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The path planning problem for a wheeled mobile robot (WMR) involves 
determining a collision-free path from a starting point to a target destination 
while optimizing a specific fitness function, such as minimizing distance, cost, 
or both, depending on the scenario. This research introduces a novel method 
for generating smooth paths for mobile robots in user-defined two-
dimensional environments with stationary obstacles. The proposed method 
addresses the issue of local minima by utilizing free segments and path-
planning turning points. The approach evaluates both path length and path 
safety as key objectives. Simulation results demonstrate that the proposed 
method effectively identifies optimal paths and validates the reliability of the 
control strategy for mobile robot navigation. 
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1. Introduction 

*Mobile robots are used in many fields, and one of 
their most important uses is autonomous navigation 
in environmental space (Yang et al., 2022). Robots 
replaced humans in routine and hazardous tasks 
(Abdulshaheed et al., 2024). Path planning is the 
foundation of navigation, which identifies feasible 
routes from the start state to the goal state without 
running into any barriers (Qin et al., 2023). A 
possible path in a workplace with obstacles is safe, 
collision-free, and either optimal or suboptimal 
based on a few performance characteristics (path 
smoothness, walking path, planning time) (Zhang et 
al., 2022). Depending on the amount of 
environmental knowledge available, path planning 
can be broadly classified as local or global (Liu et al., 
2023). Global path planning refers to the ability of 
robots in environments to plan their whole 
pathways (offline) before they start moving since 
they are aware of all stationary obstacles and the 
trajectory of all moving obstacles beforehand (Yao et 
al., 2023). Updating the local map to avoid 
impediments while working is the primary goal of 
local path planning (Xu et al., 2023).  

Numerous studies that tackle the problem of path 
planning have been presented in the literature (Rafai 
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et al., 2022; Tan et al., 2021; Jogeshwar and Lochan, 
2022). To date, a wide range of methods have been 
used for mobile robot path planning in static 
situations. A novel incentive mechanism is 
introduced to guarantee that a mobile robot is aware 
of its surroundings beforehand. In addition to 
guaranteeing a quick convergence, innovative 
mathematical modeling is suggested to offer the best 
choice (Bulut, 2022). A mobile robot finds it difficult 
to navigate a path with sharp corners, so a smooth 
path is created once the ideal skeletal path has been 
found. Moreover, an actual experiment based on the 
multi-objective function is provided. The suggested 
IEGQL method is benchmarked against the 
traditional EGQL and A-star algorithms.  A new 
definition of state space and actions space is 
included in the algorithm, along with a selection 
strategy that aims to  

 
 Assist the robot in choosing the best course of 

action at each stage 
 Speed up the learning process 
 Find optimal or nearly optimal solutions 
 Take advantage of a new reward function in the 

initialization of Q-tables 
 
An improved adaptive ant colony algorithm 

(IAACO) in response to the drawbacks of the 
traditional ant colony algorithm (ACO) is proposed 
in path planning of indoor mobile robots, including a 
long path planning time, a non-optimal path for the 
slow convergence speed, and the local optimal 
solution characteristic of ACO (Miao et al., 2021). Li 
et al. (2022b) described a Forward Search 
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Optimization (FSO) technique for shortening the 
global path provided by the searching-based Global 
Path Planning (GPP) method. The adjusted path is 
usually shorter than the original path and is like the 
optimal path in continuous space. Furthermore, a 
Subgoal-based Hybrid Path Planning (SHPP) strategy 
that combines the Improved Fuzzy Inference System 
(IFIS) and Improved Artificial Potential Field (IAPF) 
algorithms is proposed to smooth the global path. 
The key improvement to IFIS and IAPF is that 
subgoals rather than global goals govern planning. 
Another study (Li et al., 2022a) includes a 
bidirectional alternating search (BAS) technique in 
the A* algorithm, increasing search efficiency. The 
revised heuristic function addresses the 
inadequacies of the BAS-A* method. The filtering 
function and Bézier curves are used to lower the 
turning angle and path length while also smoothing 
the path.  

The proposed algorithm's feasibility is tested 
using the TurtleBot3 Waffle Pi mobile robot. A new 
obstacle-based path-planning algorithm for a grid 
map is proposed (Deng et al., 2021). After convex 
hull optimization, the simple point set is generated. 
Hierarchical obstacles are used to swiftly plan a path 
on a small scale. The length and smoothness are 
optimized using the multi-objective D* Lite 
algorithm. Cubic Bezier curves are used to soften the 
path so that it fits the real robot. In Xu et al. (2023), a 
novel strategy was developed to find the optimum 
search node. The map was a rectangle that could be 
explored in two different directions. The adaptive 
cost function was used to improve safety. A Slide-
Rail corner adjustment method was developed to 
achieve a smoother path.  

