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This study focuses on the nonlinear space-time behavior of a plasma system 
made up of electrons, positive ions, and negative ions using the fractional 
Schamel (FS) equation. The main goal is to find exact solutions to the 
nonlinear FS equation by applying the extended hyperbolic function (EHF) 
method. The study examines how the fractional order affects the phase 
velocity, amplitude, and wave width of solitary wave solutions. Different 
exact solutions were found based on various values of the fractional order. 
Graphical representations are included to show the physical properties of 
these solutions. Overall, the results demonstrate that the EHF method is 
effective and reliable for finding exact solutions to the nonlinear FS equation. 
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1. Introduction 

*The nonlinear complicated physical phenomena 
associated with nonlinear partial differential 
equations (NLPDEs) have become increasingly 
important in a wide range of disciplines, including 
engineering, chemistry, biology, and plasma physics, 
making the search for exact solutions to these 
equations crucial. Since NLPDEs are mathematical 
representations of phenomena, studying their exact 
solutions might aid in understanding the underlying 
process of these physical models or improve 
understanding of the physical issue and its potential 
applications. With this goal in mind, a wide range of 
effective and straightforward techniques for 
determining the precise significant solutions of the 
NLPDEs despite their relative difficulty have been 
developed. Notable among these is Hirota's direct 
method (Hirota, 2004), which offers a systematic 
approach to constructing multi-soliton solutions. The 
F-expansion technique (Xue-Qin and Hong-Yan, 
2008) provides a framework for generating a wide 
class of exact solutions. Additionally, the tanh-
function method and its extended version (Wazwaz, 
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2010) are widely recognized for their efficacy in 
deriving solitary wave solutions. Other significant 
contributions to this domain are detailed in 
references (El-Ajou et al., 2019; Hassan, 2010; 
Sirendaoreji, 2007), collectively enriching the 
analytical tools available for exploring NLPDEs.  

Plasma wave propagation is one of the most 
important subjects in plasma physics (Cho, 1990; 
Scales and Bernhardt, 1991). The nonlinear waves in 
plasma can be described by a variety of NPDEs, 
including the Korteweg-de-Vries-like (KdV) equation 
and the nonlinear Schrodinger-type (NLS) equations 
(Hietarinta, 1987; Zhong et al., 2023). Numerous 
researchers have conducted extensive studies on the 
propagation of waves, both linear and nonlinear, 
through a plasma system comprised of electrons, 
positive ions, and negative ions (Cho, 1990; Scales 
and Bernhardt, 1991). The study of wave 
propagation in plasmas with relativistic velocities, 
particularly when considering the presence of 
streaming ions, has yielded intriguing results (Ghosh 
et al., 2008; Hafez et al., 2016). These results have 
revealed that relativistic effects significantly 
influence the formation of ion-acoustic solitons, a 
phenomenon that becomes pronounced solely in 
conjunction with ion streaming. 

The Schamel equation (Schamel, 1973) is a 
modified form of the Korteweg-de Vries (KdV) 
equation that includes terms to model the effects of 
trapped particles in a plasma, which can influence 
the properties of solitons and other nonlinear 
structures. When we refer to a fractional Schamel 
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(FS) equation, we're likely discussing an adaptation 
that involves fractional derivatives, which allows for 
a more accurate description of anomalous diffusion 
or other complex processes that are not adequately 
captured by integer-order calculus. The emphasis of 
this study is to find exact wave solutions for the FS 
equation by utilizing the conformable fractional 
derivative (CFD) approach. Introduced by Khalil et 
al. (2014), CFD represents a significant advancement 
in fractional calculus, providing a derivative with 
distinctive properties that find extensive 
applications across various fields, notably including 
mathematics, engineering, and physics. The 
application of CFD in soliton theory is distinctly 
beneficial for its capability to elucidate the dynamics 
of soliton waves and to yield a deep understanding 
of the underlying physical phenomena. Bearing these 
advantages in consideration, the current study 
employs the EHF method to extract traveling wave 
solutions pertaining to the FS equation. 

