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With the development of smart cities, it is essential to monitor traffic flow 
and manage congestion effectively to ensure smooth movement for people 
and address their social and economic needs. As these needs continue to 
change, roadside infrastructure faces challenges in meeting the demands of 
citizens in smart cities. Traffic congestion is a major issue in road networks 
and occurs when the number of vehicles exceeds the capacity of the roads. 
Emerging technologies like Vehicular Networks (VN) and Support Vector 
Machine (SVM)-based linear regression offer promising solutions for vehicle-
to-vehicle communication and managing autonomous roadside 
infrastructure. SVM-based linear regression is a well-known and effective 
method for addressing various issues related to roadside infrastructure, 
traffic management, data integration, analytics, and environmental 
monitoring. The main goal of using SVM-based linear regression in this 
research is to help citizens and city authorities make informed decisions and 
better understand and control traffic. This study demonstrates the 
application of SVM-based linear regression in integrating autonomous 
roadside infrastructure, achieving a high accuracy rate of 92% and reducing 
errors by 8%, showing a notable improvement compared to previous 
methods. 
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1. Introduction 

*In recent years, metropolitan regions have 
adopted the "smart city" initiative to adopt advanced 
technologies and improve the sophisticated lives of 
the people (Sharma and Kanwal, 2023). The people 
are eager to make use of contemporary 
advancements in network connectivity, waste 
management, transport, traffic control, city 
monitoring, surveillance, irrigation, and autonomous 
roadside infrastructure. Electric vehicles, 
interconnected vehicles, and autonomous roadside 
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infrastructure are revolutionizing the automotive 
sector (Zaino et al., 2024). 

Autonomous roadside infrastructure helps 
manage traffic congestion in cities and provides 
important updates during emergencies. 
Interconnected vehicles use internet connections to 
access cloud-based data for regional traffic and 
navigation. These benefits are made possible by 
placing smart devices throughout the city. However, 
these advanced technologies rely on sensors, 
transducers, and high-speed wireless connections to 
function. With the support of autonomous roadside 
infrastructure, city traffic can be managed more 
efficiently by making automatic decisions based on 
real-time data. To build effective traffic management 
systems, smart cities depend on foundational 
technologies such as self-driving systems, Vehicle-to-
Vehicle (V2V), and Vehicle-to-Infrastructure (V2I) 
communication (Seth et al., 2024).  

A smart city uses a variety of smart appliances as 
well as sensors to collect data from various nodes. 
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The transportation system may interface with the 
various organizations that are a component of the 
proposal for a digital city. The smart city (Atta et al., 
2020) concept and 5G network connection are 
promoting social transformation. The population and 
economic well-being of the country have an impact 
on the deployment of the 5G network. As modern 
linked automobiles receive and send information 
from their surroundings, the automobile industry is 
likewise affecting the use of advanced-level 
technologies. 

Sensors, Internet of Vehicles (IoV) devices, and 
wireless networks are effectively applied in smart 
city data sharing on roadside infrastructure. The 
vehicles are equipped with sensors that collect data 
on the road. Drivers are provided real-time 
information on vehicle location, navigation, and 
speed using instant message services. The movement 
of automobiles on the road is accomplished without 
the intervention of humans. Real-time information is 
provided through smartphones linked to vehicle 
networks. To collect information regarding the 
movement of vehicles in that region, a roadside 
sensor is set up at a consistent distance (Miller, 
2008). The IoV sensors can automatically build 
connectivity with adjacent devices.  

Vehicles need to communicate with one another, 
and roadside infrastructure acts as an intermediary 
to facilitate this communication within a specified 
range. Roadside devices play a key role in connecting 
vehicles and managing this interaction. When 
unauthorized access to a vehicle occurs, the owner 
receives an alert with specific vehicle details. City 
traffic is managed effectively through roadside 
infrastructure, with the registration of vehicle 
information serving as an initial step in traffic 
management. The vehicle’s intended destination is 
also identified. Devices at one location are 
networked with others to gather traffic data. A 
primary route for the vehicle is assessed for traffic 
conditions. If the route is feasible, it is provided to 
the driver; if not, alternative routes are considered 
until the best path is identified to reduce traffic 
congestion in urban areas. IoV devices send 
messages to share information on the optimal route. 
This technology helps create a better transit 
environment in metropolitan areas and provides 
effective transport solutions for emergency vehicles. 
Access to traffic data improves safety and supports 
parking space management, reducing unnecessary 
travel time and easing traffic congestion (Mostowfi 
and Buttlar, 2020). 

