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In this paper, we introduce the concepts of 𝐷𝛼
𝑝

−open, 𝐷𝛼
𝑝

−closed subsets, 
pairwise−𝛼 −closed, pairwise−𝑔 −closed subsets, pairwise−strongly 
𝛼 −closed graph 𝐺(𝑓) and strongly 𝐷𝛼

𝑝
−closed graph of bitopological spaces. 

We showed that each closed graph is 𝐷𝛼
𝑝

−closed. In addition, the concepts of 

𝐷𝛼
𝑝

−continuous, open, and closed functions are defined, and the relations 

between 𝜏𝑝 − 𝛼, 𝜏𝑝 − 𝑔, and  𝐷𝛼
𝑝

−continuous functions are clarified. The fact 

that strongly 𝐷𝛼
𝑝

−closed graph is 𝐷𝛼
𝑝

−closed is illustrated. We studied when 
the graph 𝐺(𝑓) is 𝑝 −strongly closed and 𝑝 − 𝐷𝛼 −closed subsets of the 
bitopological space (X, τ₁, τ₂). Moreover, the notions of 𝐷𝛼

𝑖 −interior of a 
subset of 𝑋 and 𝐷𝛼

𝑖 −closure are defined. 
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1. Introduction 

*Several sorts of generalized open sets in 
topological spaces like semi-open, pre-open, and 
𝛽 −open sets were studied by lots of mathematicians 
(Al-Saadi and Al-Malki, 2024). Sarsak (2013, 2022) 
covered certain features of generalized open sets in 
generalized topological spaces (GTSs), which are an 
essential part of general topology. A key problem in 
real analysis and general topology is the study of 
variously modified versions of continuity, separation 
axioms, and other ideas utilizing extended open sets. 
The most well-known and inspiring ideas are those 
of 𝛼 −open sets, introduced by Njȧstad (1965), and 
generalized closed or (𝑔 −closed) subsets, 
introduced by Levine (1970). Both ideas have been 
thoroughly studied in the literature. Since then, 
many mathematicians have concentrated on 
generalizing many topological concepts through the 
usage of 𝛼 −open sets and generalized closed sets. 

Kelly (1963) published a paper named 
"Bitopological Spaces," which marked the beginning 
of the study of bitopological spaces. Since then, 
several articles have been submitted that attempt to 
extend topological concepts to bitopological ones. A 
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non-empty set 𝑋 with the two topologies 𝜏₁ and 𝜏₂ is 
called a bitopological space, as is the triple (𝑋, 𝜏₁, 𝜏₂), 
or just 𝑋. The concept of generalized topological 
spaces was introduced by Cs'asz'ar in the 20th 
century, and other mathematicians worldwide have 
studied it. Consequently, mathematicians took a 
different tack and tried to apply several topological 
ideas to this new field.  

Dunham (1982) defined a new topological space 
(𝑋, 𝜏∗) by using 𝑔 −closed subsets of 𝑋 to define a 
new closure operator. He did this by transferring 
regularity conditions from a topological space (𝑋, 𝜏) 
to separation conditions in the new topological space 
(𝑋, 𝜏∗). The concept of an operation on topological 
spaces was introduced, and 𝛼 −closed graphs of an 
operation were introduced by Kasahara (1979). 
Ogata (1991) established the concept of 𝜏𝛾 , which is 

the set of all 𝛾 −open sets, and introduced the 
operation 𝛼 as 𝛾 −operation. 

In section 2, we study 𝐷𝛼 − Sets in bitopological 
space (𝑋, 𝜏₁, 𝜏₂), features and properties such as the 
class of all 𝐷𝛼 −open sets are bounded between 
𝑔 −open sets and the class of all 𝛼 −open sets,  
introduce 𝐷𝛼

𝑝
−continuous function, and illustrate 

the relation between both of 𝜏𝑝 − 𝛼 −continuous and 

𝜏𝑝 − 𝑔 −continuous functions and 𝐷𝛼
𝑝

−continuous 

function.  

2. 𝑫𝜶 − Sets in bitopological space (𝑿, 𝝉₁, 𝝉₂)  

𝐷𝛼 −open sets are a novel class of sets that were 
developed and investigated in topological spaces by 
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Sayed and Khalil (2006). Almuhur and Al-Labadi 
(2021) studied 𝐷𝛼 −open and 𝐷𝛼 −closed functions 
in bitopological spaces. They investigated whether 
subsets of the bitopological space (𝑋, 𝜏₁, 𝜏₂) are 
pairwise−𝐷𝛼 −closed and when the graph 𝐺(𝑓) is 
pairwise−strongly closed. Furthermore, they define 
𝐷𝛼

𝑖 −closure and 𝐷𝛼
𝑖 −interior of subsets of 𝑋.  

The class of all 𝐷𝛼 −open sets is bounded 
between 𝑔 −open sets and the class of all 𝛼 −open 
sets. In addition, they presented and examined 
𝐷𝛼 −continuous, 𝐷𝛼 −open, and 𝐷𝛼 −closed 
functions between topological spaces as applications. 
A subset 𝑈 of a bitopological space (𝑋, 𝜏₁, 𝜏₂) is called 
𝜏₁ − 𝑔 −closed (Almuhur et al., 2023) if 𝐶𝑙𝜏1

(𝑈) ⊂

𝑂𝜏2
(𝑈) ⊂ 𝜏₂ and 𝑈 is 𝜏₂ − 𝑔 −closed if 𝐶𝑙𝜏2

(𝑈) ⊂

𝑂𝜏1
(𝑈) ⊂ 𝜏1.  