A Hybrid algorithm combining the improved A* 
algorithm and the Dynamic Window A approach is 
addressed in Li et al. (2022c). In both static and 
dynamic contexts, the algorithm presented 
attempted to solve a path-planning problem for an 
autonomous mobile robot by finding the collision-
free path that satisfies the requirements for shortest 
distance and path smoothness. The recommended 
path planning method approximates the real world 
by multiplying the size of the mobile robot by the 
size of the obstacles and formulating the problem as 
a moving point in free space. A method for enhancing 
mobile robot systems' performance for the best 
possible path planning is suggested by Al-Kamil and 
Szabolcsi (2024). The method makes use of motion 
capture technologies to gather movement data from 
the robot in real-time, create the best possible path 
planning schemes, and allow for remote control and 
activity monitoring.  

Zhao et al. (2023) explored a new two-stage 
global route planning and path control method for 
unmanned surface vehicles (USVs) that uses path 
navigation. Using the traveling salesman problem 
(TSP), a global path is initially found in the first step 
by maximizing profit per unit of time across several 
task locations. The second step is to create a 
nonlinear multi-objective optimization model to 
control the route between two task locations. An 

enhanced NSGA-II is suggested to address the multi-
objective path planning challenges to minimize path 
length while optimizing path safety and smoothness 
(Duan et al., 2024). To provide precise and efficient 
solutions, three problem-specific evolutionary 
operators were examined. Two navigation strategies 
were developed by Hassani et al. (2022), where the 
free segments algorithm is only used in complex 
environments, while the turning point algorithm is 
used as a navigational strategy in basic 
environments.  

Zhang et al. (2024) presented an improved A-
star-based path planning algorithm based on diverse 
turning angles to curtail unnecessary turns. The 
presented method integrates the artificial potential 
field method, introducing a unique heuristic 
function. This function includes a penalty term 
accounting for obstacle information at turning 
points, ensuring that these points are strategically 
positioned away from obstacles. A turning point 
method is introduced by Li et al. (2021) to facilitate 
improved traffic efficiency through infrastructure 
and vehicle cooperation. Based on the connected 
autonomous vehicle highway system's framework, a 
junction management system employing this 
technique is put into place. With the use of such a 
system, roadside infrastructure may effectively 
gather vehicle state data, reserve the corresponding 
intersection time-space occupancy, and then give 
vehicle input on planning and decision-making.  

The issues of decision-making at highly 
unpredictable crossings of varied forms are 
addressed by Shu et al. (2021) with their proposed 
hierarchical planning and decision-making system 
based on the critical turning point (CTP). Behavior-
oriented pathways can be generated using the 
proposed CTP approach calibrated with naturalistic 
driving datasets. The described two-dimensional 
partially observable Markov decision-making 
problem can be handled in real-time by using CTPs 
in place of lateral accelerations along with 
longitudinal accelerations as choice variables. 
Another study proposes a global path-planning 
algorithm based on the directionality of line segment 
features and the feature map (Ren et al., 2022).  

The suggested method uses the distances 
between the point (robot) and the line segment 
(obstacle) to evaluate the robot-obstacle 
relationship.  Additionally, a turning point for path 
planning based on the map-matching method is 
presented in Zhang et al. (2021). He offers the idea of 
vehicle turning points to apply map-matching pieces 
appropriately. It also suggests a revolutionary point-
based offline map-matching technique. Numerous 
offline map-matching techniques have been put forth 
to address the situation of trajectory data with a low 
sampling rate (Ou et al., 2022; Wang et al., 2023; 
Safarzadeh and Wang, 2024; Yu et al., 2022). These 
matching algorithms usually first set numerous 
candidate-matched positions for each trajectory 
point and then compute the shortest path between 
each pair of candidate positions at every two 
subsequent points to get the precise travel path 
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between those places. These methods have a 
considerable computation time due to several 
shortest-path calculations, even if they can achieve 
excellent matching accuracy.  

A local minimum is considered a common 
problem in path planning. A novel method for local 
minimum avoidance is introduced (Szczepanski et 
al., 2022). It is based on the placement of virtual 
obstacles called top quarks in critical areas. These 
obstacles provide additional repulsive force for the 
Artificial Potential Field (APF) based path planner. 
Considering the predicted stagnation-free path of the 
autonomous ground vehicle AGV, the new temporary 
goal for APF is selected. Another research (Wu et al., 
2023) proposed a method based on a deterministic 
annealing strategy to improve the potential field 
function by introducing a temperature parameter to 
increase the robot’s obstacle avoidance efficiency. 
The annealing and tempering strategies prevent the 
robot from being trapped at the local minima and 
allow it to continue toward its destination. The initial 
path is optimized using an annealing algorithm to 
enhance the overall performance. 

