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There is growing interest in using deep learning for object recognition in 
robots to enhance the efficiency of apple farming. While deep learning-based 
object detection has shown promising results in various visual tasks, more 
research is needed to accurately recognize apples in orchard environments. 
During the training phase, it is important to determine the optimal values of 
hyperparameters. This research aims to develop a deep learning model, 
YOLOv7, to reliably identify apples in orchards, using four different batch 
size values for training. The MinneApple dataset, trained with these batch 
sizes, serves as our reference model. To assess the model’s ability to work in 
different situations, we evaluate it using test data with varying input scales. 
Our results show that the optimal batch size for detecting apples in orchards 
is 16, achieving a mean average precision (mAP) of 50%. Furthermore, our 
findings suggest that increasing the batch size does not improve the 
efficiency of apple detection in orchard environments. 
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1. Introduction 

*Over the course of the past several years, there 
has been a significant trend toward the 
implementation of object identification technologies 
in conjunction with robots for the purpose of 
automating fruit farming activities (Xiao et al., 2023). 
For example, monitoring the health of the fruit 
(Kaplun et al., 2024), monitoring the quality of the 
fruit (Apostolopoulos et al., 2023), and making 
automatic harvesting decisions (Onishi et al., 2019; 
Yoshida et al., 2022). The presence of different 
lighting conditions, varying image quality, and 
complex backgrounds makes it challenging to 
develop a system that can automatically detect fruit 
in images or videos taken directly in an orchard 
environment. Traditional machine learning methods 
for object detection, such as Histogram of Oriented 
Gradients (HOG) (Sun et al., 2023), Viola-Jones 
Detector (Huang et al., 2019), and Scale Invariant 
Feature Transform (SIFT) (Lin et al., 2021), need 
further adjustments to overcome these challenges. 
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This is because these methods rely on hand-crafted 
features to achieve the desired results. Utilizing deep 
learning-based object detection algorithms (LeCun et 
al., 2015), which have demonstrated promising 
performance in a variety of visual tasks (Chen et al., 
2022; Voulodimos et al., 2018), particularly in fruit 
farming (Xiao et al., 2023), is currently a prominent 
option that is being used to address the inadequacies 
of standard machine learning. Apples are one of the 
most extensively consumed and produced fruits all 
over the world because of the ease with which they 
can be grown and harvested (Arnold and Gramza-
Michalowska, 2023). Apples are widely regarded as 
an important agricultural crop due to their high 
nutritional value. In this study, we aim to identify 
different types of apples. The paper is divided into 
several sections. The first section covers the 
background of the research, followed by a review of 
related work in Section 2. Section 3 explains the 
research methodology, and Section 4 presents the 
study's results. Finally, Section 5 provides the 
conclusions and offers recommendations for future 
research. 

2. Related works 

2.1. Object detection in various apple farming 

Currently, the attention of practitioners and 
researchers in the field of deep learning-based object 
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detection on various apple farming problems is 
increasing, and much has been done to improve the 
efficiency of apple farming processes in complex 
environments (Chen et al., 2021; Kuznetsova et al., 
2020; Wang and He, 2022; Xuan et al., 2020), which 
on average adopt YOLO as one-stage-detector 
method (Ge et al., 2021; Lin et al., 2020; Liu et al., 
2016; Redmon et al., 2016; Redmon and Farhadi, 
2017; 2018; Wang et al., 2021), which generally 
involves regression in the detection process, instead 
of using the two-stage-detector method (Girshick, 
2015; Girshick et al., 2014; Ren et al., 2017), which 
adopt with region proposal technique, that tends to 
require larger computational cost in the training 
process and slower in the detection process (Chen et 
al., 2022).  

YOLOX-Tiny (Ge et al., 2021) is adopted by 
Shufflenetv2-YOLOX (Ji et al., 2022), which is a 
lightweight backbone network consisting of 
Shufflenetv2 (Ma et al., 2018) with the inclusion of 
Convolutional Block Attention Module (CBAM) (Woo 
et al., 2018) for the purpose of Apple identification in 
orchard situations. This was done by Ji et al. (2022). 
When compared to YOLOX-Tiny, this research 
achieved an increase in Average Precision (AP) of 
6.24% during the test phase. During the training 
phase, the research obtained an Average Precision 
(AP) of 96.76% with a speed of 65 Frames Per 
Second (FPS). 