If 𝑈 is 𝜏₁ − 𝑔 −closed and 𝜏₂ − 𝑔 −closed, then it 
will be a pairwise−𝑔 −closed subset and hence, 𝑋 −
𝑈 is pairwise−𝑔 −open. 

 
Theorem 2.1: In a bitopological space (𝑋, 𝜏₁, 𝜏₂), if 
{𝐹𝑖: 𝑖 ∈ ℕ} is a family of 𝜏𝑝 − 𝑔 −closed sets, then 

⋃ 𝐹𝑖𝑖∈ℕ  is 𝜏𝑝 −closed (Sarsak, 2013; 2022). 

 
Definition 2.2: For the bitopological space (𝑋, 𝜏₁, 𝜏₂), 
if 𝑈 ⊆ 𝑋, then: 
 
(i) If 𝑈 ⊂ 𝑖𝑛𝑡 (𝑐𝑙 (𝑖𝑛𝑡 (𝑈)), then 𝑈 is a 𝜏𝑝 − 𝛼 −open 

subset of 𝑋. 
(ii) If 𝑈 ⊂ 𝑐𝑙 (𝑖𝑛𝑡(𝑐𝑙(U))), then 𝑈 is 𝜏𝑝 − 𝛼 −closed. 

(iii) If 𝑐𝑙 (U) ⊂ 𝑉 for some 𝜏𝑝 −open (𝜏𝑝 −

𝑔 −closed) subset 𝑉 of (𝑋, 𝜏𝑖), 𝑉 is 𝜏𝑝 −generalized 

closed (𝜏𝑝 − 𝑔 −closed)  

(iv) 𝐺𝑂(𝑋) = {𝑈: 𝑈 𝑖𝑠 𝜏𝑝 − 𝑔 − 𝑜𝑝𝑒𝑛} 

(v) 𝐺𝐶(𝑋) = {𝐹: 𝐹 𝑖𝑠 𝜏𝑝 − 𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑} 

(vi) If 𝑈 =∩ {𝑈: 𝑈 𝑖𝑠 𝜏𝑝 − 𝛼 − 𝑜𝑝𝑒𝑛, 𝑈 ⊆ 𝑂} for some 

𝑂 a 𝜏𝑝 − 𝛼 − 𝑜𝑝𝑒𝑛 in (𝑋, 𝜏𝑖), then 𝑈 = 𝑖𝑛𝑡𝛼𝑝
(𝑈). 

(vii) If �̃� =∩ {𝐹: 𝐹 𝑖𝑠 𝜏𝑝 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑, 𝐾 ⊂ 𝐹} for 

some 𝐾 a 𝜏𝑝 − 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 in (𝑋, 𝜏𝑖), then �̃� =

𝑐𝑙𝛼𝑝
(𝐾). 

 
Definition 2.3: If 𝑓 is a function from (𝑋, 𝜏₁, 𝜏₂) to 
(𝑌, 𝜎₁, 𝜎₂), then: 
 
i) The graph of 𝑓 (denoted by 𝐺(𝑓)) is the subspace 
{(𝑥, 𝑓(𝑥)): 𝑥 ∈ 𝑋} 𝑜𝑓 𝑋 × 𝑌  
ii) The function 𝑓 is pairwise−closed if 𝐺(𝑓) is a 
(𝜏𝑖 , 𝜎𝑖) −closed subset of (𝑋, 𝜏𝑖) × (𝑌, 𝜎𝑖) ∀𝑖 = 1,2. 
iii) The function 𝑓 is pairwise−strongly closed 
(pairwise−strongly 𝛼 −closed) graph if ∀ (𝑥, 𝑦) ∈
𝐺(𝑓) (∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝐺(𝑓)), ∃𝑈1  and 𝑈2 such 

that 𝑥 ∈ 𝑈1 and (𝑈1 × 𝑐𝑙𝑗(𝑈2)) ∩ 𝐺(𝑓) is empty for 

some 𝑈1 a 𝜏𝑝 −open subset of 𝑋 and 𝑈2 a 𝜎𝑝 −open 

subset of 𝑌. 
 
Definition 2.4: If 𝐹 is a subset of (𝑋, 𝜏₁, 𝜏₂), then 𝐹 is 

𝐷𝛼
𝑝

−closed if 𝑐𝑙∗ (𝑖𝑛𝑡(𝑐𝑙(𝐹))) ⊆ 𝐹.  

If 𝐹 is 𝜏𝑝 − 𝐷𝛼 −closed, then 𝑋 − 𝐹 is 𝜏𝑝 −

𝐷𝛼 −open.  𝐹 is 𝐷𝛼
𝑝

−closed if it is 𝜏𝑝 − 𝐷𝛼 −closed, 

and the set of all 𝐷𝛼
𝑝

−closed subsets is denoted by 
𝐷𝛼

𝑝
− 𝐶(𝑋). 

