=0.50 (50% for computational efficiency score). 
Mean imputation shows better results with D=0.85, 
P=0.80, S=0.75, and C=0.80. Multiple imputation 
demonstrates the highest values, yielding D=0.90, 
P=0.85, S=0.80, and C=0.60. Next, the data scientist 
assigns weights to each factor based on their 

importance in the context of the project. For 
instance, the weights could be set as w1=0.3 for data 
completeness, w2=0.4 for model performance, 
w3=0.2 for stability, and w4=0.1 for computational 
efficiency. The objective function is then defined as: 
 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑤1 ∗ 𝐷 + 𝑤2 ∗ 𝑃 + 𝑤3 ∗ 𝑆 + 𝑤4 ∗ 𝐶 
 

Using this formula, the scientist calculates the 
composite scores for each technique. For record 
deletion, the objective score is 0.67. Mean 
imputation achieves a score of 0.805, while multiple 
imputation scores 0.83. The analysis shows that 
mean imputation has the highest objective score, 
closely followed by multiple imputation, while 
record deletion scores the lowest. This example 
illustrates how the data scientist integrates multiple 
evaluation metrics to make an informed decision 
about the best technique for handling missing data 

 
Table 2: Evaluation metrics for missing data handling techniques 

Metric Description Evaluation method Interpretation 

Data 
completeness 

Measures 
missing value 

reduction 

Calculating the percentage of 
missed values before and after 

applying the technique. 

Effective: Missingafter < Missingbefore 
No impact: Missingafter =Missingbefore 
Ineffective: Missingafter > Missingbefore 

Model 
performance 

Impact on model 
performance 

Calculating POriginal, PDeleted and 
Pimputed. 

No difference: 𝐼𝑚𝑝𝑎𝑐𝑡𝑑𝑒𝑙𝑒𝑡𝑒𝑑 =0 and 𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑚𝑝𝑢𝑡𝑒𝑑 = 0 

Positive difference: 𝐼𝑚𝑝𝑎𝑐𝑡𝑑𝑒𝑙𝑒𝑡𝑒𝑑 > 0, 
Improved the model performance: If 𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑚𝑝𝑢𝑡𝑒𝑑 > 0 and 

𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑚𝑝𝑢𝑡𝑒𝑑 > 0 

Worse: 𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑚𝑝𝑢𝑡𝑒𝑑 < 0 

Stability of 
results 

Consistency and 
variability 

Computing variance, confidence 
interval width 

Higher stability, consistent and reliable results: 𝐼𝑓 𝑇𝑒𝑐ℎ𝑣𝑎𝑟 < 𝑀𝑒𝑎𝑛𝑣𝑎𝑟. 
Lower stability, more variability, and potential 

inconsistency. 𝐼𝑓 𝑇𝑒𝑐ℎ𝑣𝑎𝑟 > 𝑀𝑒𝑎𝑛𝑣𝑎𝑟 
Similar stability as the average, consistent, and reliable performance: 

𝐼𝑓 𝑇𝑒𝑐ℎ𝑣𝑎𝑟 = 𝑀𝑒𝑎𝑛𝑣𝑎𝑟 
Lower variance and smaller CI: Higher stability 

Bias and 
variance 

Impact on model 
bias and 
variance 

Bias difference, variance 
difference 

High bias: if 𝐵𝑖𝑎𝑠𝑖𝑚𝑝𝑎𝑐𝑡 > Threshold 

Low bias: if 𝐵𝑖𝑎𝑠𝑖𝑚𝑝𝑎𝑐𝑡 > Threshold 

Minor impact, variability preserved: if 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑚𝑝𝑎𝑐𝑡<Threshold 

Variance impacted, predictability altered: if 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖𝑚𝑝𝑎𝑐𝑡<Threshold 

Robustness to 
new data 

Generalization 
performance 

Generalization performance 
(Deleted) - Generalization 

performance (Imputed) 

𝐺𝑖𝑚𝑝𝑎𝑐𝑡 = 𝐺𝑃𝑒𝑟𝑓𝑖𝑚𝑝𝑢𝑡𝑒𝑑 - 𝐺𝑃𝑒𝑟𝑓𝑑𝑒𝑙𝑒𝑡𝑒𝑑 

Higher generalization: If 𝐺𝑖𝑚𝑝𝑎𝑐𝑡 is High 

Limited generalization: If 𝐺𝑖𝑚𝑝𝑎𝑐𝑡 is Low 

Computational 
efficiency 

Resource usage 
and time 
required 

Time and resource requirements 

𝑇𝑒𝑐ℎ𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑇𝑒𝑐ℎ𝑡𝑖𝑚𝑒 / 𝑇𝑖𝑚𝑒𝑟𝑒𝑓 + 𝑇𝑒𝑐ℎ𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 / 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑟𝑒𝑓 