Our contribution is the creation of a novel 
algorithm for the robot path planning problem in a 
known environment with static obstacle avoidance. 
The benefit of this planning algorithm is that it 
guarantees both path safety and path brevity. 
Additionally, the suggested algorithm exhibits 
reactive behavior in locating a smooth path that is 
free of collisions. Conversely, the mobile robot needs 
to follow the path without running into any 
obstructions. Thus, to provide stability, 
responsiveness, and robustness, a turning mode 
control is suggested. 

The following is how this paper is organized: The 
background, relevance, and literature evaluation of 
the topic are covered in the first section, which is the 
introduction. The mobile robot's kinematics are 
shown in the second section. The algorithm's 
principle is explained in the third section, along with 
the analysis and description of issues like obstacle 
presentation, choosing a turning point search 
direction, avoiding obstacle endpoints, and the idea 
and procedure of path optimization. Using a 
comparison simulation experiment, the fourth 
portion demonstrates the algorithm's clear 
superiority in terms of increasing computational 
efficiency. Lastly, the paper's conclusion will be 
presented in Section 7. 

2. Kinematics of a mobile robot 

Nonholonomic mechanical system requires the 
definition of two distinct coordinate systems to 
characterize its position. The first is the fixed inertial 
coordinate system {X, Y} in the plane or environment 
that the WMR moves in. This frame serves as the 
standard frame.  

The second one is the mass center coordinate 
system's (Xc, Yc) orientation angle (θ), and it is a local 
frame connected to the WMR called the robot 
coordinate system (Xr, Yr). The parameter of the 

Differential Wheeled Robot (DWR) is shown in Fig. 1 
and listed in Table 1. 

The DWR shown in Fig. 1 presents three 
constraints. The first constraint is the velocity in the 
inertial frame which can be written as: 

 
�̇� cos 𝜃 − �̇� sin 𝜃 = 0.                                                                   (1) 

 
The other two constraints have to do with how 

the wheels rotate, and are given by: 
 

�̇� cos 𝜃 + �̇� sin 𝜃 + 𝑎�̇� − 𝑟∅̇𝑟 = 0                                             (2) 

�̇� cos 𝜃 + �̇� sin 𝜃 + 𝑎�̇� − 𝑟∅̇𝑙 = 0.                                             (3) 
 

 
Fig. 1: Coordinate system and WMR 

 
Table 1: DWR parameters 

Parameter Description 
C Mass center of guidance point 

d 
The separation between C and the point where the 

wheels' axis and the symmetry axis cross 
r Right and left wheel radius 

2a 
The separation between the symmetry axis and the 

actuated wheels 

∅̇𝑟, ∅̇𝐿 Angular velocity of the right and left wheels 
𝑚𝑐 Mass of the DWR without wheel and motor 
𝑚𝑤 The mass of each wheel and motor assembly 
𝑚𝑡 The total mass of the DWR 

𝐼𝑤 
The moment of inertia of each wheel and motor 

about the vertical axis 

𝐼𝑚 
Each wheel's and motor's moment of inertia to the 

vertical axis parallel to the wheel plane 
𝐼 Total inertia moment of the DWR 

 

Let  �̅� = (𝑥, 𝑦, 𝜃)𝑇  denote the posture vector. 
where, (x,y) denotes the position of the mobile robot, 
and θ is the angle between the X-coordinate and the 
heading position. Where: 𝛾 = (𝑣, 𝜔)𝑇  is the control 
vector; 𝑣 is the linear velocity; 𝜔 is the angular 
velocity. All symbols that have been used in the 
equations should be defined in the following text. 
 

�̇̅� = [
𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0
0 1

] [
𝑣
𝑤

]                     (4) 

 
For the Differential Drive Mobile Robot (DDMR), 

the generalized coordinates are selected as  
 
𝑞 = [�̅�𝑇  ∅𝑇]𝑇 = [𝑥 𝑦 𝜃 ∅𝑟  ∅𝐿]

𝑇                                                 (5) 

 
Eqs. 1-3 can be described in matrix form as: 
 
𝐴(𝑞)�̇� = 0.                                                                                       (6) 
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  The three constraints can be reformulated as Eq. 
4, 
 

𝐴(𝑞)�̇� = [

− sin(𝜃)

− cos(𝜃)
− cos(𝜃)

 

cos(𝜃)

− sin(𝜃)
− sin(𝜃)

 
−𝑑
−𝑎
𝑎

 
0
𝑟
0
 
0
0
𝑟
 ]

[
 
 
 
 
 
�̇�
�̇�

�̇�
∅̇𝑟

∅̇𝑙 ]
 
 
 
 
 

.                           (7) 

 
We assumed the mobile robot had driving 

wheels. Here, the kinematic model of a 
nonholonomic mobile robot is given: 
 

𝑣 =
1

2
(𝑉𝑅 + 𝑉𝐿)                        (8) 

 

where, 𝑉𝑅 , 𝑉𝐿 are the velocity vectors to the right and 
left of the robot.  
 

