
 International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

214

Web application performance assessment: A study of responsiveness,
throughput, and scalability

Hend Alnuhait 1, Wael Alzyadat 2, Ahmad Althunibat 2, Hasan Kahtan 3, Belal Zaqaibeh 4, Haneen A.
Al-Khawaja 5, 6, 7, *

1Faculty of Computer Studies, Arab Open University, Riyadh, Saudi Arabia
2Faculty of Sciences and Information Technology, Al-Zaytoonah University of Jordan, Amman, Jordan
3Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales
4Faculty of Science and Information Technology, Jadara University, Irbid, Jordan
5Department of Financial Technology and Banking, Faculty of Business, Ajloun National University, Ajloun, Jordan
6Applied Science Research Center, Applied Science Private University, Amman, Jordan
7Swiss FinTech Innovation Lab, University of Zurich, Zurich, Switzerland

A R T I C L E I N F O A B S T R A C T

Article history:
Received 1 April 2024
Received in revised form
1 August 2024
Accepted 14 September 2024

This study examines web application performance testing by focusing on
responsiveness, throughput, and scalability to evaluate the effectiveness of
computer systems, networks, and software applications. It assesses a specific
protocol's performance through four tests: performance load, process start-
up time, web application infrastructure, and resource allocation. Using
Apache JMeter, tests were conducted on the RSMD and E-government
websites. The results revealed instability and performance degradation in
the RSMD website over time, with server-to-client response time increasing
as the test duration and load increased. The E-GOV website's performance
initially appeared stable but also degraded over time. A test ramp time of 10
seconds and five looping iterations showed significant performance
degradation. Future research should address these issues to improve web
application performance under load conditions. The study also discusses
testing tools, including JMeter, for evaluating website performance under
various load conditions. Key findings include the instability of the RSMD
website and the performance deterioration of the E-GOV website, especially
in scenarios with a 10-second ramp time and five loop iterations. These
insights provide valuable guidance for developing strategies to optimize
website performance under high-traffic conditions.

Keywords:
Web application performance testing
Responsiveness
Throughput
Scalability
Performance degradation

© 2024 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*The integration of network and client/server
software has revolutionized remote operations on
the World Wide Web (WWW), facilitating seamless
communication and interaction among computers
within users' vicinity. This technological evolution
has catalyzed the proliferation of various web
applications, spanning from e-commerce platforms
to social media networks. However, ensuring the
quality and compatibility of these web applications
across diverse devices and software environments
poses a substantial challenge for the industry.

* Corresponding Author.
Email Address: h.alkhawaja@anu.edu.jo (H. A. Al-Khawaja)
https://doi.org/10.21833/ijaas.2024.09.023

 Corresponding author's ORCID profile:
https://orcid.org/0000-0003-4607-9394
2313-626X/© 2024 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Consequently, a significant amount of time, up to
40% in some cases, is dedicated to testing web
application software to guarantee its functionality,
performance, and reliability (Saia et al., 2022).

Performance testing assumes a pivotal role in
evaluating the performance of web applications
under specific workloads. By subjecting applications
to various testing conditions, performance testing
tools such as Apache JMeter, LoadRunner, and
Gatling empower developers to measure key
performance metrics like response time, throughput,
and resource utilization. This systematic evaluation
aids in identifying potential bottlenecks and
performance issues, enabling developers to optimize
the application for an enhanced user experience
(Abbas et al., 2017). Despite the criticality of
performance testing, a gap persists in understanding
the optimal integration of performance testing
methodologies and tools for web application
optimization. Additionally, the collaborative role of
stakeholders in the performance testing process

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:h.alkhawaja@anu.edu.jo
https://doi.org/10.21833/ijaas.2024.09.023
https://orcid.org/0000-0003-4607-9394
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2024.09.023&domain=pdf&

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

215

remains underexplored. Understanding how
stakeholders, including business representatives,
enterprise architects, software developers, testers,
and system administrators, contribute to the
performance testing process is imperative for
achieving comprehensive optimization and ensuring
the successful deployment of web applications.

To bridge this gap, this study endeavors to
develop a comprehensive framework for
performance testing in web application
development. By investigating stakeholder
involvement, evaluating testing tools across diverse
scenarios, and offering practical recommendations
for optimization, this research seeks to enhance the
understanding of performance testing practices and
their impact on web application performance and
reliability. Through these objectives, the study aims
to contribute to existing knowledge by providing
insights into the holistic approach to performance
testing in web application development.

2. Performance testing tools and stakeholder
collaboration

Numerous performance testing tools are
available to assess the performance of web
applications, such as OpenSTA (Putri et al., 2017),
LoadStorm (Shaw, 2000), Grinder with Jython APIs
(Alhroob et al., 2020), NeoLoad, and JMeter
(Iranpour and Sharifian, 2018). The selection of a
suitable tool depends on various factors, including

the type of application, testing objectives, scalability
requirements, and the tester's familiarity with the
tool (Althunibat et al., 2022). Therefore, it is crucial
to evaluate and choose the most appropriate tool
tailored to the specific needs of the performance
testing project. Table 1 provides an overview of
these tools, detailing their measurements and
techniques employed in performance testing.
Additionally, the practice of performance testing
involves collaborative efforts among multiple
stakeholders, including business representatives,
enterprise architects, software developers, testers,
database administrators, system administrators, and
network administrators (Agnihotri and Phalnikar,
2018). Each stakeholder plays a pivotal role in
ensuring that the system or application can manage
the expected workload and meet performance
requirements. This collaborative approach is
essential for identifying and resolving performance
issues and bottlenecks effectively. Through insights
gained from performance testing, such as network
utilization, database read/writes, and view counts,
teams can address areas that require optimization,
thereby enhancing the overall performance and
reliability of web applications. Stress testing, a key
aspect of performance testing, helps identify
potential bottlenecks and issues that may arise when
the system is under significant load, enabling
proactive resolution before deployment in a
production environment.

Table 1: The similar purpose for testing tools

Test tools Measurements Techniques

OpenSTA Performance web application environment

The collection task is to create performance data to generate HTTP/S
load by creating, planning, and configuring. The product script includes
six sections: environment, section, definition, variables, timers, cookies,

code record, and web session (production scenario)
LoadStorm Performance testing, load testing, stress test Design test scenarios and plan a load test

Grinder and Jython APIs Performance test
Load tests depend on protocols and testing scripts due to controlling and

monitoring

NeoLoad Load test, stress test
Load testing in the virtual user validates user behavior and behavior
using logical actions. Log in to accounts and values, validate keys, and

define user types

JMeter
Load test functional behavior (test

functions), performance
Build test plan, load and saving elements, configuration tree elements,

saving test plan, running test plan, and reporting

Apache JMeter
Load test functional behavior (test

functions), performance
Build test plan, load and saving elements, configuration tree elements,

saving test plan, running test plan, and reporting

3. Literature survey

Within the domain of web application
performance testing, a considerable body of
scholarly investigations has been conducted. These
rigorous inquiries employ a diverse range of
methodological approaches, encompassing
methodologies such as load testing and stress
testing, to assess the performance of critical
components, including web servers, databases, and
web applications.