 
Theorem 2.5: The graph 𝐺(𝑓) is pairwise−strongly 
𝛼 −closed if and only if ∀(𝑎, 𝑏) ∈ 𝑋 × 𝑌 − 𝐺(𝑓) for 
some 𝑈1 a 𝜏𝑝 −open subset of 𝑋 and 𝑈2 a 𝜎𝑝 −open 

subset of 𝑌 containing 𝑎 and 𝑏, respectively such that 
𝑓(𝑈1) ∩ 𝑐𝑙(𝑈2) is empty. 
 
Theorem 2.6: If 𝐾 is a subset of (𝑋, 𝜏₁, 𝜏₂), then 𝐾 is 
𝐷𝛼

𝑝
−closed if it is 𝜏𝑝 − 𝛼 −closed. 

 
Proof: Suppose that 𝐾 is 𝜏𝑝 − 𝛼 −closed subset of 𝑋, 

then 𝑐𝑙∗ (𝐾) ⊂ 𝑐𝑙(𝐾). 

So, 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝐾))) ⊂ 𝐾, hence 𝑐𝑙∗  (𝑖𝑛𝑡(𝑐𝑙(𝐾))) ⊂𝑐𝑙∗ 

(𝑖𝑛𝑡(𝑐𝑙∗ (𝐾))) ⊂ 𝐾.  

Thus, 𝐹 is 𝜏𝑝 − 𝐷𝛼 −closed and so it is 

𝐷𝛼
𝑝

−closed. 
 
Theorem 2.7: If 𝐴 is a 𝐷𝛼

𝑝
−closed subset of 

(𝑋, 𝜏₁, 𝜏₂), then it is pairwise−𝑔 −closed. 
 
Proof: Suppose that 𝐴 is 𝜏𝑝 − 𝑔 −closed, then, 

𝑐𝑙∗(𝐴) = 𝐴. Hence, 𝑖𝑛𝑡(𝑐𝑙∗(𝐴))⊂𝑐𝑙∗(𝐴). Thus, 

𝑐𝑙∗ (𝑖𝑛𝑡(𝑐𝑙∗(𝐴))) ⊂𝑐𝑙∗(𝑐𝑙∗(𝐴) ⊂𝑐𝑙∗(𝐴) = 𝐴. Therefore, 

𝐴 is 𝐷𝛼
𝑝

−closed. 
 
Corollary 2.8: If 𝐾 is a pairwise−𝑔 −closed subset 
of (𝑋, 𝜏₁, 𝜏₂) such that 𝑖𝑛𝑡(𝑐𝑙∗(𝐾)) ⊂ 𝐹 ⊂ 𝐾 for some 
𝐹 ⊂ 𝑋, then 𝐾 is 𝐷𝛼

𝑝
−closed. 

 
Proof: Since 𝐾 is pairwise−closed subset of 

𝑋, 𝑐𝑙∗(𝐾) = 𝐾. So, 𝑐𝑙∗ (𝑖𝑛𝑡(𝑐𝑙∗(𝐹)))⊂𝑐𝑙∗(𝑖𝑛𝑡∗(𝐹)) ⊂

𝐾 for some 𝐹 ⊂ 𝑋. Thus, 𝐾 is 𝐷𝛼
𝑝

−closed. 
 
Theorem 2.9: Arbitrary intersection of 𝐷𝛼

𝑝
−closed 

sets is 𝐷𝛼
𝑝

−closed. 
 
Proof: Let �̃� = {𝐹𝛾: 𝛾 ∈ 𝛤} be a family of 𝐷𝛼

𝑝
−closed 

subsets of the topological space (𝑋, 𝜏1, 𝜏2), then, 

𝑐𝑙∗ (𝑖𝑛𝑡 (𝑐𝑙∗(𝐹𝛾)))⊂𝐹𝛾 ∀𝛾 ∈ 𝛤. Now, ⋂ 𝐹𝛾𝛾∈𝛤 ⊂ 𝛾 ∈ 𝛤 

∀𝛾 ∈ 𝛤. Hence, 𝑐𝑙∗ (𝑖𝑛𝑡 (𝑐𝑙∗(𝐹𝛾))) ⊂ ⋂ 𝑐𝑙(𝐹𝛾)𝛾∈𝛤 . Thus, 

𝑐𝑙∗ (𝑖𝑛𝑡 (𝑐𝑙∗(𝐹𝛾))) ⊂ ⋂ 𝑐𝑙(𝐹𝛾)𝛾∈𝛤 ⊂ 𝑐𝑙∗ (𝑖𝑛𝑡 (𝑐𝑙∗(𝐹𝛾))) ⊂

⋂ 𝑐𝑙(𝐹𝛾)𝛾∈𝛤   ∀𝛾 ∈ 𝛤. Therefore, ⋂ 𝐹𝛾𝛾∈𝛤  is 𝐷𝛼
𝑝

−closed. 

 
Theorem 2.10: If 𝐴₁ and 𝐴₂ are two subsets of 
(𝑋, 𝜏₁, 𝜏₂) such that 𝐴₁ is 𝐷𝛼

𝑝
−closed and 𝐴₂ is 

pairwise−𝛼 −closed, then 𝐴₁ ∩ 𝐴₂ is 𝐷𝛼
𝑝

−closed. 
 
Corollary 2.11: If 𝐵₁ and 𝐵₂ are two subsets of 
(𝑋, 𝜏₁, 𝜏₂) such that 𝐵₁ is 𝐷𝛼

𝑝
−closed and 𝐵₂ is 

pairwise−𝑔 −closed, then 𝐹₁ ∩ 𝐹₂ is 𝐷𝛼
𝑝

−closed. 
 