�̇� =
𝑉𝑅+𝑉𝐿

2
𝑐𝑜𝑠 𝜃                       (9) 

�̇� =
𝑉𝑅+𝑉𝐿

2
𝑐𝑜𝑠 𝜃                     (10) 

�̇� =
𝑉𝑅+𝑉𝐿

2
𝑠𝑖𝑛 𝜃                    (11) 

�̇� =
𝑉𝑅−𝑉𝐿

2
                     (12) 

3. Dynamic model 

The DDMR dynamic model is crucial for both 
designing different motion control algorithms and 
doing a simulation study of the DDMR's motion. One 
effective way to formulate the equations of motion of 
mechanical systems is to use the Lagrange 
formulation for the case of DDMR with standard 
fixed wheels (Rodríguez-Molina et al., 2022). 
 
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞
) −

𝜕𝑇

𝜕𝑞
= −𝐴𝑇(𝑞)𝜌 + 𝐸(𝑞)𝜏                                           (13) 

 
where, 𝑇 represents the Kinetic energy. A(q) is a ƿ×n 
matrix associated with nonholonomic constraints, 𝜌 
is a ƿ×1 vector of constraint forces, 𝜏 is a ƿ×1 vector 
of control or input torque, 𝜌 as in Dhaouadi and 
Hatab (2013) which represents the Lagrange 
multipliers vector. The total Kinetic energy of DDMR 
is expressed by: 

 

𝑇 =
1

2
𝑞𝑇  𝐻(𝑞)�̇�                                                                            (14) 

 
where, H(q) is the n×n positive definite symmetric 
inertia matrix-Eq. 13 can be written as: 

 
𝐻(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� = −𝐴𝑇(𝑞)𝜌 + 𝐸(𝑞)𝜏                               (15) 

 
where, 𝐶(𝑞, �̇�) is the matrix of Coriolis and 
centripetal Torques, considering a dynamic system 
with uncertainties and disturbances. In this model, 
the matrix A(q) encapsulates the restrictions on 
movement. of the DDMR, supposing that the DDMR 
only travels in the direction of the symmetry axis 
and that there is no sliding. 

 

𝐴(𝑞) = [

− sin(𝜃)

− cos(𝜃)
− cos(𝜃)

 

cos(𝜃)

− sin(𝜃)
− sin(𝜃)

 
−𝑑
−𝑎
𝑎

 
0
𝑟
0
 
0
0
𝑟
 ],                                    (16) 

the matrices 𝐻(𝑞), 𝐶(𝑞, �̇�) and 𝐸(𝑞) are given by: 
 

𝐻(𝑞) =

[
 
 
 
 

𝑚𝑡

0
𝑚𝑡𝑑 sin(𝜃)

0
0

 

0
𝑚𝑡

−𝑚𝑡𝑑 cos(𝜃)

0
0

 

𝑚𝑡𝑑 sin 𝜃
−𝑚𝑡𝑑 cos 𝜃

𝐼
0
0

 

0
0
0
𝐼𝑤
0

 

0
0
0
 

0
𝐼𝑤]

 
 
 
 

     (17)  

 

where,  
 
𝑚𝑡 = 𝑚𝑐 + 2𝑚𝑤 , 𝐼 = 𝑚𝑐𝑑

2 + 𝐼𝑐 + 2𝑚𝑤(𝑑2 + 𝑎2) + 2𝐼𝑚 

𝐶(𝑞, �̇�)𝑞 =

[
 
 
 
 
𝑚𝑡𝑑�̇�2 cos 𝜃

𝑚𝑡𝑑�̇�2 sin 𝜃
0
0
0 ]

 
 
 
 

,                                                        (18) 

𝐸(𝑞) =

[
 
 
 
 
0 0
0 0
0 0
1 0
0 1]

 
 
 
 

,                                                                            (19) 

 

Finally, the vector of Torque is given by 
 

𝜏 = [
𝜏𝑟

𝜏𝐿
],                                                                                         (20) 

 
where, 𝜏𝑟 and 𝜏𝐿 represent respectively the torques 
on the torques on the right and left wheels of the 
DDMR. To eliminate the constraint forms 𝐴𝑇(𝑞)𝜌 in 
Eq. 15 since the Lagrange multipliers 𝜌  are 
unknown. This is done by defining the velocity of the 
right and left wheels. Where: 
 