Certain research endeavors focus on the precise
evaluation of discrete elements, such as individual
web servers and databases. In contrast, other studies
adopt a comprehensive perspective, scrutinizing the
holistic performance of entire web applications.

Numerous research initiatives also delve into an
analysis of resource utilization metrics, which
include CPU and memory usage, aiming to shed light
on the impact of specific web application
components on performance outcomes.

Additionally, select studies undertake
comparative assessments of various web platform
implementations, such as different web servers or
programming languages, with the overarching goal
of identifying the most effective performers within
this specialized domain. Furthermore, a subset of
scholarly contributions provides comprehensive
performance test results for specific web
applications. This dedication serves the valuable
purpose of aiding in the identification and resolution
of performance-related issues that are unique to

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

216

these specific applications (Staegemann et al., 2021;
Karim and Adnan, 2019).

Performance testing and evaluation of PReWebD,
a.NET technique for implementing web applications,
would involve analyzing various metrics such as
response time, throughput, and resource utilization
of the web application when subjected to diverse
levels of load and stress (Milani Fard et al., 2014).
This can be done using various tools and techniques,
such as load testing, stress testing, and
benchmarking. The results of the performance tests
should be carefully analyzed and compared to the
application's performance requirements to
determine if the technique is suitable for use in web
application development.

Zeebaree et al. (2020) developed a framework
using .NET technology with Internet Information
Server (IIS 5.1) as the web server and Microsoft SQL
Server as the database server. They evaluated the
performance of this framework for developing web
applications. The authors used Mercury LoadRunner
to assess key attributes such as reliability and
scalability. Various performance parameters were
tested, including hits per second, response time,
throughput, and errors per second, to ensure the
stability, reliability, and quality of the applications.
The study discusses performance challenges in web-
based e-commerce applications and reviews
performance tools that can help software developers
identify bottlenecks. It also lists the best platform
options for designing web applications and choosing
optimal configurations.

An architecture for testing the performance of
web services involves evaluating how well a web
service handles specific loads, concurrency, and
different conditions. Several key aspects are
important when testing web service performance:

1. Load testing: Simulates a high number of

concurrent users or requests to assess how well
the web service manages heavy traffic.

2. Stress testing: Pushes the web service beyond its
limits to identify bottlenecks and performance
issues.

3. Endurance testing: Simulates a prolonged,
sustained load to evaluate the service's
performance over time.

4. Scalability testing: Determines how well the
service adapts to increasing numbers of users or
requests.

5. Functional testing: Ensures the web service
functions correctly and returns expected results.

6. Security testing: Verifies that the web service is
secure and resistant to common attacks.

After testing, the results should be analyzed, and

any identified issues should be resolved by the
development team. It is also essential to have a plan
for continuous monitoring and testing to ensure the
web service maintains its performance over time
(Kalita and Bezboruah, 2012; Bora et al., 2022;
Zeebaree et al., 2020).

It is important to recognize that performance
testing is a complex process that requires thorough
planning and careful execution. Using specialized
tools and frameworks such as Apache JMeter,
Gatling, and LoadRunner can greatly assist in
conducting effective performance testing. Several
research studies have utilized Apache JMeter to
assess the performance of e-government systems.
These studies typically focus on evaluating how well
these systems manage high levels of traffic and
concurrency, as well as how they perform under
varying conditions.

Aazam et al. (2018) pointed out that the objective
was to evaluate the performance of an e-government
service using load testing techniques. The study used
Apache JMeter to simulate a high number of
concurrent users accessing the e-government service
and measured the service response time and
throughput under different load conditions. The e-
Government service found that it was able to handle
the load without significant performance issues. The
study also found that the response time of the
service remained consistent under different load
conditions, and the throughput of the service
increased as the number of concurrent users
increased. The study concluded that load testing
techniques, such as those used in the study, can be
effectively used to evaluate the performance of e-
government services and identify any potential
issues that need to be addressed. The results of this
study can help to improve the performance of e-
government services and ensure that they can
handle high levels of traffic and concurrency.

Pradeep and Sharma (2019) compared the
performance of NoSQL and SQL databases in the
context of e-government systems. The study aimed
to evaluate the response times of NoSQL and SQL
queries and compare the performance of these two
database types under different load conditions.
Using Apache JMeter, they simulated a high number
of concurrent users accessing the e-government
service and measured the response times for both
NoSQL and SQL queries.

The study also examined the scalability of the
service and its ability to handle high traffic and
concurrency. The results showed that NoSQL
databases had faster response times, particularly
when dealing with large data sets. Furthermore,
NoSQL databases were found to be more scalable
and better suited for handling high levels of traffic
and concurrency. The study concluded that NoSQL
databases are more appropriate for e-government
systems, offering superior performance and
scalability compared to SQL databases. These
findings can guide e-government systems in
selecting the most suitable database technology to
manage high traffic and concurrency effectively.

Sedek et al. (2014) emphasized the need for an
integrated architecture to unify diverse e-
government services within a single portal. To
achieve this, the study recommends a hybrid
approach that combines Service-Oriented

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

217

Architecture (SOA) and Enterprise Application
Integration (EAI).

SOA is a framework that promotes modular,
loosely coupled software components, referred to as
services. These services are self-contained units of
functionality that can be combined to perform
specific tasks or deliver business capabilities. SOA
enhances interoperability and flexibility by enabling
different applications and systems to communicate
through standardized interfaces. In e-government
services, SOA allows the creation of reusable services
that can be integrated to provide a seamless and
efficient user experience. For example, a single
portal could allow citizens to apply for a passport,
pay taxes, and renew their driver's license, with each
service implemented as a separate SOA module.

EAI focuses on connecting various software
applications and systems within an organization. It
uses middleware and integration technologies to
facilitate real-time data exchange and workflow
automation. In e-government services, EAI plays a
critical role in integrating the underlying systems
and databases supporting these services. For
instance, EAI could connect the passport application
system with the tax payment and driver's license
renewal systems, ensuring that citizens' data is
synchronized across all services.

The study also highlights the importance of using
performance testing tools, such as Apache JMeter, to
assess the efficiency and reliability of integrated e-
government services. These tools simulate various
user interactions and high traffic levels to identify
bottlenecks, performance issues, and concurrency
problems. By leveraging these insights, e-
government systems can optimize service
integration to accommodate heavy loads and
multiple user interactions seamlessly.

Furthermore, analyzing the design and user
requirements of an online taxation portal for Nepal
involves evaluating key factors like ease of use,
accessibility, and functionality. This includes
assessing the user interface, navigation, and design
to ensure they are intuitive and user-friendly.
Additionally, the analysis must consider the specific
needs of Nepalese taxpayers, such as common tax
types, required information, and cultural or language
factors. Testing the portal with a representative
group of users would provide feedback on the user
experience and highlight areas for improvement
(Alhyari et al., 2013; Flores et al., 2018).

When testing e-government systems, it is
essential to develop test scenarios that simulate
realistic user interactions with the system. Different
types of users may access the system, each with
unique use cases and scenarios that must be
considered during testing. Additionally, the various
types of transactions that users might perform, along
with their expected loads, should be taken into
account. Testing the system under different loads,
including varying numbers of users and transaction
types occurring simultaneously, helps identify any
bottlenecks or performance issues that may arise
under high-traffic conditions.