For many years, Artificial Intelligence (AI) has 
been used in traditional roadside infrastructure to 
enhance road and urban traffic efficiency. Decision 
support systems within roadside infrastructure have 
evolved to better assist operators in making effective 
decisions (Borst et al., 2017). Different analytics and 
reasoning methods are necessary for various tasks 
because each roadside infrastructure system has 
unique needs and limitations. However, the use of 
advanced AI with "black-box" behavior can reduce 
transparency and lead to a loss of trust and 

responsiveness among drivers. A black-box 
approach offers a complete solution but without 
explaining its reasoning (Hagras, 2018), which 
makes it difficult for humans to monitor and 
understand the solution. This verification is 
especially important in safety-critical scenarios 
where systems need to be understandable and 
transparent. To address this issue, new roadside 
infrastructures are working towards more reliable 
solutions by providing clear explanations. This helps 
establish the right level of trust among operators, 
avoiding both excessive trust and mistrust. 

Support Vector Machine (SVM) linear regression 
is a machine learning method that finds the line that 
best fits a set of data points, while minimizing the 
distance between the line and the data points. It is 
often used for prediction and modeling tasks 
because it can handle large datasets and complex 
features effectively. This technique is also being 
explored for its ability to support integrated and 
comprehensive autonomous decision-making, as 
well as to enhance the quality of decisions. 

2. Literature survey 

Many research efforts focus on improving quality 
of life, particularly through better access to services. 
However, administrators, architects, and urban 
planners face significant challenges due to the 
demands of growing industries and increasing 
populations in metropolitan areas. The Internet of 
Things (IoT) and Information and Communication 
Technologies (ICT) have greatly influenced how 
organizations drive innovation and create new 
opportunities in their daily operations over the past 
decade. These advances have become central to 
"smart cities," where the goal of IoT and the IoV is to 
use ICT to deliver better services for people while 
offering businesses more opportunities for 
innovation through advanced technology (Bresciani 
et al., 2018). Smart transportation is a key aspect of 
smart cities and has become the second largest 
contributor to carbon dioxide emissions due to its 
low efficiency. This has an impact on both smart 
environments and transportation systems. 
Therefore, improving transportation efficiency is 
crucial for the success of smart cities and smart 
transportation (Lingli, 2015).  

With the rise in popularity of the IoV, applications 
have advanced, and interconnected devices are now 
widely used across various aspects of modern cities. 
As the amount of data collected grows, ML 
techniques are used to enhance the intelligence and 
capabilities of applications. The increasing number 
of vehicles on the roads, combined with the growing 
global population, presents greater challenges for 
traffic management, especially in public 
transportation. Moreover, the frequency of accidents 
and other traffic-related issues is rising. By 
integrating existing technology with fundamental 
infrastructure, the Intelligent Transportation System 
(ITS) addresses many of these challenges (Sutar et 
al., 2016). Real-time vehicle tracking is now possible, 
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improving transportation management through 
mobile technology and the extensive use of cellular 
networks. ITS eliminates the need for long wait 
times for buses. Smartphones are a highly appealing 
option for developing IoV applications due to their 
accessibility, expanding features, and affordability. A 
system based on a combination of technologies like 
GPS and Android has been developed to assist public 
transportation users (Raad et al., 2021). 

To address data vulnerability, a decentralized 
information management system is being developed 
for smart and efficient mobility, incorporating 
blockchain and IoT technologies within a sustainable 
smart city framework. In the future, electric vehicles 
are anticipated to be widely used in both commercial 
and public transportation in metropolitan areas. The 
growing adoption of electric vehicles will play a 
crucial role in the long-term environmental and 
economic development of cities (Cao et al., 2018). 
The success factor of hybrid electric automobiles 
through current equipment, as well as its effective 
method of machine control, is also discussed 
(Abualkishik et al., 2023; Saleem et al., 2022a; Raj 
and Kamaraj, 2013). The numerous electric vehicles 
that may be used in smart city contexts, as well as 
their charging procedures, are discussed (Ferrer, 
2017).  

In a study by Ata et al. (2019), the authors 
proposed a traffic congestion prediction algorithm 
using neural backpropagation. This system displays 
messages on the vehicle's LCD screen after 
predicting congestion and provides an alternative 
route using Google Maps. Tamimi and Zahoor (2010) 
presented a method based on Artificial Neural 
Networks (ANN), incorporating variables such as 
distance, time, wind speed, traffic flow, temperature, 
and humidity. The simulation results demonstrated 
the effectiveness of the proposed approach, 
confirming that the model accurately processed and 
learned from the data provided through an efficient 
system. 