𝛾 = [
∅̇𝑟

∅̇𝐿

],                                                                                        (21) 

 

by generalizing the coordinate velocities, we get 
 
�̇� = 𝑆(𝑞)𝛾,                                                                                     (22) 

𝑆(𝑞) =
1

2

[
 
 
 
 
𝑟 cos 𝜃 𝑟 cos 𝜃
𝑟 sin 𝜃 𝑟 sin 𝜃

𝑟

𝑎

𝑟

𝑎

2 0
0 2 ]

 
 
 
 

.                                                      (23) 

 

where, 𝑆(𝑞) refers to the null spaces of the 
constraint matrix 𝐴(𝑞). 
 
𝑆𝑇(𝑞)𝐴𝑇(𝑞) = 0.                                                                         (24) 
 

By differentiating Eq. 22 and substituting the 
result into Eq. 15, and then pre-multiplying by 𝑆𝑇(𝑞) 
we can get. 
 

𝑆𝑇(𝑞) 𝐻(𝑞)𝑆(𝑞)�̇� + 𝑆𝑇(𝑞) [𝐻(𝑞)�̇�(𝑞) + 𝐶(𝑞, �̇�) 𝑆(𝑞)]𝛾 =

𝑆𝑇(𝑞) 𝐸(𝑞)𝜏,                                                                                 (25) 

 
Eq. 25 can be rewritten as: 

 
𝐻(𝑞)�̇� + 𝐶̅(𝑞, �̇�)𝛾 = �̅�(𝑞)𝜏,                                                     (26) 
 

where,  
 
𝐻(𝑞) = 𝑆𝑇(𝑞) 𝐻(𝑞)𝑆(𝑞),                                                          (27) 

𝐶̅(𝑞, �̇�) = 𝑆𝑇(𝑞) [𝐻(𝑞)�̇�(𝑞) + 𝐶(𝑞, �̇�) 𝑆(𝑞)],                      (28) 

�̅�(𝑞) = 𝑆𝑇(𝑞) 𝐸(𝑞).                   (29) 
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4. Path planning algorithm

The suggested algorithm's basic idea is to 
discover the shortest route between the robot's 
starting position and the intended destination. The 
mobile robot will proceed in a straight route if there 
are no obstacles in the way between the robot Ps 
current position and its destination 𝑃𝑇 . On the other 
hand, a path issue occurs when the robot encounters 
barriers that hinder its mobility. The robot needs to 
figure out a safe route between the barriers to avoid 
colliding.  

To resolve this problem, a path strategy's guiding 
principles are based on identifying the ends of each 
obstacle segment and fixing it as the site of collision. 
The goal of this method is to ensure that the robot 
turns safely away from this spot. This technique 
divides the path-planning problem into several 
steps. The control trajectory for a straight path 
between two points is given by: 

𝑑 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2.   (30) 

For a specific point trajectory 

𝑝(𝑥, 𝑦) = (𝑥 + 𝑑 𝑐𝑜𝑠 𝜃 , 𝑦 + 𝑑 𝑠𝑖𝑛 𝜃).    (31) 

4.1. Representation of obstacles 

An object with numerous edges can be used to 
depict a regular form. Given that, a robot can only 
observe a section of the shape of an obstacle, as Fig. 
2 illustrates. 

Fig. 2: Configuration of the obstacle boundaries detected 
by the robot 

A series of segments can be used to approximate 

the visible portion of the obstacle contour 𝑆𝑖
𝑗
 where

j=1, 2, 3, ..., n, where n represents the number of 
segments of the obstacle. Each segment can be 

represented by two points 𝑝𝑖
𝑗
 and 𝑝𝑖

𝑗+1
 and each

point has its coordinates (𝑥
𝑝𝑖

𝑗 , 𝑦
𝑝𝑖

𝑗
 
) and (𝑥

𝑝𝑖
𝑗+1 , 

𝑦
𝑝𝑖

𝑗+1 ) respectively. 

Remark 4.1: It is presumed that the obstacle is 
made up of a series of segments. If two obstacles are 
sharing a point, then there must be an intersecting 
point between them. The trajectory path will 
consider the following point and ignore this point 
from the path points list. The discussion can be made 
in several sub-sections. 