Additionally, this research demonstrates that 
YOLOv5-s (Pebrianto et al., 2024), Efficientdet-d0 
(Tan et al., 2020), YOLOv4-Tiny, and Mobilenet-
YOLOv4-Lite (Bochkovskiy et al., 2020) are 
incapable of achieving the same level of detection 
and speed as this research. YOLOv5-PRE is a product 
that was proposed by Sun et al. (2022). Its primary 
objective is to enhance the speed and accuracy of 
YOLOv5 when it comes to apple-detecting tasks in 
orchard environments. The lightweight structure of 
ShuffleNet (Zhang et al., 2018) and GhostNet (Han et 
al., 2020) was employed to reduce the size of the 
model. CA (Coordinate Attention) (Hou et al., 2021) 
and CBAM (Woo et al., 2018) were utilized to 
improve the accuracy of detection. According to the 
findings of this study, the YOLOv5-PRE model is both 
more accurate and faster than the YOLOv5s model. 
Lin et al. (2021) focused on enhancing the YOLOv4 
model by utilizing data augmentation. They also 
replaced the Cross Stage Partial Darknet53 
(CSPDarknet53) as a backbone network 
(Bochkovskiy et al., 2020) with EfficientNet (Tan and 
Le, 2019). Additionally, they added a convolutional 
layer (Conv2D) to the final three outputs to reduce 
the computational complexity. The findings of this 
study demonstrate that the YOLOv4 model may 
achieve superior performance on test results 
compared to YOLOv3 (Pebrianto et al., 2022; 
Redmon and Farhadi, 2018), YOLOv4 and Faster 
Region Convolutional Neural Network (Faster R-
CNN) (Ren et al., 2017) with Residual Network 
(ResNet) (He et al., 2016) respectively. 
Unfortunately, a number of studies on the current 
Apple detection task (Chen et al., 2021; Kuznetsova 

et al., 2020; Wang and He, 2022; Xuan et al., 2020; Ji 
et al., 2022; Sun et al., 2022; Wu et al., 2021; Zhao et 
al., 2023). Typically, there is a tendency to prioritize 
modifying the model architecture to enhance 
performance rather than giving attention to the 
precise selection of the batch size hyperparameter. 
However, it is important to note that the batch size 
hyperparameter directly impacts the performance of 
optimization techniques like Stochastic Gradient 
Descent (SGD) (Qian and Klabjan, 2020) and its 
variants (Abdulkadirov et al., 2023) while searching 
for the most effective parameters and reducing loss 
values throughout the training of the model. 

2.2. Batch size in various visual tasks and 
research problem 

Several studies have investigated how to choose 
the right batch size for various visual tasks. Kandel 
and Castelli (2020) examined the effect of batch size 
on the performance of the VGG-16 model. Their 
findings showed that increasing the batch size does 
not necessarily lead to better accuracy. This is 
because the learning rate and optimization strategy 
also influence the model's accuracy. Additionally, 
other studies have shown that larger batch sizes can 
negatively affect the model's ability to generalize 
(LeCun et al., 2012; Keskar et al., 2016). Other 
studies emphasize the importance of analyzing batch 
size during the training of deep learning models. For 
example, Sato and Iiduka (2023) explored the 
training of Generative Adversarial Networks (GANs) 
and highlighted how batch size can affect the 
number of steps needed for training. Moreover, 
batch normalization techniques, which are key in 
many image classification models, are sensitive to 
batch size. These techniques may perform poorly 
when the batch size is too small (Brock et al., 2021), 
leading to underfitting and resulting in less effective 
models (Yong et al., 2020). This is different from 
what was focused on by Goyal et al. (2017) and You 
et al. (2019), which showed that choosing a high 
batch size during the training process can minimize 
the amount of time required during model training. 
Ahmad et al. (2024) and Stapor et al. (2022) 
similarly demonstrated that increasing batch size 
can potentially enhance accuracy while also reducing 
the time required for the training process. A 
significant factor that must be taken into 
consideration is the selection of the batch size 
hyperparameter, as demonstrated by the findings of 
the research that was presented earlier. A further 
complicated matter is the fact that the vast amount 
of data, which is then followed by the large model 
parameters, can be exceedingly difficult to compute. 
Stapor et al. (2022) also necessitated the right 
modification of batch values. Therefore, it is of the 
utmost importance to do further batch size study on 
specific visual tasks, particularly those tasks that 
involve the identification of apples in surroundings 
that are reminiscent of orchards. Performing batch 
size analysis on the YOLOv7 model is the objective 
that we have set for ourselves within the context of 
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this inquiry. On the other hand, to the best of our 
knowledge, there has not been any research done to 
test the batch size value that concentrates on 
YOLOv7 (Wang et al., 2023a) for the purpose of 
detecting apples directly around the orchard. 