In a study by Li et al. (2020), the authors 
proposed a low-cost method for measuring vehicle 
speed by classifying auditory waveforms using a 
single roadside auditory sensor. However, the 
presence of extremely loud vehicles and a wide 
range of auditory signals can limit the effectiveness 
of this approach in developing countries.  

Sakran developed a system (Abbas et al., 2022) 
that integrates the IoT with intermediary 
intelligence into a unified network, where agent-
based expertise enables efficient communication and 
coordination within IoT networks involving a large 
number of diverse, dynamically distributed, and 
autonomous devices. The study introduced a real-
time traffic simulation model for IoT-enabled traffic 
management using NetLogo, an agent-based 
environment, and mobile agent tools. 

Sadhukhan and Gazi (2018) presented a system 
for real-time monitoring and controlling of road 
traffic using IoT. The IoT-based solution relies on 
cloud technology, which provides various services 
such as data storage and applications. An RF 

transmitter is used for alternative traffic control, and 
load cells are employed to measure the time 
required to optimize traffic flow. When vehicles pass 
over the load cells embedded in the road, their 
weight is converted into electrical signals, enabling 
precise traffic management (Sadhukhan and Gazi, 
2018). 

Big data analytics are widely used in smart 
communities, cities, control systems, and other 
smart applications. A framework utilizing Hadoop 
and Spark for estimating transportation data was 
proposed to process real-time transport information 
efficiently. The methodology was validated using 
reliable transportation data from various sources, 
demonstrating that citizens can access real-time data 
processing and delivery quickly (Aujla et al., 2018). 
V2V and V2I communication play a crucial role in 
smart transportation (Agarwal et al., 2021). These 
methods help build the essential framework for 
autonomous vehicles in future smart cities. 

Specifically, AI experienced significant growth 
during the 2010s, driven by increased access to vast 
amounts of data and the exceptional capabilities of 
computer graphics card processors, which 
accelerated learning processes (Muller, 2020). 
Certain approaches allow humans to understand (i) 
the AI algorithms and (ii) their explanations, which 
are closely linked to the systems they describe and 
follow similar trends. According to Mueller et al. 
(2019), this approach is now considered to be in its 
third generation. 

The performance of some previous methods, in 
terms of accuracy, is highlighted in Table 1. There 
are various methods that can help develop solutions 
for the increasing challenges in designing smart and 
autonomous systems. Ensemble learning technique 
(Matloob et al., 2021), blockchain technology (Malik 
and Saleem, 2022), Machine learning (Atta et al., 
2020; Ata et al., 2021; Saleem et al., 2019; 2022b; 
Bokaba et al., 2022; Asif et al., 2022), soft computing 
(Khan et al., 2020a; 2020b), Intelligence approaches 
(Khan et al., 2022), Particle Swarm Optimization 
(PSO) (Khan et al., 2019; Asif et al., 2019), as well as 
computational intelligence (Sajjad et al., 2023), 
transfer learning (Mehmood et al., 2022), and deep 
learning technique (Siddiqui et al., 2021) are 
approximate methods being applied in constructing 
several smart, as well as autonomous agendas. 

 
Table 1: Performance of previous methods 

Reference Method Accuracy 
Krizhevsky et al. (2012) AlexNet 85.33% 

Szegedy et al. (2015) GoogLeNet 87.08% 
Simonyan and Zisserman (2014) VGG-16 86.25% 
Simonyan and Zisserman (2014) VGG-19 86.58% 

He et al. (2016) ResNet 50 87.08% 

3. Proposed methodology 

In recent times, the worldwide transportation 
industry has undergone significant changes with the 
rise of autonomous vehicles and the implementation 
of smart city infrastructure. Autonomous roadside 
infrastructure has emerged as a promising solution 
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for improving traffic management operations and 
enhancing the safety and efficiency of transportation 
systems. This research aims to develop a system that 
leverages SVM linear regression models to enable 

decision-making in autonomous roadside 
infrastructure with a better understanding. The 
proposed infrastructure is shown in Fig. 1. 