The EHF method (Shang, 2008) stands as a 
significant method for obtaining traveling wave 
solutions for various NPDEs. The exploration of its 
applicability to the FS equation, however, is an area 
that has not been thoroughly investigated. The 
novelty of this study is attributed to the application 
of the EHF method to the FS equation—a technique 
seldom employed for this specific equation. This not 
only aims to augment the collection of exact 
solutions for the FS equation but also seeks to 
provide a more profound understanding of the 
intricate dynamics characteristic of fractional-order 
nonlinear systems. A variety of studies have 
employed this method to investigate diverse NPDEs, 
aiming to acquire traveling wave solutions, see for 
example (Rehman et al., 2022; Rezazadeh et al.,2021; 
Karakoç et al., 2023). 

This paper demonstrates the derivation of 
solitary wave solutions in plasmas encompassing 
negative ions, positive ions, and electrons. The 
Schamel equations are deduced by employing the 
EHF method on the fundamental equations, with 
particular consideration given to the influences of 
negative ions, positive ions, and electron dynamics. 
The main objective of this study is to acquire the 
exact solutions of the nonlinear fractional FS 
equation. The organization of this paper is 
structured as follows: Section 2 provides the 
properties of the CFD, derived fundamental model, 
and application of the EHF method. This section also 
presents the obtained solutions for the FS equation. 
In Section 3, graphical depictions are employed to 
elucidate the physical attributes of the solutions 
derived. The paper culminates with concluding 
remarks and future research directions in Section 4. 

2. Methodology 

2.1. CFD 

In this subsection, we present a concise 
discussion of the fundamental properties of CFD, 
following the monographs authored by Khalil et al. 

(2014). We define the conformable derivative of 
order 𝛼, where 0 <  𝛼 ≤  1, with respect to the 
independent variable 𝑥 as: 
 

𝐷𝛼𝑀(𝑠) = 𝑙𝑖𝑚
ℎ→0

𝑀(𝑠+ℎ𝑠1−𝛼)−𝑀(𝑠)

ℎ
, ∀𝑠 > 0, 𝛼 ∈ (0,1],

𝑀(𝛼)(0) = 𝑙𝑖𝑚
𝑠→0+

𝑀(𝛼)(𝑠).                                                
              (1) 

 

Putting 𝛼 = 1 in the last equation, the non-
integer differential becomes the well-known integer 
differential. The CFD satisfied the following axioms: 
 
 𝐷𝛼𝑠𝑛 = 𝑛𝑠𝑛−𝛼 , 𝑛 ∈ 𝑅,  
  𝐷𝛼𝑎 = 0,  
  𝐷𝛼(𝑎𝑀 + 𝑏𝑁) = 𝑎𝐷𝛼𝑀 + 𝑏𝐷𝛼𝑁, ∀𝑎, 𝑏 ∈ 𝑅,  
 𝐷𝛼(𝑀𝑁) = 𝑀𝐷𝛼𝑁 + 𝑁𝐷𝛼𝑀,  

 𝐷𝛼 (
𝑀

𝑁
) =

𝑀𝐷𝛼𝑁−𝑁𝐷𝛼𝑀

𝑁2
,  

 𝐷𝛼𝑀(𝑁) =
𝑑𝑀

𝑑𝑁
𝐷𝛼𝑁, 𝐷𝛼𝑀(𝑠) = 𝑠1−𝛼 𝑑𝑀

𝑑𝑠
,  

 

where, 𝑀, 𝑁 are two 𝛼 −differentiable functions of a 
dependent variable 𝑠, and 𝑎 is constant. These 
properties have been well-proven and share many 
properties with integer derivatives (Khalil et al., 
2014). It is noted that the conformable differential 
operator complies with several fundamental 
principles analogous to those of the chain rule, 
Taylor series expansion, and Laplace transformation 
(Abdeljawad, 2015). In this paper, the FKP equation 
is translated into an ODE within the context of CFD. 