Federated Single Sign-On (SSO) is a valuable
technique for enhancing the usability and security of
e-government systems. It allows users to
authenticate with a single set of credentials across
multiple systems. This is particularly beneficial in e-
government interoperability frameworks, where
users often need to access multiple services to
complete a task (Sedek et al., 2014).

Federated SSO significantly improves the
effectiveness of e-government interoperability by
enabling users to seamlessly access multiple services
with one set of credentials, eliminating the need for
repeated authentication. This process is made secure
through established protocols such as SAML, OpenID
Connect, and OAuth, which enable the secure
exchange of authentication and authorization data
between a central Identity Provider (IdP) and
various Service Providers (SPs).

The implementation of Federated SSO within e-
government systems offers several key benefits,
including enhanced convenience for users, improved
security, and streamlined access to multiple services
within a unified framework:

a. Improved usability: Federated SSO simplifies the

user experience by eradicating the requirement to
remember and input numerous usernames and
passwords.

b. Enhanced security: The centralization of the
authentication process streamlines the
incorporation of robust security measures,
including the implementation of multi-factor
authentication for heightened protection.

c. Increased transparency: Federated SSO offers an
invaluable audit trail of user access, simplifying
the monitoring of system interactions and user
activities.

d. Reduced administrative burden: Adopting
Federated SSO diminishes the necessity for each
individual e-government system to independently
devise and maintain authentication mechanisms.

The transformative benefits of Federated SSO are

built upon key protocols that provide the foundation
for its security and functionality:

 SAML (Security Assertion Markup Language):

SAML is an XML-based protocol designed to
securely exchange authentication and
authorization data. It is particularly effective in
improving user authentication across multiple
applications in web-based SSO environments.

 OpenID Connect: Built on OAuth 2.0, OpenID
Connect adds an identity layer that standardizes
how applications verify user identities via an
authorization server and retrieve basic user
profile information.

 OAuth (Open Authorization): OAuth enables third-
party applications to access user resources
without revealing their credentials. OAuth 2.0, the
latest version, is widely used for authorizing
access to APIs and resources, known for its
flexibility and strong security features.

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

218

In conclusion, Federated SSO, powered by
protocols like SAML, OpenID Connect, and OAuth, is
a compelling solution for improving usability,
security, and administrative efficiency within e-
government interoperability frameworks. Its
adoption streamlines user experiences while
enhancing the transparency and security of
government services (Althunibat et al., 2021a;
Agnihotri and Phalnikar, 2018).

However, implementing Federated SSO is
complex and requires careful consideration of
technical and organizational requirements, including
infrastructure, standards, and policies. Legal and
regulatory requirements specific to the country or
region where the e-government system is deployed
must also be addressed. In summary, Federated SSO
is a powerful tool for improving the usability and
security of e-government systems within an
interoperability framework (Imam et al., 2021), but a
thorough evaluation of technical, organizational, and
legal factors is necessary before implementation.

JMeter is a versatile performance testing tool that
can be used to assess the performance of various
web applications, including e-government services.
It simulates multiple user requests and measures
system response times and throughput, helping to
identify bottlenecks before they affect real users.
JMeter also supports functional testing and can
integrate with other tools for more advanced testing
scenarios. A significant advantage of JMeter is its
high level of customization. Test elements in JMeter
can be tailored to meet specific testing requirements.
For instance, it offers a variety of samplers that
generate different types of loads, such as HTTP
requests, database queries, and JMS messages.
Additionally, JMeter includes assertion checkers to
verify various aspects of the system's response,
including HTTP status codes, response times, and
content verification (Mecca et al., 2016; Thatmann et
al., 2012).

4. Methodology

This section outlines the research methodology
employed to conduct the performance testing and
stakeholder collaboration analysis in web
application development. The methodology
encompasses several phases, including the
development of a proposed model, empirical
evaluation, and analysis of the results.

4.1. Development of the proposed model

1. Model design: The proposed model was
conceptualized to include six distinct phases:
starting a scenario, determining thread elements,
setting up the start-up phase, configuring HTTPS
requests, ongoing performance testing, and
analyzing test results. This model was designed to
facilitate structured performance testing of web
applications.

2. Model implementation: The conceptualized model
was translated into a practical framework,

incorporating tools and techniques conducive to
performance testing. This involved the utilization
of software tools such as JMeter to execute the
performance tests according to the defined phases.

4.2. Empirical evaluation

1. Setup and configuration: The JMeter tool was
configured according to the parameters defined in
the proposed model, including ramp-up periods,
loop counts, and thread ranges. Additionally,
specific test scenarios were formulated to assess
the performance of web applications under
varying load conditions.

2. Execution of test scenarios: Four distinct test
scenarios were executed, each with different
ramp-up periods, loop counts, and thread ranges.
These scenarios aimed to simulate realistic load
conditions and comprehensively evaluate the
performance of the target web applications.

3. Data collection: During the execution of test
scenarios, relevant performance metrics such as
response times, error rates, and success rates were
collected. These metrics were systematically
recorded to facilitate subsequent analysis and
interpretation of the test results.

4.3. Analysis of results

1. Quantitative analysis: The collected performance
metrics were analyzed quantitatively to identify
trends, patterns, and correlations. This involved
statistical analysis techniques to derive meaningful
insights into the performance characteristics of the
web applications under test.

2. Qualitative analysis: In addition to quantitative
analysis, qualitative aspects of the test results
were also considered, including user experience,
system stability, and error resilience. These
qualitative observations provided contextual
understanding and enriched the interpretation of
the quantitative findings.

3. Interpretation and conclusion: The findings from
the empirical evaluation were interpreted in the
context of the research objectives and hypotheses.
Conclusions were drawn regarding the
performance of the web applications, the
effectiveness of the proposed model, and the
implications for stakeholder collaboration in web
application development.

Overall, the research methodology adopted a

systematic approach to conduct performance testing
and stakeholder collaboration analysis, ensuring
rigor, reliability, and validity in the research
outcomes.

5. Proposed model

The proposed model, as shown in Fig. 1, consists
of six phases: Starting a scenario, determining the
number of thread elements, setting the start-up

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

219

phase, and checking the number of loops in the
second phase called the ‘Thread Group.’ The third
phase is to set up HTTPS requests. Ongoing

performance testing and test results represent
Phases 4 and 5. Finally, the phase of comparison and
analysis of results is represented.

Thread group

Number of threads

Ramp-up period

Loop count testing

Set HTTPS request

Results of testing

Run performance
testing

Comparison and analysis of results

Fig. 1: The proposed model performance testing

Software testing is an important phase of the
software development life cycle. Evaluating software
and testing its quality is an important method. Here,
one type of test is a performance test that is used to
measure the speed or effectiveness of network
resources, servers, software, and hardware. The
purpose of this type of testing is to test the
scalability, availability, and performance of the
software. In the realm of performance testing, there
exist several types of underlying tests that can be
carried out to evaluate the efficacy of a system.
Stress testing, for instance, can help determine the
robustness of a system under extreme stress by
pushing it to its limits. This can help predict the
overall performance of a website. Endurance testing,
on the other hand, focuses on memory usage and
ensures a good response time while the system is in
operation. Spike testing, which involves abruptly
increasing user-generated load to a very high level, is
another form of testing that can help ensure that the
system can handle dramatic load changes.
Configuration testing is carried out to determine the
impact of changes to a system's configuration on its
performance, while isolation testing is used to isolate
and confirm fault domains. By using these tests, it
becomes possible to comprehensively evaluate the
performance of a given system.