Lemma 2.12: In the bitopological space (𝑋, 𝜏₁, 𝜏₂), if 
𝐴 is a subset of 𝑋, then: 
 
(i) 𝑐𝑙(𝐴) = 𝑋 − 𝑖𝑛𝑡(𝑋 − 𝐴). 
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(ii) 𝑖𝑛𝑡(𝐴) = 𝑋 − 𝑐𝑙(𝑋 − 𝐴). 

 
Theorem 2.13: In (𝑋, 𝜏₁, 𝜏₂), a subset 𝑈 is 𝐷𝛼

𝑝
−open 

if and only if 𝑈 ⊂ 𝑖𝑛𝑡(𝑐𝑙∗(𝑖𝑛𝑡(𝑈))). 

 
Proof: Let 𝑈 be a 𝐷𝛼

𝑝
−open subset of 𝑋 , then, 𝑋 − 𝑈 

is 𝐷𝛼
𝑝

−closed and 𝑐𝑙∗(𝑖𝑛𝑡(𝑐𝑙∗(𝑈)) ⊂ 𝑋 − 𝑈. Hence, 

we have 𝑈⊂𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑈))). Now, if 𝑈 ⊂

𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑈))). Then, 𝑋 − 𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑈))) ⊂ 𝑋 − 𝑈. 

Therefore, 𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑈))) ⊂ 𝑋 − 𝑈. Thus, 𝑋 − 𝑈 is 

𝐷𝛼
𝑝

−closed and 𝑈 is 𝐷𝛼
𝑝

−open. 
 
Corollary 2.13: In the bitopological space (𝑋, 𝜏₁, 𝜏₂), 
a subset 𝑈 is 𝐷𝛼

𝑝
−open if ∃ 𝑊 a pairwise−𝑔 −open 

subset such that 𝑊 ⊂ 𝑈 ⊂ 𝑖𝑛𝑡∗(𝑐𝑙(𝑊)), then 𝑈 is 

𝐷𝛼
𝑝

−open.  
 
Proof: Let 𝑊 be a pairwise−𝑔 −open subset of 𝑋, 
hence 𝑋 − 𝑊 is pairwise−𝑔 −closed and 𝑋 −

𝑖𝑛𝑡∗ (𝑐𝑙𝑗(𝑋 − 𝑊)) ⊂ 𝑋 − 𝑈 ⊂ 𝑋 − 𝑊. So, 𝑐𝑙∗(𝑖𝑛𝑡(𝑋 −

𝑊)) ⊂ 𝑋 − 𝑈 ⊂ 𝑋 − 𝑊 and 𝑋 − 𝑈 is 𝐷𝛼
𝑝

−closed. 

Therefore, 𝑈 is 𝐷𝛼
𝑝

−open. 
 
Corollary 2.14: Every pairwise−𝛼 −open 
(pairwise−𝑔 −open) is 𝐷𝛼

𝑝
−open. 

 
Corollary 2.15: An arbitrary union of the 𝐷𝛼

𝑝
−open 

set is 𝐷𝛼
𝑝

−open. 
 
Corollary 2.16: The union of 𝐷𝛼

𝑝
−open set and 

pairwise−𝛼 −open set is 𝐷𝛼
𝑝

−open. 
 
Corollary 2.17: The union of the 𝐷𝛼

𝑝
−open set and 

the pairwise−𝑔 −open set is 𝐷𝛼
𝑝

−open. 
 
Definition 2.18: In the bitopological space (𝑋, 𝜏₁, 𝜏₂), 
the 𝐷𝛼

𝑝
−interior of a subset 𝐵 of 𝑋 is denoted by 

𝐷𝛼
𝑝

− 𝑖𝑛𝑡𝑝(𝐵) and 𝐷𝛼
𝑝

− 𝑖𝑛𝑡𝑝(𝐵) = ⋃ {𝑉𝛾 : 𝑉𝛾 ∈𝛾∈Γ

𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 − 𝐷𝛼𝑂(𝑋), 𝑉𝛾 ⊂ 𝐵}. 

 
Definition 2.19: The 𝐷𝛼

𝑝
−closure of a subset 𝐵 of 

the bitopological space (𝑋, 𝜏₁, 𝜏₂) is denoted by 𝐷𝛼
𝑝

−
𝑐𝑙(𝐵) such that 𝐷𝛼

𝑝
− 𝑐𝑙(𝐵) = ⋂ {𝐾𝛾: 𝛾∈Γ 𝐾𝛾 ∈

𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 − 𝐷𝛼𝐶(𝑋), 𝐵 ⊂ 𝐾𝛾}.  

 
Lemma 2.20: In (𝑋, 𝜏₁, 𝜏₂), if 𝐵 ⊂ 𝑋, then 𝑋 − (𝐷𝛼

𝑝
−

𝑖𝑛𝑡(𝐵)) = 𝐷𝛼
𝑝

− 𝑐𝑙(𝐵) and 𝑋 − (𝐷𝛼
𝑝

− 𝑐𝑙(𝐵)) = 𝐷𝛼
𝑝

−
𝑖𝑛𝑡(𝐵). 
 