4.2. Selection of free segments 

The robot will identify segments that are free if 
the distance between the endpoints of two nearby 
obstacles is greater than the robot's diameter. If two 
obstacles intersect, a block segment is present and 
will be shown as a star. The two endpoints of the free 
segments are indicated when the robot has finished 
scanning the search region. A circle with a radius of 
R encircles each endpoint. This circle denotes the 
area of risk where a robot and the obstacle's edge 
could conspire. To prohibit collaboration between 
the robot and the obstacle, R needs to be greater 
than the robot's radius (R > r), where r is the radius 
of the robot, as Fig. 2 illustrates. 

4.3. Elimination of the dangerous path 

In a random environment, the distance between 
two obstacles could be bigger than the diameter of 
the robot, which can be noted as the free segment, or 
smaller, which is called the dangerous zone where 
colliding could occur. In other cases, the two 
obstacles could be connected at one point or more 
(Fig. 3). In this case, the intersection points could be 
identified by comparing the trajectory of each point 
of the obstacle Pi with the rest of the obstacles. If two 
points of different obstacles have the same 
trajectory (𝑥𝑖 , 𝑦𝑖), they will be removed from the 
OB_list, which refers to the obstacle point’s list (see 
algorithm 2). 

Fig. 3: Complex environment with multi-types of obstacle 
shapes 

4.4. Determining the safe path 

The safe path is one of the routes the robot can 
take to get to the target. The shortest path between 
these paths is chosen because they are identifiable. 

4.4.1. Finding nearest objects to the start points 

Since the obstacle is represented by serial 
segments (𝑝1, 𝑝2, …, pn), the selection of the first 
segment depends on the relative distance between 
the robot and the object. Each free segment is 

represented by a point (𝑥𝑖
𝑗

 
, 𝑦𝑖

𝑗
), see Fig. 4. A

comparison between the y-axis of each point of the 
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objects and the 𝑦𝑠 is established to find the nearest 
object to the robot.  

 

 
Fig. 4: Obstacle segments 

4.4.2. Selection of the turning points  

The robot measures the distance between itself 
and the dangerous circle's tangent line by scanning 
the surrounding area. The robot enters obstacle 
boundary mode when it reaches the risky circle. The 
robot must veer along the path of the obstruction. 
For example, the robot needs to follow the contours 
[�̅�𝑖

1, �̅�𝑖
2, … . , 𝑃𝑇] to reach the goal. It can be illustrated 

in Fig. 5. Firstly, find out the point �̅�𝑖
1 at a distance of 

R to the point �̅�𝑖
2 on the extension of a segment from 

the endpoint �̅�𝑖
2 to �̅�𝑖

3. See Algorithm 2.  
 

 
Fig. 5: Path around the dangerous circle 

 
Remark 4.4: A new path trajectory is added if the 
line between any point of the obstacle and the robot 
crosses with another obstacle. The path trajectory 
should be chosen from the obstacles that cross with 
the line PsPT. 

4.4.3. Path trajectory selection  

Initially, the collection of obstacles identified by 
the robot's sensors can be described as P= {Pi} for 1≤ 
i≤ N. Where N is the number of obstacles. The joint 

point set is identified as Pi= {𝑝𝑖
𝑗
 } for 1≤ j ≤ n. Where 

n is the number of points. Each segment 𝑆𝑖
𝑗
 is defined 

by its endpoints 𝑆𝑖
𝑗
 = (𝑝𝑖

𝑗
, 𝑝𝑖

𝑗+1
). Let path_list= {�̅�𝑘, 𝑃𝑇} 

for 1≤ i≤ M is the path set points. Denote dis 

(𝑃𝑘 , 𝑃𝑘+1) for 1≤ i≤ m-1. The principle that 
determines the distance between two points 𝑃𝑘  
and 𝑃𝑘+1, where, 

 
Dis ({Ps} ꓴ P_list)= dis(Ps, �̅�𝐼)+ ∑ dis(�̅�𝑘 , �̅�𝑘+1) 

𝑚−1
𝑘=1 + 

dis(�̅�𝑚, 𝑃𝑇) 
 

Dis ({Ps} ꓴ P_list) is the function that uses P_list 
to calculate the total path cost from the robot's 
current locations (Ps) to the end destination (PT). 
See Algorithm 1. Path_L and path_R are defined as 
the two possible paths to the left and right of the 
obstacle, which lie between the start point and the 
target being initialized as Path_L=path_R= {PT}. 