2.2. Deriving the fundamental model 

The foundational equations presented herein 
characterize the propagation dynamics of theoretical 
ion acoustic waves within a cold, non-collisional 
plasma comprised of both positively and negatively 
charged ions, as framed by the concept of CFDs. It is 
posited that the positively charged ions are, 
 
𝐷𝑡

𝛼𝑛𝑖 + 𝐷𝑥
𝛼(𝑛𝑖 𝑣𝑖) = 0,                                                                 (2) 

𝐷𝑡
𝛼𝑣𝑖 + 𝑣𝑖𝐷𝑥

𝛼𝑣𝑖 = −𝐷𝑥
𝛼𝜑,                                                            (3) 

 

and negatively charged ions are, 
 
𝐷𝑡

𝛼𝑛𝑗 + 𝐷𝑥
𝛼(𝑛𝑗𝑣𝑗) = 0,                                                                  (4) 

𝐷𝑡
𝛼𝑣𝑗 + 𝑣𝑗𝐷𝑥

𝛼𝑣𝑗 = 𝑅−1𝐷𝑥
𝛼𝜑.                                                        (5) 

 

Fractional Poisson’s equation is, 
 
𝐷𝑥

𝛼𝛼𝜑 = 𝑛𝑒 + 𝑛𝑗 − 𝑛𝑖 .                                                                  (6) 

 

In the provided notation, the subscripts 𝑖 and 𝑗 
are assigned to positive and negative ions, 
respectively, while the subscript e is designated for 

electrons. The term 𝑅 is defined as the mass ratio 
𝑚𝑗

𝑚𝑖
, 

which quantifies the relative mass of a negative ion 
to that of a positive ion. Normalization is applied to 
physical quantities that exist in these equations: 
𝑛𝑖 , 𝑛𝑗 and 𝑛𝑒  are the densities via equilibrium density 

electron 𝑛0, 𝜑 is the potential electrostatic, v is the 
velocity of the ion flow in the x direction, 𝑛𝑒 is the 
electron density of charge particles, 𝑛𝑖  for positive 
ions and 𝑛𝑗 for negative ions and 𝐷𝑥

𝛼 is the 
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conformable fractional differential with respect to x, 
𝐷𝑥

𝛼𝛼 = 𝐷𝑥
𝛼𝐷𝑥

𝛼  is the twice conformable fractional 
differential with respect to x. Assuming that low-
frequency ion acoustic waves and electrons are in 
quasi-equilibrium 𝑛𝑒 ≃ 𝑛𝑖 − 𝑛𝑗 , and 𝑛𝑒(𝜑) for the 

two cases 𝛽 > 0 and 𝛽 < 0 has the formula (El-
Kalaawy, 2011), 
 

𝑛𝑒(𝜑)  = 1 + 𝜑 −
4

3√𝜋
(1 − 𝛽)𝜑

3

2 +
1

2
𝜑2.                                (7) 

 

Through the application of reductive 
perturbation techniques, the scale's new stretching 
coordinates (time and space) are provided as, 
 

𝜉 =
√𝜀
4

𝛼
(𝑥𝛼 − 𝛼𝑣0𝑡𝛼), 𝜏 =

√𝜀34
𝑡𝛼

𝛼
,                                                (8) 

 

where, 𝜀 represents a diminutive parameter that 
signifies the degree of dispersion. The phase velocity 
within the (𝑥, 𝑡) coordinate system, denoted as 𝑣0 , 
remains an undetermined variable which requires 
determination. Within the context of a quasi-
equilibrium plasma state, this phase velocity is 
standardized to one. To proceed, we perform 
expansions for the particle densities 𝑛𝑖  and 𝑛𝑗 , the 

velocities 𝑣𝑖  and 𝑣𝑗 , as well as the electric potential 𝜑, 

in terms of powers of the small parameter ε, 
adhering closely to conditions associated with the 
quasi-equilibrium state. Thus, 
 