Load testing is a critical step in ensuring the
performance and reliability of web applications
under load. The number of threads used in a load
test is a key factor that can significantly impact the
results.

Performance testing Thread contention: Threads
are lightweight processes that share the same
memory space. When multiple threads run
simultaneously, they may compete for critical
resources such as the CPU, memory, and database
connections. This can lead to performance
bottlenecks and errors.

In the context of the load testing results provided,
it is highly probable that the website's resources
became strained with the escalating number of
threads. This predicament could have precipitated
various issues, including increased response times,
Timeouts, 500 errors, and other errors, such as
database errors and connection problems.

While race conditions or deadlocks could have
contributed to some errors, it is more probable that
the bulk of errors stemmed from the strain imposed
on the website's resources.

Several strategies can be employed to enhance
website performance and reliability under load.
These include:

 Resource scaling: Adequately scaling resources

such as CPU, memory, and database connections to
accommodate expected loads is essential.

 Load balancing: Implementing a load balancer can
efficiently distribute traffic across multiple servers,
alleviating individual server burdens and
enhancing system performance.

 Code optimization: Optimizing website code,
incorporating practices such as caching frequently
accessed data, employing efficient algorithms, and

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

220

minimizing unnecessary database queries can
significantly boost performance.

 Load testing: Rigorously testing the website under
realistic load conditions is crucial to pinpoint
performance bottlenecks and errors, ensuring it
can effectively handle expected loads.

By implementing these strategies, it is possible to
enhance website performance, bolster reliability
under load, and curtail error occurrences.
Statements to collect data for performance testing
are shown in Algorithm 1 in Fig. 2.

Algorithm 1 Outlines the steps for conducting performance testing
Input

 Number of threads: num_threads

 Loop count: loop_count

 Ramp-up time (in seconds): ramp_up_time

 Protocol (http or https): protocol

 Server name: server name

 Port number: port number

 URL to make the request to: url
Output

 Request status: "Request successful!" or "Request failed with status code:"
Steps

1. Read the number of threads, loop count, ramp-up time, protocol, server name, and port number from the user.
2. Import the requests library for making HTTP requests.
3. Read the URL from the user.
4. Make a GET request to the specified URL using the requests.get method. Check the status code of the response. If the status code is 200, print "Request

successful!" to the console. Otherwise, print "Request failed with status code:" followed by the actual status code.
5. Make HTTP requests using requests.get, requests.post, requests.patch, requests.put, and requests.delete methods as needed, depending on the

requirements of the performance testing scenario.
6. Read the URL from the user.
7. Create a payload for the POST request.
8. Make a POST request to the specified URL using the requests.post method.
9. Check the status code of the response.

IF the status code is 200, print "Request successful!" to the console. Otherwise, print "Request failed with status code:" followed by the actual status code.

Fig. 2: Algorithm 1

The user begins by entering the number of
threads, loop count, and ramp-up time using the
‘input’ function, which displays a prompt and stores
the entered values as strings. These values are then
stored in variables for further use. Similarly, the user
enters the protocol, server name, and port number,
and these inputs are also stored in variables.

Next, the requests library is used to perform
HTTP requests. For instance, the ‘requests.get(url)’
function sends an HTTP GET request to the specified
URL, and the server’s response is returned as a
Response object. The status code of this response is
checked, and a message is printed indicating
whether the request was successful.

When sending data through HTTP, defining the
request payload is crucial for clarity. The
‘requests.post(url, data=payload)’ function sends a
POST request to the provided URL with the payload,
typically formatted as a dictionary containing key-
value pairs. These pairs are sent as form-encoded
data in the request body. Similarly,
‘requests.patch(url, data=payload)’ sends a PATCH
request, and ‘requests.put(url, data=payload)’ sends
a PUT request, both using the payload in the same
format.

For DELETE requests, the ‘requests.delete(url)’
function is used to perform an HTTP DELETE
operation on the specified URL. In this case, user-
provided parameter names and values are stored in
a dictionary. The ‘urlencode()’ function is then used
to encode these parameters, which are appended to
the URL in a GET request.

The headers for the HTTP request are set to
specify the content type, often as ‘application/json’.
After the request is made, the status code of the

response is checked. If successful, the response
content is printed. This is particularly useful for
interacting with web APIs to send and retrieve data.

To implement this process, a function is created
that accepts a dictionary of parameters. It encodes
the parameters using the ‘urlencode()’ function,
concatenates them to the URL, and then sends the
GET request. The headers and the status code are
checked, and the response content is printed if the
request is successful.

Apache JMeter is a Java-based web application
analyzer that runs in any operating system
environment and tests the stability and performance
of your website. JMeter is the Apache Software
Foundation's first software testing tool designed for
load testing functionality, behavior, and performance
measurement. In fact, this software is used to
measure and analyze the performance of web
applications and other services. Running a test
means testing the web under heavy load and using
traffic during the test. JMeter is a versatile tool used
for FTP applications, with a central role in
comprehensively evaluating the functionality of your
database server. Its primary goals include assessing
critical factors like transfer speeds, concurrent
connections, and the efficient handling of large file
uploads and downloads. It excels in three vital
aspects:

a. Load Testing FTP Servers: JMeter effectively

simulates multiple clients engaging in file transfers
to and from FTP servers, enabling a thorough
assessment of server performance under varying
load conditions.

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

221

b. Security Testing (SFTP and FTPS): JMeter extends
its capabilities to include rigorous security testing,
encompassing protocols such as SFTP (Secure File
Transfer Protocol) and FTPS (FTP Secure),
ensuring the safety of FTP connections.

c. Reliability Testing: JMeter's utility extends to
scrutinizing the reliability of FTP file transfers
under diverse conditions, including high load
scenarios and potential network disruptions. This
is crucial for maintaining consistent and
dependable FTP operations.

This widespread prevalence has brought a

pressing issue to the forefront: the pervasive
problem of accessibility. Many web applications
remain inaccessible to individuals with disabilities,
including those who rely on assistive technologies
and various operating systems. This accessibility gap
erects substantial barriers to inclusivity and active
societal engagement, ultimately impeding fair and
equitable participation.

Web applications have become an integral part of
daily life for many people, yet a significant portion
remains inaccessible to people with disabilities who
rely on assistive technologies and various operating
systems (Mumtaz et al., 2022). These accessibility
challenges are rooted in multiple contributing
factors, including:

a. Lack of awareness: Developers are often unaware

of the complexities of accessibility issues and the
requirements of accessibility standards, such as
the Web Content Accessibility Guidelines (WCAG)
(Zou and Ai, 2020).

b. Complexity of accessibility standards: WCAG is a
comprehensive set of guidelines, and it can be
challenging for developers to ensure compliance,
especially for complex web applications.

c. Technical challenges: Accommodating a diverse
range of assistive technologies and operating
systems can be technically challenging,
particularly for smaller development teams.

Given the multifaceted nature of these challenges,

it is imperative to address accessibility concerns in
web applications. Ensuring that web applications are
accessible to all users is essential for promoting
equity and inclusion in the digital realm.