2.3. Objective of the research 

To develop appropriate batch hyperparameters 
for the apple detection task in an orchard setting, it 
is important to address the issue discussed earlier. 
Our main goal is to thoroughly analyze the batch size 
hyperparameter in YOLOv7, a state-of-the-art object 
detection method, rather than focusing on modifying 
the model’s architecture to improve performance. 
We selected YOLOv7 because it is the most advanced 
and effective object detection technology available, 
outperforming its previous versions. By examining 
the batch size, we aim to identify the optimal 
hyperparameter for apple detection directly in the 
orchard environment. The specific contributions of 
this research are as follows: 

 
 We propose the YOLOv7 method to address direct 

apple detection in orchard environments with 
different batch sizes. 

 We show the appropriate batch size for training 
the YOLOv7 in the case of apple detection in an 
orchard environment. 

 We show that different input scales can influence 
the generalization level of the YOLOv7 model. 

3. Material and methods 

This section provides a comprehensive 
description of the materials and procedures 
employed in this investigation. Initially, we will 
discuss the distinguishing features of YOLOv-7, 
followed by an examination of the batch size and 
dataset employed in this study. 

3.1. YOLOv7 

The basis of the YOLO method (Redmon et al., 
2016) in the detection process is to map the input 
pixels in the image into an S x S grid. Each grid cell is 
tasked with predicting the B bounding box and the 
confidence score, which is explained by the following 
Eqs. 1-3, 
 

Confidence = Pr(Object)*IoU ( truth
predict

)                   (1) 

Class probability = Pr(Classi|Object)                   (2) 

Pr(Classi|Object) ∗ Pr(Object) ∗ IoU ( truth
predict

) = Pr(Classi) ∗

IoU ( truth
predict

)                     (3) 

 

As represented by Eq. 1, Pr(Object) denotes the 
probability of the object in the bounding box and 

IoUpredict
truth  denotes the Intersection over Union (IoU) 

of the ground truth and the prediction box. Each 
bounding box consists of 5 parameters: 
(x, y, w, h, confidence). The width and height of the 

bounding box are represented by w, h, and x, y as the 
center coordinates. Confidence will be 0 if there are 
no objects in the cell and 1 if there are objects. In the 
end, the confidence prediction result will represent 
the IoU between the predicted box and the ground 
truth box. At the same time, as represented by Eq. 2, 
each grid cell also predicts "C," the conditional class 
probability in each grid cell, which is conditioned if 
there is an object in the grid cell. At the end of the 
process, as represented by Eq. 3, the testing process 
will multiply the conditional class probability and 
the confidence prediction value of the individual box 
to get a specific class based on the confidence score 
of each box so that the result encodes the probability 
of the class appearing in the box and represents how 
to match the predicted box to the object. YOLOv7 
(Wang et al., 2023b) is a state-of-the-art object 
detection method that is a development of the 
previous version (Bochkovskiy et al., 2020; Wang et 
al., 2021), which is represented in detail in Fig. 1a 
represent overall architecture), Fig. 1b represents 
the basic part of overall architecture). 