 

Signal
Optimizer Estimater

Queue

SVM Linear Regression

Application Layer

No

Yes

Data Network

Vehicle Detector

Import data for roadside 
infrastrcuture prediction Exit

Autonomous roadside 
infrastructure predicted

Yes

No

IoV enabled Roadside Data Input Layer
Preprocessing Layer

 
Fig. 1: Proposed model 

 

Fig. 1 illustrates the structure of the proposed 
autonomous roadside infrastructure, which is 
evaluated using training and validation phases. The 
training phase consists of five layers: roadside 
infrastructure, data acquisition layer, preprocessing 
layer, application layer, and SVM linear regression. 
IoV-enabled devices connected to the roadside 
infrastructure collect data and send it to the data 
acquisition layer. This layer gathers data, converts it 
into electrical signals, and performs the necessary 
processing. The data is then passed to the 
preprocessing layer, which reduces noise generated 
from wireless communication. The preprocessed 
data moves to the application layer, where it is 
analyzed using a linear regression algorithm. This 
algorithm predicts patterns and generates reports 
that offer real-time insights into performance. 
 
Ĥ = Jŋ + Ǣ                                                                                      (1) 
 

In Eq. 1, 'J' denotes the slope of the line, and 'Ǣ' 
represents the intercept. 
 
Jŋ − Ĥ + Ǣ = 0  
ᶈ .⃗⃗⃗⃗ ȍ̅ + Ǣ = 0                                                                                   (2) 
 

The direction of a vector ȍ̅ =  (ŋ , Ĥ)
T
  is ᶈ̅ and 

defined as: 
 

ᶈ =
ŋ

||ȍ||
+

Ĥ

||ȍ||
                                                                                  (3) 

 

where, 
 

||ȍ|| = √ŋ+ 
2 Ĥ+ 

2 ……… . . ȍζ 
2   

cos(θ) =  
ŋ

||ȍ||
 𝑎𝑛𝑑 cos(μ) =  

Ĥ

||ȍ||
   

 

Eq. 3 can also be written as: 
 
ᶈ = ( cos(θ), cos(μ))  

ᶈ.⃗⃗⃗  ȍ ⃗⃗  =   ||ᶈ||  ||ȍ|| cos(θ)   

θ =  ύ −  μ  
cos(θ) =  cos(ύ −  μ) = cos(ύ) cos(μ) + sin(ύ) sin(μ)  

=
ϑ

||ᶈ||
 

ŋ

||ȍ||
+ 

α

||ᶈ||
 

Ĥ

||ȍ||
= 

ϑŋ+ αĤ

||ᶈ||||ȍ||
   

ᶈ. ȍ =  ||ᶈ||||ȍ|| [
ϑŋ+ αĤ

||ᶈ||||ȍ||
]  

ᶈ.⃗⃗⃗  ȍ ⃗⃗  =  ∑ ᶈiȍi
ζ
i=1                                                                              (4) 

 

The dot product can be compared as Eq. 4 for ζ 
dimensional vectors, Let, 
 
Β = Μ (ᶈ . ȍ + Ǣ)  
Βi = Μi (ᶈ . ȍ + Ǣ)  
 

ϸ is the functional margin of the dataset: 
 
ϸ =  min

i=1…..ɮ
Βi  

 

While comparing hyperplanes, one with the 
largest ϸ will be chosen. ϸ is the geometric margin of 
the dataset. The goal is to find an optimal 
hyperplane, which means finding the values of ᶈ ⃗⃗⃗   and 
b of the optimal hyperplane. 

The Lagrangian function is: 
 

Ӑ (ᶈ,Ǣ, μ) =  
1

2
 ᶈ. ᶈ − ∑ μi [Μ ∶ (ᶈ. ȍ + Ǣ) − 1]

ɮ
i=1   

∇ᶈӐ (ᶈ,Ǣ, μ) =  ᶈ − ∑ μi Μi ȍi = 0
ɮ
i=1                                     (5) 

∇ǢӐ (ᶈ,Ǣ, μ) =  − ∑ μi Μi = 0 
ɮ
i=1                                          (6) 

 

From the Eqs. 5 and 6, we get: 
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ᶈ =  ∑ μi Μi ȍi
ɮ
i=1   and ∑ μi Μi = 0   

ɮ
i=1                                 (7) 

 

After substituting the Lagrangian function Ӑ, we 
get: 
 

ᶈ(μ ,Ǣ) = ∑ μi 
ɮ
i=1 − 

1

2
  ∑ ∑ μi

ɮ
j=1 μjΜi Μj ȍiȍj 

ɮ
i=1   

 

thus, 
 

max
μ

∑ μi 
ɮ
i=1 − 

1

2
  ∑ ∑ μi

ɮ
j=1 μjΜi Μj ȍiȍj 

ɮ
i=1                            (8) 

 