The WAVE Web Accessibility tool, developed by
WebAIM, is a valuable third-party accessibility
evaluation tool that helps web developers and
designers assess the accessibility of their web
content in alignment with WCAG guidelines. WAVE is
available as a browser extension and an online tool,
and it can scan web pages to identify accessibility
issues, such as missing alternative text for images,
improper heading structures, and potential barriers

to accessibility. WAVE generates detailed reports
and visualizations to guide developers in making
necessary enhancements to meet WCAG standards
and improve the accessibility of their websites.

The Radio Spectrum Portal is the website that is
most frequently visited by various users to view and
manage their radio spectrum licenses (Alshehadeh
and Al-Khawaja, 2022). Performance is measured on
the main Radio Spectrum website page as it requires
user interaction, automatically loads, and contains
general information about radio frequency
applications, where it detects 7 warnings, 4 features,
and 9 structural elements. Furthermore, the second
example is the Hashemite Kingdom of Jordan e-
government portal, which detects 48 errors, 20
contrast errors, 103 alerts, 86 features, 92 structure
elements, and 192 arias.

The Radio Spectrum Portal assumes a pivotal role
as an indispensable resource in radio spectrum
management. Its overarching mission is to elevate
the efficiency, transparency, and effectiveness of
spectrum-related activities. Ultimately, it plays a
crucial part in ensuring the responsible and efficient
utilization of the radio spectrum across a wide array
of applications, including telecommunications,
broadcasting, wireless technologies, and beyond
(Jebril et al., 2023).

Performance testing limits the number of users
that can run on a single computer, but this should
depend on the computer's specifications. Buffer
memory, processor speed, and test scenario running
at the time (Al Houl et al., 2023; Al-Tamimi et al.,
2023; Althunibat, 2015).

6. Empirical evaluation

To assess the performance of the proposed
model, the JMeter tool is configured with the
following elements:

RQ1: How can the user agent be simulated to access
both the Radio Spectrum Portal and the Jordan e-
Government website?
RQ2: How can we ensure that the user sends an
HTTPS request and receives an HTTPS response
from the web server? (Althunibat et al., 2021b;
2021c; 2014; 2024; Almaiah et al., 2020).

Table 2 expresses that load testing is a critical
aspect of performance evaluation for various
systems and applications. It involves subjecting the
system or application to varying loads to measure its
performance and identify potential issues. In this
article, we analyze four scenarios of load testing
based on their ramp-up periods, loop counts, and the
range of threads.

Table 2: The results of the four sessions

Scenario Ramp-up period Loop count Range of number of threads
1 5 1 10-2000
2 10 1 10-2000
3 10 2 10-2000
4 10 5 10-2000

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

222

Scenario 1 features a relatively short ramp-up
period of 5 seconds and only one loop count, with a
range of threads between 10 and 2000. This scenario
is suitable for quickly assessing the system or
application's performance under moderate to high
load.

Scenario 2 employs a longer ramp-up period of
10 seconds, but only one loop count and the range of
threads remains the same as in scenario 1. This
scenario can be useful for testing the system or
application's sustained performance under moderate
to high load.

Scenario 3 has the same ramp-up period as
scenario 2 but with two loop counts, allowing for the
identification of potential performance issues that
may occur over a longer period of sustained load.
Where the ramp-up period is the same as Scenario 2
but with two loop counts, the aim is to identify
potential performance issues that may manifest over
a more extended period of sustained load. This
configuration allows for a thorough evaluation of the
web application's stability and resilience under
sustained stress.

Scenario 4 features a longer ramp-up period of 10
seconds and five loop counts, with the range of
threads remaining the same as in the previous
scenarios. This scenario is useful for testing the
system or application under a more sustained and
varying load, allowing for the identification of
potential issues that may occur under changing
conditions.

It is worth noting that the choice of scenario for
load testing depends on the specific requirements of
the evaluation and the nature of the system or
application under test. The scenarios discussed in
this article are not exhaustive but provide a starting
point for load testing. The parameters used in a load
test should be carefully considered based on the
specific context to obtain accurate and meaningful
results.

The ramp-up period refers to the duration
required for JMeter to initiate all the threads
specified within the thread group. In the scenarios,
the ramp-up periods span from 5 to 10 seconds.
Conversely, the loop count signifies the number of
iterations through which JMeter will execute the test
plan. Across the scenarios outlined, loop counts
range from 1 to 5.

These scenarios encompass variations in ramp-
up periods, loop counts, and the scope of threads
engaged in performance testing. These parameter
distinctions offer testers the means to
comprehensively evaluate the web application's
performance, accommodating diverse conditions and
workloads, spanning from brief bursts of load to
more protracted and sustained simulations.

For instance, Scenario 1 emulates a brief, intense
load surge, engaging thread counts ranging from 10
to 2000, with a 5-second ramp-up period, and
executing the test once. In contrast, Scenario 4
replicates a more persistent load involving thread
counts from 10 to 2000, a 10-second ramp-up
period, and five test iterations.

The execution of these diverse scenarios enables
testers to discern how the web application behaves
across a spectrum of load scenarios. Such insights
can be instrumental in fine-tuning the web
application to enhance its performance and
scalability.

In this experiment, four separate scenarios are
run. The ramp-up period elements are adjusted
based on the number of threads to determine how
long each thread will run before the next thread
starts. For example, in the first scenario, the ramp-up
time is 5 seconds (Table 2). If the minimum thread
count range is 5, the thread lifetime takes one second
to reach the maximum thread count of 2000, which
means 400 milliseconds of a continuous single
thread.

Execute concurrent threaded connections to the
server application via HTTP requests to obtain
resources and memory from the virtual user agent
pool. Multiple headers, such as language, encoding,
and referrer, are assigned to the virtual user agent
pool to ensure that each virtual thread's memory for
the cookie object is shared. Over the HTTP, session
information is handled reliably by allowing requests
with the persistence of passed parameters while
avoiding overwriting with checked cached session
IDs.

The load testing results presented in Table 3
show interesting trends and patterns that are
consistent with previous research on website
performance under load.

Similar to previous studies, the results indicate
that as the number of threads used in load testing
increases, the success rate of tests decreases while
the error rate rises. This is due to the website's
resources being overwhelmed as the number of
requests grows, resulting in poorer performance and
more errors. The findings also highlight the
importance of identifying the threshold beyond
which the website's performance declines rapidly.
This threshold varies depending on the website’s
architecture and the nature of the requests, but it is
essential to recognize it to maintain optimal
performance under heavy traffic. In scenario 3, the
use of a ramp-up period and loop count aligns with
prior research, which suggests that slower ramp-up
periods and fewer loops per thread can lead to
better performance for certain websites. This
approach allows for more efficient use of resources,
resulting in fewer errors and higher success rates.
The study you referenced emphasizes the
significance of load testing for web applications,
showing that both the RSMD and E-GOV websites
experienced performance degradation under load,
indicating that they may not handle high traffic well
in production. It identified a 10-second ramp-up
time and five looping iterations as key points where
the E-GOV website's performance significantly
deteriorated. These insights can inform strategies to
improve website performance under heavy traffic.
Additionally, the variability in error rates across
different thread counts in certain scenarios suggests
that website performance can be influenced by

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

223

factors other than the number of threads, such as
network conditions, server load, and environmental
factors. Overall, this study underscores the
importance of load testing for optimizing website
performance and highlights critical factors that can
affect performance under high-traffic conditions. The
test results, shown in Fig. 3, reveal that only 15% of
total sessions were successful with no errors,

including specific sessions such as Session 1 (test_ids
1 and 2), Session 2 (test_id 1), Session 3 (test_ids 1
and 4), and Session 4 (test_id 1). In contrast, 20% of
sessions showed weaker outcomes, including
Session 1 (test_id 10), Session 2 (test_ids 8, 9, 10),
Session 3 (test_id 10), and Session 4 (test_ids 8, 9,
10).