As can be shown in Fig. 1, YOLOv7 involves the 
utilization of a backbone layer for the purpose of 
feature extraction. This backbone layer is comprised 
of many convolutional layers, and the head layer is 
accountable for the generation of detection. There 
are various component developments that 
distinguish YOLOv7 from earlier architectures. These 
developments include the Extended efficient layer 
aggregation network (E-ELAN) and feature scaling. 
YOLOv7 is significantly different from earlier 
architectures. ELAN, which was developed by Wang 
et al. (2023), is a method that controls the shortest 
longest gradient route to make it possible for a deep 
model to learn and converge in a more effective 
manner. The process of scaling involves modifying 
certain model properties to produce models of 
varying sizes. As a result of the implementation of 
this new design, YOLOv7 delivers superior accuracy 
and efficiency compared to its predecessor. As part 
of this investigation, we will conduct a 
Hyperparameter batch Analysis of the YOLOv7 
model during the training process. Our goal is to find 
the most suitable training hyperparameters to solve 
the issue of apple detection in the orchard setting. 

3.2. Batch size 

The hyperparameter under analysis is the batch 
size in the YOLOv7 method (Wang et al., 2023a). 
YOLOv7, which is a one-stage object detection 
algorithm based on Convolutional Neural Networks 
(CNNs), is the method that we take into 
consideration (Bishop and Bishop, 2023). During its 
training process, YOLOv7 employs Stochastic 
Gradient Descent (SGD) for optimization to minimize 
the loss value 𝐿(𝑤), which is represented by the 
following equation: 
 

𝐿(𝑤) =
1

|𝑋|
∑ 𝑙(𝑥, 𝑤)𝑥∈𝑋                     (4) 
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Fig. 1: Yolov7 architectural details: (a) represent overall architecture and (b) represent basic part of architecture of (a) 
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In Eq. 4, 𝑤 represents the weight parameters of 
the YOLOv7 model architecture, 𝑋 denotes the 
training dataset that has been labeled with |𝑋| 
samples, and 𝑙(𝑥, 𝑤) calculates the loss value from 
samples 𝑥 ∈ 𝑋. The batch size |𝐵| determines the 
amount of data processed in one forward and 
backward pass through the network with SGD 
optimization, as shown in the following equation: 

 

wt+1 = wt − η
1

|B|
∑ ∇l(x, wt)x∈B                    (5) 

 
In Eq. 5, 𝐵 represents a batch of data samples 

from 𝑋, and |𝐵| denotes the batch size used during 
the training process, η represents the learning rate, 
and 𝑡 represents the iteration index during the 
training process. In this study, to determine the 
optimal batch size for the apple detection task in the 
orchard, we used four different batch sizes 𝐵𝑘 ∈
{2, 4 , 8 , 16} during the YOLOv7 model training 
process. 

3.3. Dataset 

Regarding the objectives of this investigation, we 
make use of the MinneApple dataset that was 
acquired from Hani et al. (2020). In consideration of 
the fact that the MinneApple dataset is collected 
directly from the apple orchard environment, which 

involves a variety of complexities, one of the most 
crucial things to do in this work is to make sure that 
the batch size hyperparameter is adjusted correctly. 
On the other hand, Fig. 2c has less light than Figs. 2a-
2b, which is followed by dynamic backdrop 
differences in each photograph. This is illustrated in 
Fig. 2a, which can be found below. Fig. 2b is a 
representation of very bright lighting. Specifically, 
the MinneApple dataset is made up of 670 training 
data, which includes ground truth and a single 
prediction category. On the other hand, the test data 
is made up of 331 image data that does not include 
ground truth elements. To obtain validation data, we 
make use of all the training data, which we then 
divide into two distinct categories: eighty percent, or 
536 photos, serves as training data, and twenty 
percent, or 134 images, serves as validation data. We 
trained the model using training data during the 
training phase, and then we used validation data at 
the same time. Both sets of data were used 
simultaneously throughout the training phase. We 
combined test data that did not include ground truth 
with test data that did include ground truth and was 
provided by the author with a total of 331 photos of 
data to test the model after the training and 
validation method had been completed. For the aim 
of carrying out the examination, this was carried out. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2: Image data of apples in an orchard environment (a) represents very bright lighting compared to (b), (c) has less light 
compared to (a-b), followed by dynamic background differences in each image 
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3.4. Evaluations metrics 