High efficiency: Low 𝑇𝑒𝑐ℎ𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦 

Low efficiency: High 𝑇𝑒𝑐ℎ𝑒𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦 

Domain-specific 
metric 

Domain-specific 
metrics guide 

decision 

Evaluating data quality, accuracy, 
completeness, and reliability 

within a specific problem domain 

𝑆𝐶𝑂𝑅𝐸𝑇𝑖
= 𝑊𝑑𝑞 * 𝐷𝑄𝑇𝑖

 + 𝑊𝑎𝑐𝑐 * 𝐴𝐶𝐶𝑇𝑖
 + 𝑊𝑑𝑐 * 𝐷𝐶𝑇𝑖

 + 𝑊𝑟𝑒𝑙 * 𝑅𝐸𝐿𝑇𝑖
 

Highest score, best fit 
Lowest score, least fit 

Metrics 
integration 

Integrated 
assessment of 

technique 
performance 

Data completeness, model 
performance, result stability, and 
computational efficiency factors 
are balanced using a weighted 

objective function to optimize the 
chosen approach 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑤1 ∗ 𝐷 + 𝑤2 ∗ 𝑃 + 𝑤3 ∗ 𝑆 + 𝑤4 ∗ 𝐶 
Optimal technique with highest weighted score. 

Suboptimal technique with lower weighted score 

 

Table 3 presents a comprehensive analysis of the 
advantages and disadvantages associated with the 
various methods employed to evaluate the 
effectiveness of techniques for addressing and 
managing missing data. The metrics highlighted in 
Table 3 aim to strike a balance between simplicity, 
performance, robustness, and domain-specific 
considerations. On the strength side, the metrics 
prioritize the reduction of missing values, the 
evaluation of model accuracy, the assessment of 
consistency, the measurement of bias and variance, 
and the consideration of computational efficiency 

and domain-specific factors. However, these 
approaches are not without their weaknesses. They 
may oversimplify the patterns of missingness, 
exhibit limited generalizability, be computationally 
expensive, necessitate domain expertise, and present 
challenges when dealing with large datasets. 

The integration of multiple metrics is widely 
regarded as a strength, as it offers a more 
comprehensive understanding of the techniques. 
However, this integration can also be 
computationally complex, particularly when dealing 
with large datasets. 
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Table 3: Critique of missing data handling evaluation metrics 
Metric Strengths Weaknesses 

Data completeness The standardized approach focuses on missing value reduction 
Oversimplifies missingness patterns, may not capture 

nuances 

Model performance Evaluate the impact on model accuracy, guide decision-making 
Limited generalizability, thresholds may need 

adjustments 
Stability of results Assesses consistency of model performance across techniques Computationally expensive for large datasets 
Bias and variance Measures impact on model bias and variance Requires domain expertise to set thresholds 

Robustness to new 
data 

Evaluates model performance on unseen data Relies on validation techniques (cross-validation) 

Computational 
efficiency 

Considers resource usage and execution time Can penalize more complex techniques 

Domain-specific 
metrics 

Tailored to specific problem domains, considers unique 
characteristics 

Requires deep understanding of the domain for 
weighting 

Metrics integration Combines results for a comprehensive understanding Computationally complex for large datasets 

 

4. Conclusion 

Accurate ML predictions rely on high-quality 
datasets that are relevant, sufficient, representative, 
balanced, and diverse. However, values can be 
necessary to maintain these qualities. Effective 
handling and imputation techniques are crucial for 
preserving dataset integrity. This analysis compares 
three approaches to address missing values: Zero 
imputation, deletion, and various imputation 
methods. While deletion is a quick option, it can lead 
to information loss and bias. Imputation maintains 
the dataset but may introduce uncertainty. The 
choice of method depends on the dataset's 
characteristics and the problem at hand. A 
structured eight-step process is outlined for 
evaluating missing value-handling techniques. This 
process involves defining metrics, selecting methods, 
and validating results. A two-step decision-making 
process is also proposed: First, assessing techniques 
using diverse metrics, and second, scoring each 
method based on project goals. The article provides 
a comprehensive overview of tools for handling 
missing values, emphasizing the need to balance data 
preservation, bias avoidance, and analytical 
accuracy. It is a valuable resource for navigating the 
complexities of missing value handling in ML. Future 
research will focus on empirically validating the 
proposed metrics, exploring the integration of deep 
learning techniques, applying transfer learning to 
address data limitations, developing methods to 
quantify uncertainty in predictions, creating metrics 
tailored to specific domains, improving the 
computational efficiency of missing data handling, 
and investigating how these techniques can be 
integrated with other data quality measures. 
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