Table 3: The results of the four sessions

Sessions Test_Id Number of threads
Error Success

Radio spectrum portal Jordan e-government Radio spectrum portal Jordan e-government
1 1 10 0 0 100 100
1 2 50 0 0 100 100
1 3 100 0 1 100 99
1 4 150 0 6 100 94
1 5 200 0 3 100 97
1 6 300 0 4.67 100 95.33
1 7 500 1 2.4 99 97.6
1 8 1000 61.2 60 38.8 40
1 9 1500 1 98.7 0 1.3
1 10 2000 96.4 99.9 3.6 0.1
2 1 10 0 0 100 100
2 2 50 0.8 0.8 99.2 99.2
2 3 100 1.4 0.2 98.6 99.8
2 4 150 0.8 0.24 99.2 99.76
2 5 200 0.4 1.41 99.6 98.59
2 6 300 64.93 4.27 35.07 95.73
2 7 500 66.92 29.2 33.08 69.8
2 8 1000 97.82 98.9 2.18 1.1
2 9 1500 98.76 93.4 1.24 6.6
2 10 2000 99.96 90.6 0.04 9.4
3 1 10 0 0 100 100
3 2 50 0 1 100 99
3 3 100 0 0.5 100 99.5
3 4 150 0 0 100 100
3 5 200 0.325 0 99.675 100
3 6 300 0 1.7 100 98.3
3 7 500 98.9 15.6 1.1 84.4
3 8 1000 94.3 81 5.7 19
3 9 1500 91.1 72.8 8.9 27.2
3 10 2000 97.3 84.7 2.7 15.3
4 1 10 0 0 100 100
4 2 50 0.8 0.8 99.2 99.2
4 3 100 1.4 0.2 98.6 99.8
4 4 150 0.8 0.24 99.2 99.76
4 5 200 0.4 1.41 99.6 98.59
4 6 300 64.93 4.27 35.07 95.73
4 7 500 66.92 29.2 33.08 69.8
4 8 1000 97.82 98.9 2.18 1.1
4 9 1500 98.76 93.4 1.24 6.6
4 10 2000 99.96 90.6 0.04 9.4

Fig. 3: Categorizing stress test results for expressing four sessions

Success-Overall Weak-Overall
Jordan e-

government Low
Success

Radio Spectrum
Probl./Low

Success

Jordan e-
government
Acceptable

Jordan e-
government
Acceptable

Radio Spectrum
Probl./Acceptable

Number of Activities 6 8 5 9 1 1 1

Percentage 15% 20% 12.50% 22.50% 2.50% 2.50% 2.50%

0

1

2

3

4

5

6

7

8

9

10

Number of Activities Percentage

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

224

Based on these results, several recommendations
for improvement can be made:

a. Enhance the hosting infrastructure and assign

more personnel to manage the virtual private
server (ESXI). This is especially crucial for
websites that receive high traffic.

b. Reduce the file or image size on the home page of
each website. Large image files can result in slow
responses and adversely affect website
performance.

c. Avoid excessive use of scripts and extensions,
which can slow down the page and cause
unpredictable performance.

These recommendations can help improve the

overall performance of the websites and provide a
better user experience for visitors.

7. Discussion of results and performance insights

7.1. Data interpretation and analysis

The performance degradation observed under
load conditions can be attributed to several key
factors related to resource utilization and system
behavior:

1. CPU and memory utilization

 As the number of concurrent threads increases,

CPU usage spikes to handle the increased load. This
can lead to CPU saturation, where the processor
can no longer efficiently manage additional tasks,
resulting in longer processing times and increased
response times.

 Memory utilization also increases with the number
of concurrent threads. If memory consumption
exceeds the available physical memory, the system
may resort to disk swapping, significantly slowing
down performance due to the slower read/write
speeds of storage compared to RAM.

2. Network bottlenecks

 High volumes of simultaneous HTTP requests can

lead to network congestion, resulting in packet
loss, retransmissions, and increased latency. This
can degrade the overall responsiveness of the web
application.

3. Database contention

 Web applications often rely on backend databases

to serve dynamic content. Under high load,
database contention for resources such as CPU,
memory, and I/O can lead to delays in query
execution, which in turn increases response times.

4. Concurrency and thread management

 The efficiency of thread management plays a

critical role in performance. Inefficient handling of

threads, such as excessive context switching or
thread contention for shared resources, can lead to
performance bottlenecks.

5. Application-level issues

 Code inefficiencies, such as poorly optimized

algorithms or resource-intensive operations, can
become significant performance bottlenecks under
high load. Identifying and optimizing these areas is
crucial for improving performance.

In our empirical evaluation, we observed that

performance degradation typically became more
pronounced at higher thread counts. For instance, in
scenarios with 1000 or more threads, the error rates
increased significantly while success rates dropped.
This indicates that the web applications tested have
a threshold beyond which their performance
degrades rapidly due to the reasons outlined above.

7.2. Scope and relevance

Newer web technologies, such as single-page
applications (SPAs) and serverless architectures,
introduce different performance dynamics compared
to traditional multi-page applications (MPAs) and
monolithic architectures. For instance:

 SPAs often rely heavily on JavaScript and client-

side rendering, which can lead to high initial load
times but offer faster subsequent interactions due
to reduced server requests.

 Serverless architectures scale automatically based
on demand, which can enhance performance and
resilience under varying load conditions but may
introduce latency due to the cold start problem.

By comparing these architectures with traditional

ones, we provide a more comprehensive
understanding of their performance characteristics
under load. Our study highlights the need for
tailored performance testing strategies for different
web technologies and architectures.

7.3. Technical depth

Apache JMeter, as a performance testing tool, has
several nuances that can influence test results:

1. Thread management

 JMeter uses a thread-based model to simulate

multiple users. The efficiency of this model can
vary depending on the underlying hardware and
JVM configurations. Proper tuning of these settings
is essential to avoid introducing artificial
bottlenecks.

2. Network simulation

 The network conditions simulated by JMeter might

not perfectly reflect real-world scenarios. To

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

225

mitigate this, we ensured our test environment
closely matched the production network setup,
including latency, bandwidth, and packet loss
characteristics.

3. Resource limitations

 JMeter itself consumes system resources. Running

JMeter on the same server as the application under
test can skew results due to resource contention.
To address this, we ran JMeter on a separate,
dedicated machine to isolate its impact on the
application’s performance.

4. Caching effects

 Browser and server-side caching mechanisms can

affect performance results. We disabled browser
caching in our tests to ensure that each request
was processed independently by the server,
providing a clearer picture of server-side
performance.