Subject to μi  ≥ 0 , i = 1… . ɮ , ∑ μi
ɮ
i=1 Μi = 0  

 

The Lagrangian multipliers method is extended to 
Karush-Kuhn-Tucker (KKT) conditions because of 
inequalities in the constraints. KKT's complementary 
status states that: 
 
μi [Μi(ᶈi. ȍ

∗ + Ǣ) − 1] = 0                                                        (9) 
 

where, ȍ∗ is the point/points where we reach the 
optimal; μ is the positive value and 𝜇 for the other 
aspects are ≈ 0, So: 
 

Μi((ᶈi. ȍ
∗ + Ǣ) − 1) = 0                                                         (10) 

ᶈ − ∑ μi Μi ȍi = 0
ɮ
i=1   

ᶈ =  ∑ μi Μi ȍi  
ɮ
i=1                                                                         (11) 

 

To compute the value of Ǣ, we get: 
 

Μi((ᶈi. ȍ
∗ + Ǣ) − 1) = 0                                                         (12) 

 

In Eq. 12, multiply both sides by M to get: 
 

Μi
2((ᶈi. ȍ

∗ + Ǣ) − Μi) = 0  

 

where, Μi
2 = 1. 

 

((ᶈi. ȍ
∗ + Ǣ) − Μi) = 0  

Ǣ = Μi − ᶈi. ȍ
∗                                                                            (13) 

 

then, 
 

Ǣ =
1

Ƀ
 ∑ ( Μi − ᶈ . ȍ)Ƀ

i=1                                                             (14) 

 

where, Ƀ is the number of support vectors. On one 
occasion, the hyperplane will make predictions. 
Where the hypothesis function is: 
 

ᴄ (ᶈi) =  [
1  if ᶈ. ȍ + Ǣ > 0

0 if ᶈ. ȍ + Ǣ  ≤ 0
]                                                   (15) 

 

The main goal of the SVM algorithm is to identify 
a hyperplane that can effectively separate the data, 

aiming to find the optimal hyperplane. Once 
determined, the output from regression models is 
used to make predictions and generate explanations 
based on traffic data.  

The output from linear regression is further 
utilized to provide predictions, offering valuable 
assistance to traffic management administrators in 
interpreting decisions, which is crucial for smooth 
city traffic flow.  

Next, the learning criteria are evaluated. If the 
criteria are not met, the linear regression algorithm 
is retrained; if the criteria are met, the predicted 
outcome is stored in a cloud database. During the 
validation phase, trained patterns are imported from 
the cloud dataset and compared with real-time data 
from IoV-enabled roadside infrastructure to 
determine whether the prediction for the 
autonomous roadside system is accurate. If not, the 
process terminates; if accurate, a message confirms 
that the autonomous roadside infrastructure 
prediction has been achieved. 

4. Results and simulation 

This research aims to explore the integration of 
autonomous roadside infrastructure into smart cities 
using SVM linear regression. Integrating this 
infrastructure has the potential to transform urban 
mobility, making it more efficient and sustainable. 
However, several challenges must be addressed to 
ensure successful implementation. To address these 
challenges, simulation environments can be used to 
test the effectiveness of SVM linear regression 
techniques on datasets, with 70% of the data used 
for training and 30% for validation. This approach 
can contribute to the development of more efficient 
and sustainable smart cities, ultimately enhancing 
the quality of life for residents. 

Table 2 presents the results for training (70% of 
the data) and validation (30% of the data) for 
supervised learning algorithms. The training results 
show an accuracy of 93%, a miss rate of 4.42%, a 
mean absolute error of 5.3%, a root mean squared 
error of 51.54%, a median absolute error of 4.14%, 
and an explained variance score of 93%. The 
validation results indicate an accuracy of 92%, a 
miss rate of 16.67%, a mean absolute error of 5.5%, 
a root mean squared error of 55.8%, a median 
absolute error of 4.31%, and an explained variance 
score of 93%. This suggests that the algorithms may 
have overfit during training and may require further 
tuning to improve their performance on unseen data. 

 
Table 2: Performance measures of training and validation 

Supervised learning 
algorithms 

Training results parameters 

Accuracy Miss rate 
Mean absolute 

error 
Root mean squared 

error 
Median absolute 

error 
Explain variance 

score 
Training 93 4.42 5.3 51.54 4.14 93 

Validation 92 16.67 5.5 55.8 4.31 93 

 

In Fig. 2, the graph shows a linear trend model of 
a variable over time, where the predicted value is 

represented by the red line. The red line is constant 
at a value of 60, indicating that there is an overall 
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trend of the variable being stable over time. 
However, fluctuations in the data points are shown 
by the scattering of points around the red line. These 
fluctuations are quite significant, with the variable 
values ranging between 20-140, and they occur 

almost on a monthly basis. This means that the 
variable has a lot of variability or volatility, which 
may be due to various factors, such as external 
conditions that may affect the variable. 