Theorem 2.21: In (𝑋, 𝜏₁, 𝜏₂), if 𝑈 is a subset of 𝑋, 
then: 
 

(i) 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝜙) = 𝜙 and 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑋) = 𝑋. 
(ii) 𝑈 is 𝑝 − 𝐷𝛼  open iff 𝐷𝛼

𝑝
− 𝑖𝑛𝑡(𝑈) = 𝑈 and 𝐷𝛼

𝑝
−

𝑖𝑛𝑡(𝑈) = 𝑈. 
(iii) 𝑝 − 𝛼 − 𝑖𝑛𝑡(𝑈) ⊂ 𝐷𝛼

𝑝
− 𝑖𝑛𝑡(𝑈) ⊂ 𝑈. 

(iv) 𝑖𝑛𝑡∗(𝑈) ⊂ 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑈) 

(v) 𝐷𝛼
𝑝

− 𝑖𝑛𝑡 (𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑈))=𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑈). 

Theorem 2.22: In (𝑋, 𝜏₁, 𝜏₂), if 𝐴, 𝐵 are two subsets 
of 𝑋, then: 
 

(i) If 𝐴 ⊂ 𝐵, then 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝐴) ⊂ 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝐵) 
(ii) (𝐷𝛼

𝑝
− 𝑖𝑛𝑡(𝐴))∪( 𝐷𝛼

𝑝
− 𝑖𝑛𝑡(𝐵))⊂ 𝐷𝛼

𝑝
− 𝑖𝑛𝑡(𝐴 ∪ 𝐵) 

(iii) 𝐷𝛼
𝑝

− 𝑖𝑛𝑡 (𝐴 ∩ 𝐵) ⊂( 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝐴))∩( 𝐷𝛼
𝑝

−
𝑖𝑛𝑡(𝐵)). 
 

Theorem 2.23: In (𝑋, 𝜏₁, 𝜏₂), if 𝑈 ⊂ 𝑋, then: 
 

(i) 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑈) = 𝑈 ∩ 𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑈))). 

(ii) 𝐷𝛼
𝑝

− 𝑐𝑙(𝑈) = 𝐴 ∪ 𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝐴))). 

 

Proof:  
(i) 𝐷𝛼

𝑝
− 𝑖𝑛𝑡(𝑈) is 𝐷𝛼

𝑝
−open and 𝐷𝛼

𝑝
− 𝑖𝑛𝑡(𝑈) ⊂

𝑈. So, 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑈) ⊂ 𝑖𝑛𝑡∗ (𝑐𝑙(𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑈)))  ⊂

𝑖𝑛𝑡∗(𝑐𝑙(𝑖𝑛𝑡∗(𝑈)). 

𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑈) ⊂ 𝑈 ∪ 𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑈))). So, 𝑈 ∪

𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑈))) is 𝐷𝛼
𝑝

− open 𝑈 ∪

𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑈))) ⊂ 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑈). Thus, 𝐷𝛼
𝑝

−

𝑖𝑛𝑡(𝑈) = 𝑈 ∩ 𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑈))). 

(ii) 𝐷𝛼
𝑝

− 𝑐𝑙(𝑈) = 𝑋 − 𝑖𝑛𝑡(𝑋 − 𝑈) = 𝑋 − (𝑋 − 𝑈) =

𝑋 − (𝑋 − 𝑈) ∪ (𝑋 − 𝑖𝑛𝑡∗ (𝑐𝑙(𝑖𝑛𝑡∗(𝑋 − 𝑈)))) = 𝑈 ∪

𝑐𝑙∗ (𝑖𝑛𝑡(𝑐𝑙∗(𝑈))) 

 

Definition 2.24: In the bitopological spaces 
(𝑋, 𝜏₁, 𝜏₂) and (𝑌, 𝜎1, 𝜎2), the function 𝑓: (𝑋, 𝜏₁, 𝜏₂) →
(𝑌, 𝜎₁, 𝜎₂) is said to be 𝐷𝛼

𝑝
−continuous if the inverse 

image of each 𝜎𝑝 −open set in 𝑌 is 𝐷𝛼
𝑝

−open in 𝑋. 
 

Lemma 2.25: Each 𝜏𝑝 − 𝛼 −continuous function is 

𝐷𝛼
𝑝

−continuous. 
 

Lemma 2.26: Each 𝜏𝑝 − 𝑔 −continuous function is 

𝐷𝛼
𝑝

−continuous. 
 

Theorem 2.27: If 𝑓: (𝑋, 𝜏₁, 𝜏₂) → (𝑌, 𝜎₁, 𝜎₂), and 
∀𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑌, then the following are equivalent: 
 

(1) 𝑓 is 𝜏𝑝 − 𝐷𝛼 −continuous. 

(2) For each 𝑉 a 𝜏𝑝 −open subset of 𝑌 and ∀𝑥 ∈ 𝑋 

such that 𝑓(𝑥) ∈ 𝑉, ∃ 𝑈 a 𝜏𝑗 − 𝐷𝛼 −open subset of 𝑋 

containing 𝑓−1(𝑉) such that 𝑓(𝑈) ⊂ 𝑉. 
(3) The inverse image of a 𝜎𝑝 −closed subset of 𝑌 is 

𝜏𝑝 −closed subset of 𝑋. 

(4) 𝑓(𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑈)) ⊂ 𝑐𝑙(𝑓(𝑈)) 
(5) 𝐷𝛼

𝑝
− 𝑐𝑙( 𝑓⁻¹(𝑉)) ⊂ 𝑓⁻¹(𝑐𝑙(𝑉)). 