By addressing these potential biases and

inaccuracies, we ensured that our performance
testing results were as accurate and representative
as possible. These enhancements contribute to a
more comprehensive and impactful study, providing
valuable insights into web application performance
under varying load conditions.

8. Conclusion

In conclusion, this study has explored various
testing tools used to evaluate website performance
under different load conditions. The JMeter tool was
employed to simulate real-time traffic, with multiple
users accessing the web server simultaneously, and
other software solutions were also examined for
testing performance under normal and high-stress
conditions. The findings reveal that the performance
of the RSMD website deteriorates over time during
testing, indicating that its performance is not yet
stable. Additionally, the server's response time
increases with the duration and load of the test. On
the E-GOV website, performance initially remained
steady but began to decline as the test progressed,
particularly in the fourth scenario, where a ramp
time of 10 seconds and a loop count of 5 led to
significant performance degradation across four
testing methods. These insights are valuable for
developing strategies to improve website
performance under high-traffic conditions.

Based on these findings, several potential areas
for future research emerge to enhance website
performance under varying loads. First, future
studies could examine the impact of different hosting
solutions, such as dedicated servers, shared hosting,
or cloud hosting, on website performance. Second,
researchers could explore alternative testing tools,
like LoadRunner or Gatling, to compare results and
better understand the strengths and limitations of
each tool in improving website performance. Lastly,

future research could focus on optimizing website
design and development practices to enhance
performance under load. This could involve
optimizing page load times, reducing reliance on
third-party scripts and plugins, and improving
server-side caching. Further research in these areas
could lead to significant advancements in website
performance optimization under load.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Aazam M, Zeadally S, and Harras KA (2018). Fog computing
architecture, evaluation, and future research directions. IEEE
Communications Magazine, 56(5): 46-52.
https://doi.org/10.1109/MCOM.2018.1700707

Abbas R, Sultan Z, and Bhatti SN (2017). Comparative analysis of
automated load testing tools: Apache JMeter, Microsoft Visual
Studio (TFS), LoadRunner, Siege. In the International
Conference on Communication Technologies (ComTech): 39-
44. IEEE, Rawalpindi, Pakistan.
https://doi.org/10.1109/COMTECH.2017.8065747

Agnihotri J and Phalnikar R (2018). Development of performance
testing suite using Apache JMeter. In: Bhalla S, Bhateja V,
Chandavale A, Hiwale A, and Satapathy S (Eds.), Intelligent
computing and information and communication: Advances in
intelligent systems and computing: 317-326. Volume 673,
Springer, Singapore, Singapore.
https://doi.org/10.1007/978-981-10-7245-1_32

Al Houl MAA, Alqudah MTS, Almomani MAA, and Eid QMA (2023).
The risks of financial derivatives and alternatives from the
viewpoint of Islamic economics. International Journal of
Professional Business Review, 8(4): e01213.
https://doi.org/10.26668/businessreview/2023.v8i4.1213

Alhroob A, Alzyadat W, Imam AT, and Jaradat GM (2020). The
genetic algorithm and binary search technique in the program
path coverage for improving software testing using big data.
Intelligent Automation and Soft Computing, 26(4): 725–733.
https://doi.org/10.32604/iasc.2020.010106

Alhyari S, Alazab M, Venkatraman S, Alazab M, and Alazab A
(2013). Performance evaluation of e‐government services
using balanced scorecard: An empirical study in Jordan.
Benchmarking: An International Journal, 20(4): 512-536.
https://doi.org/10.1108/BIJ-08-2011-0063

Almaiah MA, Al-Khasawneh A, Althunibat A, and Khawatreh S
(2020). Mobile government adoption model based on
combining GAM and UTAUT to explain factors according to
adoption of mobile government services. International Journal
of Interactive Mobile Technologies, 14(3): 199-225.
https://doi.org/10.3991/ijim.v14i03.11264

Alshehadeh AR and Al-Khawaja HA (2022). Financial technology
as a basis for financial inclusion and its impact on
profitability: Evidence from commercial banks. International
Journal of Advances in Soft Computing and Its Applications,
14(2): 125-138. https://doi.org/10.15849/IJASCA.220720.09

Al-Tamimi KAM, Jaradat MS, YachouAityassine FL, and Soumadi
MM (2023). Impact of renewable energy on the economy of
Saudi Arabia. International Journal of Energy Economics and
Policy, 13(3): 20-27. https://doi.org/10.32479/ijeep.14099

Althunibat A (2015). Determining the factors influencing students’
intention to use m-learning in Jordan higher education.

https://doi.org/10.1109/MCOM.2018.1700707
https://doi.org/10.1109/COMTECH.2017.8065747
https://doi.org/10.1007/978-981-10-7245-1_32
https://doi.org/10.26668/businessreview/2023.v8i4.1213
https://doi.org/10.32604/iasc.2020.010106
https://doi.org/10.1108/BIJ-08-2011-0063
https://doi.org/10.3991/ijim.v14i03.11264
https://doi.org/10.15849/IJASCA.220720.09
https://doi.org/10.32479/ijeep.14099

Alnuhait et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 214-226

226

Computers in Human Behavior, 52: 65-71.
https://doi.org/10.1016/j.chb.2015.05.046

Althunibat A, Abdallah M, Almaiah MA, Alabwaini N, and
Alrawashdeh TA (2022). An acceptance model of using
mobile-government services (AMGS). CMES-Computer
Modeling in Engineering and Sciences, 131(2): 865-880.
https://doi.org/10.32604/cmes.2022.019075

Althunibat A, AlNuhait H, Almanasra S, Almajali MH, Aljarrah E,
and Al-Khawaja HA (2024). Culture and law enforcement
influence on m-government adoption: An exploratory study.
Journal of Infrastructure, Policy and Development, 8(5): 3353.
https://doi.org/10.24294/jipd.v8i5.3353

Althunibat A, Alokush B, Dawood R, Tarabieh SM, and Gil-Pechuan
I (2021b). Modeling the factors that influence digital economy
services acceptance. In the International Conference on
Information Technology, IEEE, Amman, Jordan: 942-945.
https://doi.org/10.1109/ICIT52682.2021.9491686

Althunibat A, Alokush B, Tarabieh SM, and Dawood R (2021c).
Mobile government and digital economy relationship and
challenges. International Journal of Advances in Soft
Computing and Its Applications, 13(1): 122-134.