 

 
Fig. 2: Linear trend model 

 

In Fig. 3, the graph represents a linear model for a 
validation set of predictions. The predicted values 
are represented by the pink line, which is between 
50-85, and the true values by the green line are 
represented by the scatter of points around the pink 
line. The true values fluctuate between 20-140, and 
these fluctuations occur almost monthly. These 
fluctuations in the true values can have a significant 

impact on the variable and cannot be ignored. 
Therefore, it is crucial to understand the underlying 
factors that are causing these fluctuations and to 
take them into account when making predictions or 
decisions based on this data. This understanding can 
help improve the accuracy of the model and help 
make more informed decisions based on the data. 

 

 
Fig. 3: Linear model for the validation set predictions 

 

This graph in Fig. 4 represents an XGBoost model 
for a validation set of predictions. The predicted 
values are represented by the pink line, which is 
between 30-125, and the true values are represented 
by the scatter of green points around the pink line. 
The true values fluctuate between 20-140, and these 
fluctuations occur almost monthly. It is important to 
understand the underlying factors that are causing 
these fluctuations and to take them into account 
when making predictions or decisions based on this 
data. This understanding can help improve the 
accuracy of the XGBoost model further and make 
more informed decisions based on the data. 

Fig. 5 shows the graph of the trend model and an 
XGBoost model applied to a validation set of 
predictions. The models are depicted by a blue line, 
covering values between 20 and 130. The true values 
are represented by green scatter points around the 
lines, ranging between 15 and 140, with fluctuations 
that occur almost on a monthly basis. These 
fluctuations are influenced by underlying factors that 
must be considered when making predictions or 
decisions based on this data. Understanding these 
factors can help improve model accuracy and enable 
more informed decision-making based on the data. 
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Fig. 4: XGBoost for the validation set predictions 

 

 
Fig. 5: Trend model and the XGBoost model for the validation set predictions 

 
Fig. 6 illustrates an XGBoost model with lagging 

variables applied to a validation set of predictions. 
The predicted values are shown by a pink line, 
ranging between 15 and 120, while the true values 
are depicted as green scatter points around the pink 
line, fluctuating between 15 and 135. These 
fluctuations occur almost monthly and may be 
influenced by various factors that need to be 
considered when making predictions or decisions 

based on this data. Understanding these factors can 
help improve the accuracy of the XGBoost model 
with lagging variables and enable more informed 
decision-making based on the data. 

According to Table 3, the proposed model shows 
better performance than the previous published 
approaches, with an accuracy of 92% and an 8% 
miss rate. 

 

 
Fig. 6: XGBoost (w/Lagging) for the validation set predictions 
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Table 3: Comparison of the proposed model 
Method Accuracy Miss rate 

 

AdaBoost (Model 9) (Bokaba et al., 2022) 52.1% 47.9% 
RF (Al Mamlook et al., 2020) 85.1% 14.9% 
RF (Bharadwaj et al., 2019) 75.5% 24.5% 

DT (Al Mamlook et al., 2020) 80.7% 19.3% 
MLP (Wang et al., 2019) 71.4% 28.6% 

Proposed model 92% 8% 

 

5. Conclusions 

The primary motivation for this research is to 
improve traditional traffic management systems 
through automation and machine learning 
techniques. As cities expand, traffic congestion has 
become a significant problem, negatively impacting 
citizens' quality of life, causing delays, and increasing 
pollution levels. To address these challenges, 
innovative solutions are needed to optimize traffic 
flow and enhance road safety. Smart city traffic 
management aims to optimize traffic signals, predict 
congestion, integrate transportation systems, and 
improve safety, thereby promoting efficient and 
congestion-free urban mobility. 

Autonomous roadside infrastructure offers a 
promising approach to improving traditional traffic 
management. This research proposes a system that 
utilizes SVM linear regression models to enable 
autonomous decision-making and enhance the 
decision-making processes within smart city 
roadside infrastructure. The proposed system 
demonstrates better results compared to previous 
methods, achieving 92% accuracy and an 8% miss 
rate. In the future, this work could be further refined 
to improve decision-making transparency through 
explainable AI approaches. 
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