(6) 𝑓⁻¹(𝑖𝑛𝑡(𝑉)) ⊂ 𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑓⁻¹(𝑉)). 
 

Proof: (1)→(2) 𝑓−1(𝑉) ∈ 𝐷𝛼
𝑝

𝑂(𝑋) ∀𝑉 ⊆ 𝑌. If 𝑏 ∈
𝑓⁻¹(𝑉), then 𝑓(𝑓⁻¹(𝑉)) ⊂ 𝑉 ∀𝑏 ∈ 𝑋. 
(3)→(4) Assume that 𝐾 is a 𝑝 −closed subset of 𝑌 
and 𝐾 ⊂ 𝑓(𝑈). Now, 𝑈 ⊂ 𝑓⁻¹(𝐾) is 𝑝 − 𝐷𝛼 − closed 
subset of 𝑋. So, 𝐷𝛼

𝑝
− 𝑐𝑙(𝑈)⊂ 𝐷𝛼

𝑝
− 𝑐𝑙 

(𝑓⁻¹(𝐾))=𝑓⁻¹(𝐾). Hence, 𝑓(𝐷𝛼
𝑝

− 𝑐𝑙(𝑈)) ⊂ 𝐾. Thus, 
𝑓(𝐷𝛼

𝑝
− 𝑐𝑙(𝑓(𝐾) ⊂ 𝑐𝑙(𝑓(𝑈)). 
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(4)→(5) Let 𝐹 be a subset of 𝑌. Then 𝑓(𝐷𝛼
𝑝

−
𝑐𝑙(𝑓⁻¹(𝐹)) ⊂ 𝑐𝑙(𝑓(𝑓⁻¹(𝐹)) ⊂ 𝑐𝑙𝑖(𝐹). Hence, 𝐷𝛼

𝑝
−

𝑐𝑙((𝑓⁻¹(𝐹)) ⊂ 𝑐𝑙𝑓⁻¹((𝐹). Therefore, 𝐷𝛼
𝑝

−

𝑐𝑙((𝑓⁻¹(𝐹)) ⊂ 𝑓⁻¹(𝑐𝑙(𝐹)). 
(5)→(6) Assume that 𝐹 be a subset of 𝑌, then 𝐷𝛼

𝑝
−

𝑐𝑙(𝑓⁻¹(𝑌 − 𝐹)) ⊂ 𝑓⁻¹(𝐷𝛼
𝑝

− 𝑐𝑙 (𝑌 − 𝐹)). Hence, 𝐷𝛼
𝑝

− 𝑐𝑙 
(𝑋 − 𝑓⁻¹(𝐹)) ⊂ 𝑓⁻¹(𝑌 − 𝑖𝑛𝑡(𝐹)). Therefore, 𝑋 − 𝐷𝛼

𝑝
−

𝑖𝑛𝑡 (𝑓⁻¹(𝐹)) ⊂ 𝑋 − 𝑓⁻¹(𝑖𝑛𝑡(𝐹)). Hence, 𝑓⁻¹(𝑖𝑛𝑡(𝐹)) ⊂
𝐷𝛼

𝑝
− 𝑖𝑛𝑡(𝑓⁻¹(𝐹)). 

(6)→(1) Assume that 𝑀 be a 𝑝 −open subset of 𝑌. So 
𝑓−1(𝑖𝑛𝑡(𝑀)) ⊂ 𝐷𝛼

𝑝
− 𝑖𝑛𝑡(𝑓−1(𝑀)). So, 𝑓⁻¹(𝑖𝑛𝑡(𝑀)) ⊂

𝐷𝛼
𝑝

− 𝑖𝑛𝑡(𝑓⁻¹(𝑀)). Hence, 𝑓⁻¹(𝑀) is an 𝑝 −
𝐷𝛼 −open. Thus, 𝑓 is a 𝑝 − 𝐷𝛼 −continuous function. 
 
Theorem 2.28: The composition of 𝐷𝛼

𝑝
−continuous 

function and 𝜏𝑝 −continuous function is 

𝐷𝛼
𝑝

−continuous. 
 
Definition 2.29: The function 𝑓: (𝑋, 𝜏₁, 𝜏₂) →
(𝑌, 𝜎₁, 𝜎₂) has 𝐷𝛼

𝑝
−closed graph if ∀(𝑎, 𝑏) ∈ (𝑋 ×

𝑌) − 𝐺(𝑓), ∃𝑊1 ∈ 𝜏𝑝 − 𝐷𝛼
𝑝

𝑂(𝑋, 𝑎) and 𝑊2 ∈

𝐺𝑂(𝑌, 𝑏): (𝑊1 × 𝑐𝑙∗(𝑊2)) ∩ 𝐺(𝑓)  is empty. 
 
Lemma 2.30: Each closed graph is 𝐷𝛼

𝑝
−closed. 

 
Theorem 2.31: The function 𝑓: (𝑋, 𝜏₁, 𝜏₂) →
(𝑌, 𝜎₁, 𝜎₂) is 𝜏𝑝 − 𝐷𝛼 −closed graph if and only if 

∀(𝑎, 𝑏) ∈ (𝑋 × 𝑌) − 𝐺(𝑓), ∃𝑈1 ∈ 𝜏𝑝 − 𝐷𝛼
𝑝

𝑂(𝑋, 𝑎) and 

𝑈2 ∈ 𝐺𝑂(𝑌, 𝑏): (𝑈1 × 𝑐𝑙∗(𝑈2)) ∩ 𝐺(𝑓) is empty. 
 