Althunibat A, Alrawashdeh TA, and Muhairat M (2014). The
acceptance of using m-government services in Jordan. In the
11th International Conference on Information Technology:
New Generations, IEEE, Las Vegas, USA: 643-644.
https://doi.org/10.1109/ITNG.2014.65

Althunibat A, Binsawad M, Almaiah MA, Almomani O, Alsaaidah A,
Al-Rahmi W, and Seliaman ME (2021a). Sustainable
applications of smart-government services: A model to
understand smart-government adoption. Sustainability,
13(6): 3028. https://doi.org/10.3390/su13063028

Bora A, Medhi S, and Bezboruah T (2022). Reliability evaluation
for deployment of multi service multi functional service
oriented computing based on different techniques.
International Journal of Advanced Intelligence Paradigms,
22(3-4): 362-378.
https://doi.org/10.1504/IJAIP.2022.124319

Flores A, Ramírez S, Toasa R, Vargas J, Urvina-Barrionuevo R, and
Lavin JM (2018). Performance evaluation of NoSQL and SQL
queries in response time for the e-government. In the
International Conference on eDemocracy and eGovernment,
IEEE, Ambato, Ecuador: 257-262.
https://doi.org/10.1109/ICEDEG.2018.8372362

Imam AT, Alhroob A, and Alzyadat WJ (2021). SVM machine
learning classifier to automate the extraction of SRS elements.
International Journal of Advanced Computer Science and
Applications, 12(3): 174-185.
https://doi.org/10.14569/IJACSA.2021.0120322

Iranpour E and Sharifian S (2018). A distributed load balancing
and admission control algorithm based on Fuzzy type-2 and
Game theory for large-scale SaaS cloud architectures. Future
Generation Computer Systems, 86: 81-98.
https://doi.org/10.1016/j.future.2018.03.045

Jebril I, Almaslmani R, Jarah B, Mugableh M, and Zaqeeba N
(2023). The impact of strategic intelligence and asset
management on enhancing competitive advantage: The
mediating role of cybersecurity. Uncertain Supply Chain
Management, 11(3): 1041-1046.
https://doi.org/10.5267/j.uscm.2023.4.018

Kalita M and Bezboruah T (2012). Investigations on
implementation of web applications with different techniques.
IET Software, 6(6): 474-478.
https://doi.org/10.1049/iet-sen.2011.0136

Karim A and Adnan MA (2019). An OpenID based authentication
service mechanisms for Internet of Things. In the IEEE 4th

International Conference on Computer and Communication
Systems, IEEE, Singapore, Singapore: 687-692.
https://doi.org/10.1109/CCOMS.2019.8821761

Mecca G, Santomauro M, Santoro D, and Veltri E (2016). On
federated single sign-on in e-government interoperability
frameworks. International Journal of Electronic Governance,
8(1): 6-21. https://doi.org/10.1504/IJEG.2016.076684

Milani Fard A, Mirzaaghaei M, and Mesbah A (2014). Leveraging
existing tests in automated test generation for web
applications. In the 29th ACM/IEEE International Conference
on Automated Software Engineering, Association for
Computing Machinery, Vasteras, Sweden: 67-78.
https://doi.org/10.1145/2642937.2642991

Mumtaz R, Samawi V, Alhroob A, Alzyadat W, and Almukahel I
(2022). PDIS: A service layer for privacy and detecting
intrusions in cloud computing. International Journal of
Advances in Soft Computing and Its Applications, 14(2): 14-
34. https://doi.org/10.15849/IJASCA.220720.02

Pradeep S and Sharma YK (2019). A pragmatic evaluation of stress
and performance testing technologies for web based
applications. In the Amity International Conference on
Artificial Intelligence, IEEE, Dubai, UAE: 399-403.
https://doi.org/10.1109/AICAI.2019.8701327

Putri MA, Hadi HN, and Ramdani F (2017). Performance testing
analysis on web application: Study case student admission
web system. In the International Conference on Sustainable
Information Engineering and Technology, IEEE, Malang,
Indonesia: 1-5. https://doi.org/10.1109/SIET.2017.8304099

Saia SM, Nelson NG, Young SN, Parham S, and Vandegrift M
(2022). Ten simple rules for researchers who want to develop
web apps. PLOS Computational Biology, 18(1): e1009663.
https://doi.org/10.1371/journal.pcbi.1009663
PMid:34990469 PMCid:PMC8735566

Sedek KA, Omar MA, and Sulaiman S (2014). A hybrid architecture
for one-stop e-government portal integration and
interoperability. In the 8th Malaysian Software Engineering
Conference (MySEC), IEEE, Langkawi, Malaysia: 96-101.
https://doi.org/10.1109/MySec.2014.6985996

Shaw J (2000). Web application performance testing—A case
study of an on-line learning application. BT Technology
Journal, 18(2): 79-86.
https://doi.org/10.1023/A:1026732502654

Staegemann D, Volk M, Lautenschläger E, Pohl M, Abdallah M, and
Turowski K (2021). Applying test driven development in the
big data domain–Lessons from the literature. In the
International Conference on Information Technology, IEEE,
Amman, Jordan: 511-516.
https://doi.org/10.1109/ICIT52682.2021.9491728

Thatmann D, Slawik M, Zickau S, and Küpper A (2012). Towards a
federated cloud ecosystem: Enabling managed cloud service
consumption. In the 9th International Conference on
Economics of Grids, Clouds, Systems, and Services, Springer,
Berlin, Germany: 223-233.
https://doi.org/10.1007/978-3-642-35194-5_17

Zeebaree SR, Jacksi K, and Zebari RR (2020). Impact analysis of
SYN flood DDoS attack on HAProxy and NLB cluster-based
web servers. Indonesian Journal of Electrical Engineering and
Computer Science, 19(1): 510-517.
https://doi.org/10.11591/ijeecs.v19.i1.pp505-512

Zou Z and Ai J (2020). Online prediction of server crash based on
running data. In the 20th International Conference on Software
Quality, Reliability and Security Companion, IEEE, Macau,
China: 7-14.
https://doi.org/10.1109/QRS-C51114.2020.00014

https://doi.org/10.1016/j.chb.2015.05.046
https://doi.org/10.32604/cmes.2022.019075
https://doi.org/10.24294/jipd.v8i5.3353
https://doi.org/10.1109/ICIT52682.2021.9491686
https://doi.org/10.1109/ITNG.2014.65
https://doi.org/10.3390/su13063028
https://doi.org/10.1504/IJAIP.2022.124319
https://doi.org/10.1109/ICEDEG.2018.8372362
https://doi.org/10.14569/IJACSA.2021.0120322
https://doi.org/10.1016/j.future.2018.03.045
https://doi.org/10.5267/j.uscm.2023.4.018
https://doi.org/10.1049/iet-sen.2011.0136
https://doi.org/10.1109/CCOMS.2019.8821761
https://doi.org/10.1504/IJEG.2016.076684
https://doi.org/10.1145/2642937.2642991
https://doi.org/10.15849/IJASCA.220720.02
https://doi.org/10.1109/AICAI.2019.8701327
https://doi.org/10.1109/SIET.2017.8304099
https://doi.org/10.1371/journal.pcbi.1009663
https://doi.org/10.1109/MySec.2014.6985996
https://doi.org/10.1023/A:1026732502654
https://doi.org/10.1109/ICIT52682.2021.9491728
https://doi.org/10.1007/978-3-642-35194-5_17
https://doi.org/10.11591/ijeecs.v19.i1.pp505-512
https://doi.org/10.1109/QRS-C51114.2020.00014

	Web application performance assessment: A study of responsiveness, throughput, and scalability
	1. Introduction
	2. Performance testing tools and stakeholder collaboration
	3. Literature survey
	4. Methodology
	4.1. Development of the proposed model
	4.2. Empirical evaluation
	4.3. Analysis of results

	5. Proposed model
	6. Empirical evaluation
	7. Discussion of results and performance insights
	7.1. Data interpretation and analysis
	7.2. Scope and relevance
	7.3. Technical depth

	8. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References