To evaluate the model during the training, 
validation, and testing processes, we use several 
parameter metrics (Padilla et al., 2020). The 
parameters we use include Precision (𝑃), Recall (𝑅), 
Average Precision (𝐴𝑃), and mean Average Precision 
(𝑚𝐴𝑃), which are measured based on 0.5 
intersections over union (𝐼𝑜𝑈). The parameters 𝑃 
and 𝑅 are described by the following equation, 
 

Precision (P) =
TP

TP+FP
                    (6) 

Recall (R) =
TP

TP+FN
                     (7) 

 
Based on Eqs. 6-7, TP is a true positive, which 

means correct detection of the ground truth 
bounding box, and FP is a false positive, which 
means the object is detected but in the wrong place. 
FN is a false negative, which means that the ground 
truth bounding box is not detected. The AP and mAP 
parameters are described by the following equation, 
 

AP = ∫ P(R)dR
1

0
                     (8) 

mAP =
1

N
∑ ∫ Pi(Ri)dRi

1

0
N
i=1                     (9) 

 
Based on Eq. 8, 𝐴𝑃 represents the average value 

of 𝑃 and 𝑅, which is between 1 and 0. 𝑚𝐴𝑃 in the Eq. 
9, 𝑅𝑖  is the recall from class i, 𝑃𝑖(𝑅𝑖) is the precision 
of the recall from the class is 𝑅𝑖 , and N is the total 
number of classes evaluated. 𝑚𝐴𝑃 is represents the 
average of 𝐴𝑃 used to measure all categories in the 
dataset and is a metric used to measure the accuracy 
of the object detection model. 

4. Result and discussion 

Pre-trained YOLOv7 (Wang et al., 2023b) from 
the Common Objects in Context (COCO) dataset (Lin 
et al., 2014) was utilized for the fine-tuning step 
during the experimental procedure that we carried 
out. During this time, we trained the model using 
100 epochs, an input size of 640x640, a learning rate 
value of 0.1, a momentum of 0.9, and an IoU of 0.2. In 
addition, we chose to train the model with an input 
size of 640x640. To determine the effect of batch 
size, we carried out training with a variety of batch 
size values, including 2, 4, 8, and 16 (you can find 
more information about this in section 2.2). PyTorch 
(Paszke et al., 2019), which is a Google-Colab 
application powered by a Tesla T4 Graphics 
Processing Unit (GPU), was the framework that we 
utilized for the experimental approach. Several 
explanation sections are included in this part, which 
is where we describe the outcomes of the 
experiment. The outcomes of the training and 
validation procedure are displayed in (the section 
material and methods), which includes a variety of 
batch size settings. With a particular emphasis on 
the influence of various model input scales, the 

results of the model generalization analysis on test 
data are presented in the following section. 

4.1. Training results with different batch sizes 

In the following section, we will discuss the 
training outcomes of the YOLOv7 model with a 
variety of batch-size values, which are outlined in 
Table 1. On the other hand, the results of YOLOv7-
B16 acquired a total mAP value of 50%, which is a 
superior difference of 1.9% compared to YOLOv7-
B2, 8.2% compared to YOLOv7-B4, and 12.5% 
compared to YOLOv7-B1. Based on these findings, it 
can be concluded that the batch size value of sixteen 
is the most effective value for training the YOLOv7 
model to perform the apple detection job in an 
orchard setting. However, according to the findings 
of the experiments, we also discovered that YOLOv7-
B2, which has the smallest batch size, is the second 
highest by creating a total mAP of 48.1%. This is 
6.3% higher than YOLOv7-B4, and it is 10.5% higher 
than YOLOv7-B8. According to these findings, there 
is a phenomenon in which a greater batch size value 
does not necessarily guarantee that the model will 
also be more accurate. This is because the results 
obtained for batch sizes 4 and 8 are falling at an 
increasing pace in comparison to size 2. Fig. 3 
provides a visual representation of the detection 
findings. 