Proof: Assume that 𝑓: (𝑋, 𝜏₁, 𝜏₂) → (𝑌, 𝜎₁, 𝜎₂) is a 
𝐷𝛼

𝑝
−closed graph. So, ∀(𝑎, 𝑏) ∈ (𝑋 × 𝑌) − 𝐺(𝑓), ∃𝑈1 ∈

𝜏𝑝 − 𝐷𝛼
𝑝

𝑂(𝑋, 𝑎) and 𝑈2 ∈ 𝐺𝑂(𝑌, 𝑏) such that (𝑈 ×

𝑐𝑙∗(𝑈2)) ∩ 𝐺(𝑓) is empty. Hence, 𝑓𝑝(𝑥) ∈ 𝑓𝑝(𝑈1) and 

𝑏 ∈ 𝑐𝑙∗(𝑈2). Now, 𝑏 ≠ 𝑓𝑖(𝑎), hence 𝑓𝑖(𝑈1) ∩ 𝑐𝑙∗(𝑈2) is 
empty. Conversely, assume that (𝑎, 𝑏) ∈ (𝑋 × 𝑌) −
𝐺(𝑓), ∃𝑈1 ∈ 𝜏𝑝 − 𝐷𝛼

𝑝
𝑂(𝑋, 𝑎) and 𝑈2 ∈ 𝐺𝑂(𝑌, 𝑏): (𝑈 ×

𝑐𝑙∗(𝑈2)) ∩ 𝐺(𝑓) is empty. Thus, 𝑓𝑝(𝑎) ≠ 𝑏 and 𝑓𝑝(𝑈1) ∩

𝑐𝑙∗(𝑈2) is empty. 
 
Theorem 2.32: The function 𝑓: (𝑋, 𝜏₁, 𝜏₂) →
(𝑌, 𝜎₁, 𝜎₂) is 𝜏𝑝 − 𝐷𝛼 −closed graph if ∀(𝑎, 𝑏) ∈ (𝑋 ×

𝑌) − 𝐺(𝑓), ∃𝑈1 ∈ 𝜏𝑝 − 𝐷𝛼
𝑝

𝑂(𝑋, 𝑎) and 𝑈2 ∈ 𝜏𝑝 −

𝐷𝛼(𝑌, 𝑏): ( 𝑈1×𝑐𝑙∗(𝑈2) ∩ 𝐺(𝑓) is empty. 
 
Proof: Assume that 𝑓 is a 𝐷𝛼

𝑝
−closed graph, then 

∀(𝑎, 𝑏) ∈ (𝑋 × 𝑌) − 𝐺(𝑓), ∃𝑈1 ∈ 𝜏𝑝 − 𝐷𝛼
𝑝

𝑂(𝑋, 𝑎) and 

𝑈2 ∈ 𝐺𝑂(𝑌, 𝑏). But 𝜏𝑝 − 𝑔 −subset of 𝑋 is 𝜏𝑝 −

𝐷𝛼 −open, then 𝐷𝛼
𝑝

− 𝑐𝑙(𝑈2)⊂ 𝑐𝑙(𝑈2). Thus, (𝑈1 ×
𝐷𝛼

𝑝
− 𝑐𝑙(𝑈2)) ∩ 𝐺(𝑓) is empty. 

 
Corollary 2.33: The function 𝑓(𝑋, 𝜏₁, 𝜏₂) → (𝑌, 𝜎₁, 𝜎₂) 
is 𝐷𝛼

𝑝
−closed graph ∀(𝑎, 𝑏) ∈ (𝑋 × 𝑌) − 𝐺(𝑓), ∃𝑊1 ∈

𝐷𝛼
𝑝

𝑂(𝑋, 𝑎) and 𝑊2∈𝐷𝛼 (𝑌, 𝑏) ∩ 𝑊1 × 𝐷𝛼
𝑝

− 𝑐𝑙(𝑊2)) ∩
𝐺(𝑓) is empty if ∀(𝑎, 𝑏) ∈ (𝑋 × 𝑌) − 𝐺(𝑓), ∃𝑈 ∈ 𝜏𝑝 −

𝐷𝛼
𝑝

𝑂(𝑋, 𝑎) and 𝑉 ∈ 𝜏𝑝 − 𝐷𝛼 − (𝑌, 𝑏): 𝑓𝑝(𝑈) ∩ 𝐷𝛼
𝑝

− 𝑐𝑙(𝑉) 

is empty. 
 
Definition 2.34: The function 𝑓: (𝑋, 𝜏₁, 𝜏₂) →
(𝑌, 𝜎₁, 𝜎₂) has a strongly 𝐷𝛼

𝑝
−closed graph if 

∀(𝑎, 𝑏) ∈ (𝑋 × 𝑌) − 𝐺(𝑓), ∃𝑊1 ∈ 𝐷𝛼
𝑝

𝑂(𝑋, 𝑎) and 𝑊2 ∈

𝑂(𝑌, 𝑏): (𝑊1 × 𝑐𝑙(𝑊2)) ∩ 𝐺(𝑓) is empty. 
Lemma 2.35: (i) The strongly 𝐷𝛼

𝑝
−closed graph is 

𝐷𝛼
𝑝

−closed in (𝑋, 𝜏₁, 𝜏₂). 
(ii) Each strongly 𝜏𝑝 − 𝛼 −closed graph is strongly 

𝐷𝛼
𝑝

−closed graph in (𝑋, 𝜏₁, 𝜏₂). 
 