4.5. Optimum path selection 

If the robot can see the final target, then PsPT has 
no intersection with all obstacles, and the optimal 
path is the straight line PsPT, (Fig. 6). Otherwise, if 
PsPT has intersections with obstacles, the possible 
optimal trajectory might be from the right region of 
PsPT or the left region. Once the precise obstacle has 
been identified (in Fig. 7, it is Pi, Pi+1) since the 

segment 𝑝𝑖
𝑗
, 𝑝𝑖

𝑗+1
 in Pi={𝑝𝑖

1, 𝑝𝑖
2, …… , 𝑝𝑖

4} connects with 

PsPT, path trajectory of both sides of PsPT is detected. 
For example, if the right region of PsPT is taken, the 

close point 𝑝𝑖
𝑗+2

 is selected. If the robot is not able to 

reach the final target after passing 𝑝𝑖
𝑗+2

, 𝑝𝑖
𝑗+3

, the 

robot should go crossing 𝑝𝑖
𝑗+4

, 𝑝𝑖
𝑗+5

 to observe PT. 

Consequently, the previous point would be stored on 

list_R. Where list_R= {𝑝𝑖
𝑗+2

, 𝑝𝑖
𝑗+3

, 𝑝𝑖
𝑗+4

, 𝑝𝑖
𝑗+5

, 𝑃𝑇}, and 

by repeating the same process to the left region, one 

obtains list_L= { 𝑝𝑖
𝑗+1

, 𝑝𝑖
𝑗
, 𝑝𝑖+1

𝑗
, 𝑝𝑖+1

𝑗+1
, 𝑝𝑖+1

𝑗+2
, 𝑝𝑖+1

𝑗+3
, 𝑃𝑇}. 

Finally, the optimum path could be obtained by 
calculating the path cost of these two lists, i.e., If 
dis(Ps, list_R) > dis(Ps, list_L), then opt_path=list_L 
otherwise opt_path=list_R. 

The routine to generate the list of opt_path 
selections is given in Algorithm 1 (Algorithm of Path 
Planning). 

 

 
Fig. 6: Optimum path of free segment 

4.6. A local minima problem  

This problem could occur if each segment is in 
danger or if obstacles are preventing the robot from 
moving. A nearby minimum is characterized, 
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pertinently, by a scenario in which an object 
becomes stuck and cannot be moved. The item 
becomes stuck in a configuration where it has not yet 
reached the target but has nearly reached zero 
velocity. The robot moves far away from those 
obstructions until it reaches its destination to escape 
such a scenario. 

 

 
Fig. 7: Two suggested paths around obstacles 

 
Algorithm 1: Path planning 
1: Function opt_path (PT (xf, yf), Int. conditions) 
2: For each P do 
3: P_list= O-generation (P, Ps (xs, ys), PT (xf, yf)) 

4: if ∃�̅�𝑖
𝑗
, �̅�𝑖

𝑗+1
∈  𝑃_𝑙𝑖𝑠𝑡.  �̅�𝑖

𝑗
�̅�𝑖

𝑗+1
∩ 𝑃𝑇𝑃𝐺 ≠ ∅ 𝑡ℎ𝑒𝑛 

5: select Pi, break 
6: end if 
7: end for 
8: path_L=path_R={PT} 
9: for k=j:1:m do  #  m is the number of points on Pi 

10: 
if 𝑃𝑖

𝑗
 > PsPT # check the position of the obstacle 

points 

11: path_L={𝑝𝑖
𝑗
} ꓴ path_L 

12: else 

13: path_R={𝑝𝑖
𝑗
} ꓴ path_R 

14: end if 
15: end for 

 

Algorithm 2: Turning point 
1: function O-generation (P, Ps(xs,ys), PT(xt,yt)) 
2: for each P do 
3: for k=j:1:m 
4: ints_list=int_points (P) # intersection points list 

5: 
OB_list= 𝑃𝑖 – int_list # removing the intersection 
points from the obstacles points list 

6: get segment 𝑝𝑖
𝑗
𝑝𝑖

𝑗+1 
from OB_list 

7: compare 𝑝𝑖
𝑗
 with 𝑝𝑖

𝑗+1
  with 𝑝𝑖

𝑗+2
 

8: compute points : (�̅�𝑖s.t ) 
9: end for 

 
Algorithm 3: Intersection point 
1: function int_point (P) 
2: for L=i:1:n #  n is the number of obstacles 
3: for k=j:1:m #  m is the number of points on Pi 
4: if 𝑃𝑖  ∩  𝑃𝑖+1 ≠ ∅ then 
5: Ints={ 𝑝𝑖(𝑥, 𝑦)} 
6: else 
7: ints= 0 
8: end for 
9: end for 

5. Simulation results  

The environment's construction is regarded as 
crucial to the motion planning process in mobile 
robot navigation. This section contains some 
simulation results that show the fundamental 
capabilities of the suggested algorithm. Fig. 8 
displays the outcomes of all simulations, which 
include five randomly placed obstacles in the area. 
The starting center coordinate of static obstacles is 
shown in Table 2. The simulation runs in situations 
where the robot starts from the same point while the 
target (xt, yt) positions are changed. 