We analyzed the model using a test set with 
various input scales to validate the experimental 
results. These scales show the model's ability to 
generalize when faced with real-world challenges. As 
shown in Table 2, the YOLOv7-B16 model achieved 
the highest mean Average Precision (mAP) across 
three different input scales, outperforming other 
models. In addition to achieving the highest training 
accuracy, the YOLOv7-B16 model also demonstrated 
strong generalization on unseen data. The results of 
YOLOv7-B4 and YOLOv7-B8 were compared to those 
of YOLOv7-B2, which ranked second across the three 
input scales. This indicates that a model trained with 
a batch size of 2 can be efficient and may serve as a 
solution for training the YOLOv7 model with limited 
computational resources. It is well known that larger 
batch sizes require more computational power. We 
also found that the YOLOv7-B8 model, despite 
having the smallest batch size, demonstrated better 
generalization compared to the YOLOv7-B4 model at 
input scales of 416x416 and 1280x1280. These 
results suggest that the YOLOv7-B8 model shows 
stronger generalization performance at both the 
highest and lowest scales compared to the YOLOv7-
B4 model. 

 
Table 1: The training results with different batch values 

Model Batch Precision Recall mAP 
YOLOv7-B2 2 52.4 54.1 48.1 
YOLOv7-B4 4 48.1 47.9 41.8 
YOLOv7-B8 8 45.1 45 37.5 

YOLOv7-B16 16 51.4 58.1 50 
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Fig. 3: Results of apple detection in the orchard environment 

 

5. Conclusions 

The objective of this study was to create a 
YOLOv7 model that possesses batch size values that 
are appropriate for apple identification in conditions 
that take place in orchards. To achieve this goal, we 
conducted experimental analysis on YOLOv7 
utilizing several different batch values on numerous 
occasions. We utilize the MinneApple dataset inside 
the context of the analytic approach that we have 
developed. Over the course of the training phase, we 

provide evidence that YOLOv7-B16 is 1.9% more 
successful than YOLOv7-B2, 8.2% more effective 
than YOLOv7-B4, and 12.5% more effective than 
YOLOv7-B8. It can be deduced from this that the 
batch size value of sixteen is currently the most 
efficient number. Additionally, we show that 
increasing the batch size parameter does not 
necessarily guarantee that the model will be more 
accurate. This is something that we illustrate 
through our investigations. Following that, we 
proceeded to evaluate the level of generalization that 



Pebrianto et al/International Journal of Advanced and Applied Sciences, 11(9) 2024, Pages: 154-163 

161 
 

the model held by subjecting it to a series of real-
world tasks that utilized test data and a range of 
input scales. In addition to obtaining the highest 
training accuracy, we show that YOLOv7-B16 also 
has the best model generalization. This is something 
that we have demonstrated. After this comes 
YOLOv7-B2, which, according to our findings, has the 
lowest batch value and can surpass YOLOv7-B4 and 
YOLOv7-B8. This is the next step in the process. A 
model that is trained with a batch size value of two 
can be a solution when the YOLOv7 model is being 
trained with restricted computational resources. 
This suggests that a model might be a solution. One 
further thing that this brings to light is the fact that a 
higher batch size number does not necessarily imply 
that the model will likewise be more accurate on its 
own. 

 
Table 2: Results of model generalization testing with 

different input scales on test data 
Model Input Precision Recall mAP 

 1280x1280 42.2 50 39.9 
YOLOv7-B2 640x640 55.4 55.4 53.1 

 416x416 53.7 50.4 46.6 
 1280x1280 39.9 43.8 32.5 

YOLOv7-B4 640x640 50.9 48.9 45.2 
 416x416 49.8 44.1 38.7 
 1280x1280 39.1 43.8 35.2 

YOLOv7-B8 640x640 47.6 47.3 42.8 
 416x416 45.2 46.8 39.2 
 1280x1280 46.2 52.3 45.5 

YOLOv7-B16 640x640 56.4 55.4 54.6 
 416x416 59.4 55.5 53.4 
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