Theorem 2.36: For the function 𝑓: (𝑋, 𝜏₁, 𝜏₂) →
(𝑌, 𝜎₁, 𝜎₂), the following are equivalent: 
 

(i) 𝑓 has a strongly 𝐷𝛼
𝑝

−closed graph. 
(ii) ∀(𝑎, 𝑏) ∈ (𝑋 × 𝑌) − 𝐺(𝑓), ∃𝑊1 ∈ 𝐷𝛼

𝑝
𝑂(𝑋, 𝑎) and 

𝑊2 ∈ 𝑂(𝑌, 𝑏): 𝑓(𝑊1) ∩ 𝑐𝑙(𝑊2) is empty. 
(iii) ∀(𝑎, 𝑏) ∈ (𝑋 × 𝑌) − 𝐺(𝑓), ∃𝑊1 ∈ 𝐷𝛼

𝑝
𝑂(𝑋, 𝑎) and 

𝑊2 ∈ 𝑂(𝑌, 𝑏): (𝑊1 × 𝑐𝑙(𝑊2)) ∩ 𝐺(𝑓) is empty. 
 

Corollary 2.37: If the function 𝑓: (𝑋, 𝜏₁, 𝜏₂) →
(𝑌, 𝜎₁, 𝜎₂) has a strongly 𝐷𝛼

𝑝
−closed graph, then 

∀𝑎 ∈ 𝑋, 𝑓(𝑥) =∩ {𝑐𝑙(𝑉): 𝑉 ∈ 𝐷𝛼
𝑝

𝑂(𝑋, 𝑥𝑎}. 
 

Proof: Assume that 𝑓: (𝑋, 𝜏₁, 𝜏₂) → (𝑌, 𝜎₁, 𝜎₂) is a 
strongly 𝐷𝛼

𝑝
−closed graph, then ∃𝑏 ≠ 𝑓(𝑎): 𝑏 ∈∩

{𝑐𝑙(𝑉): 𝑉 ∈ 𝐷𝛼
𝑝

𝑂(𝑋, 𝑥)}.Hence, 𝑏 ∈ 𝑐𝑙(𝑓(𝑉)) for some 

𝑉 ∈ 𝐷𝛼
𝑝

𝑂(𝑋, 𝑥). So, ∀𝑊 ∈ 𝛼 − 𝑂(𝑌, 𝑏), 𝑊 ∩ 𝑓(𝑉) is 
empty. Therefore, 𝑓(𝑉) is non-empty and 𝑓(𝑉) ⊂
𝑊 ⊂ 𝑐𝑙𝛼

𝑝
(𝑊) which is a contradiction since 𝑓 has a 

strongly 𝐷𝛼
𝑝

−closed graph. Consequently, 𝑎 ∈ 𝑋, 
𝑓(𝑎) =∩ {𝑐𝑙(𝑉): 𝑉 ∈ 𝐷𝛼

𝑝
𝑂(𝑋, 𝑎)}. 

 

Corollary 2.38: If 𝑓: (𝑋, 𝜏₁, 𝜏₂) → (𝑌, 𝜎₁, 𝜎₂) is a 
𝐷𝛼

𝑝
−continuous function, and 𝑌 is 𝑝 −Housdorff, 

hence 𝐺(𝑓) is strongly 𝐷𝛼
𝑝

−closed. 
 

Proof: Assume that (𝑎, 𝑏) ∈ (𝑋 × 𝑌) − 𝐺(𝑓). Now, 
because 𝑌 is 𝑝 −Housdorff, ∃𝑈 ∈ 𝑂(𝑌, 𝑏): 𝑓(𝑎) ∉
𝑐𝑙(𝑈). Since 𝑐𝑙(𝑈) is 𝜏𝑝 −closed, we have 𝑌 − 𝑐𝑙(𝑈) ∈

𝑂(𝑌, 𝑏). Therefore, ∃𝑊 ∈ 𝐷𝛼
𝑝

𝑂(𝑋, 𝑥𝑎: 𝑓(𝑊) ⊂ 𝑌 −
𝑐𝑙(𝑈). Thus, 𝑓(𝑊) ∩ 𝑐𝑙(𝑈) is empty. Consequently, 
𝐺(𝑓) has a strongly 𝐷𝛼

𝑝
−closed graph. 

3. Conclusion 

Every closed graph is 𝐷𝛼
𝑝

−closed and the 𝜏𝑝 −

𝛼 −closed subset is 𝐷𝛼
𝑝

−closed. The strongly 

𝐷𝛼
𝑝

−closed graph is 𝐷𝛼
𝑝

−closed. The composition of 
𝐷𝛼

𝑝
−continuous function and 𝜏𝑝 −continuous 

function is 𝐷𝛼
𝑝

−continuous. Moreover, each 𝜏𝑝 −

𝑔 −continuous function is 𝐷𝛼
𝑝

−continuous. 
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