 
Table 2: Center coordinate of obstacles 

obstacles Xobs Yobs 
Obstacle1 150 150 
Obstacle2 66.66 250 
Obstacle3 350 150 
Obstacle4 250 250 
Obstacle5 325 425 

Xobs and Yobs coordinate of the center points of static obstacles 

 

 
Fig. 8: Environment mapping 

 
This section covers the scenario in which the 

robot starts at the starting point (xs, ys)=(50, 50), 
while the target location is selected to be (xt, 
yt)=(150, 250), (300, 370), and (400, 250), as shown 
in Figs. 9a, 9b, and 9c, in which certain segments are 
free while others are not. It is observed that the 

robot can trace two possible paths to reach its 
destination. The shortest path is denoted in red. The 
robot avoids collisions with obstacles by turning 
around the unsafe zone at the end of the obstacle 
segment. The path navigation will adjust in tandem 
with the robot's position adjustments.  
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(a) (b) 

 
(c) 

Fig. 9: Path planning with (xs, ys)= (50, 50), (a) Safe path navigation with (xt, yt)= (150, 250), (b) Safe path navigation with (xt, 
yt)= (300, 370), and (c) Safe path navigation with (xt, yt)= (400, 300) 

 

Fig. 10 shows how a mobile robot can navigate in 
different positions (xs, ys)= (250, 50) (see Figs. 10a, 
10b, and 10c). Meanwhile, the intended destination 

remains the same as before. Once more, the robot 
managed to avoid the hazardous area and go along 
the short, safe path. 

 

  
(a) (b) 

 
(c) 

Fig. 10: Path planning with (xs, ys)= (250, 50), (a) Safe path navigation with (xt, yt)= (150, 250), (b) Safe path navigation with 
(xt, yt)= (250, 370), and (c) Safe path navigation with (xt, yt)= (400, 300) 

 

Another simulation finding is shown in the case 
where the robot begins at location (xs, ys)=(350, 50) 
(see Figs. 11a, 11b, and 11c. Each time the goal 
position is altered, the robot's trajectory is adjusted. 
The robot keeps turning only around the safe 
segments and avoiding the hazardous ones until it 
reaches its destination. Figs. 12a, 12b, and 12c 
demonstrate how the mobile robot makes sure to 

reach the distinction while dodging various 
obstacles. In this instance, a local minimum issue is 
identified. As a result, the robot avoids obstructions 
and moves straight towards the goal. 

All simulation results show that the developed 
method is very reactive because the robot was able 
to avoid obstacles both in safe and risky areas and 
when the robot and target location changed. 
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(a) (b) 

 
(c) 

Fig. 11: Path planning with (xs, ys)= (350, 50), (a) Safe path navigation with (xt, yt)=(150, 270), (b) Safe path navigation with 
(xt, yt)=(250, 370), and (c) Safe path navigation with (xt, yt)=(370, 270) 

 

  
(a) (b) 

 
(c) 

Fig. 12: Local minimum, (a) Safe path navigation with (xt, yt)= (250, 350), (b) Safe path navigation with (xt, yt)= (150, 300), 
and (c) Safe path navigation with (xt, yt)= (350, 250) 

 

6. Discussion  

Compared to the work developed by Hassani et 
al. (2022), which considers only the free segments 
where there is no conjunction between two obstacles 
or dangerous segments, the presented algorithm in 
this research succeeds in element all dangerous 
points to reduce the unwanted path selections as 
shown in the simulation results. The other difference 
is that the old work combined two approaches to 
overcome the navigation of mobile robots in complex 
environments, which are the turning point with 
simple environments and free segments with 
complex environments without considering the local 

minimum problem. This is in contrast to the 
algorithm presented in this research, which 
successfully applies to all types of environments, 
including environments with minimum local 
problems. 

7. Conclusion 

This paper proposes a novel method for planning 
mobile robots' smooth paths in two-dimensional 
user-defined environments with static obstacles. 
This work also provides a solution to the local 
minima problem. This paper presents an algorithm 
that uses free segments to find turning points. It 
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addresses the length of the path and its safety. The 
benefit of the created algorithm is that, in the given 
environment, the robot can always proceed from its 
initial location to the final position in a safe and 
quickest path, irrespective of the configuration of the 
obstacles or changes in the goal position. On the 
other hand, the suggested turning point mode 
control is a crucial approach to system management. 
This method performs well in tracking, exhibiting 
robustness, stability, and a short path. Matlab 
simulation results are used to illustrate that. The 
suggested approach is a useful substitute for 
resolving the trajectory tracking and path planning 
issues. Future research on determining multiple 
robot route controllers would be worthwhile. 
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