𝑛𝑖 = 𝑛𝑖0 + 𝜀𝑛𝑖1 + 𝜀
3

2𝑛𝑖2 + ⋯ ,

𝑛𝑗 = 𝑛𝑗0 + 𝜀𝑛𝑗1 + 𝜀
3

2𝑛𝑗2 + ⋯ ,

𝑣𝑖 = 𝜀𝑣𝑖1 + 𝜀
3

2𝑣𝑖2 + ⋯,             

𝑣𝑗 = 𝜀𝑣𝑗1 + 𝜀
3

2𝑣𝑗2 + ⋯,             

𝜑 = 𝜀𝜑1 + 𝜀
3

2𝜑2 + ⋯.              

                                                    (9) 

 

By applying reductive perturbation expansion to 
the aforementioned set of equations, the following 
coupled equations are acquired, 
 

−𝛼𝑣0𝐷𝜉
𝛼𝑛𝑖1 + 𝑛𝑖0𝐷𝜉

𝛼𝑣𝑖1 = 0,                                                 (10a) 

−𝛼𝑣0𝐷𝜉
𝛼𝑛𝑗1 + 𝑛𝑗0𝐷𝜉

𝛼𝑣𝑗1 = 0,                                                 (10b) 

−𝛼𝑣0𝐷𝜉
𝛼𝑛𝑖2 + 𝐷𝜏

𝛼𝑛𝑖1 + 𝑛𝑖0𝐷𝜉
𝛼𝑣𝑖2 = 0,                                (10c) 

−𝛼𝑣0𝐷𝜉
𝛼𝑛𝑗2 + 𝐷𝜏

𝛼𝑛𝑗1 + 𝑛𝑗0𝐷𝜉
𝛼𝑣𝑗2 = 0,                                (10d) 

 −𝛼𝑣0𝐷𝜉
𝛼𝑣𝑖1 + 𝐷𝜉

𝛼𝜑1 = 0,                                                      (10e) 

−𝛼𝑣0𝐷𝜉
𝛼𝑣𝑗1 −

1

𝑅
𝐷𝜉

𝛼𝜑1 = 0,                                                     (10f) 

 −𝛼𝑣0𝐷𝜉
𝛼𝑣𝑖2 + 𝐷𝜏

𝛼𝑣𝑖1 + 𝐷𝜉
𝛼𝜑2 = 0,                                      (10g) 

−𝛼𝑣0𝐷𝜉
𝛼𝑣𝑗2 + 𝐷𝜏

𝛼𝑣𝑗1 −
1

𝑅
𝐷𝜉

𝛼𝜑2 = 0,                                   (10h) 

 𝑛𝑖0 − 𝑛𝑗0 = 1, 𝑛𝑗1 − 𝑛𝑖1 + 𝜑1 = 0,                                       (10i) 

𝐷𝜉
𝛼𝛼𝜑1 = 𝑛𝑗2 − 𝑛𝑖2 + 𝜑2 +

4(𝛽−1)

3√𝜋
𝜑1

3

2.                                  (10j) 

 

From the above equations, we can obtain, 
 

𝑛𝑖1 =
𝑛𝑖0

𝛼2𝑣0
2 𝜑1, 𝑛𝑗1 = −

𝑛𝑖0

𝑅𝛼2𝑣0
2 𝜑1,

𝑣𝑖1 =
1

𝛼2𝑣0
2 𝜑1, 𝑣𝑗1 = −

1

𝑅𝛼2𝑣0
2 𝜑1,

                                              (11) 

 

under the boundary conditions, 
 
(i)  𝑛𝑖1 = 𝑣𝑖1, 𝑛𝑗1 = 𝑣𝑗1 , 𝑎𝑡 |𝜉| → ∞,

(ii) 𝜑1 = 0,                                             
                                      (12) 

then, we obtain 
𝑛𝑖0

𝛼2𝑣0
2 +

𝑛𝑗0

𝑅𝛼2𝑣0
2 = 1, and therefore, the 

phase velocity 𝑣0 can be given by, 
 

𝛼2𝑣0
2 = 𝑛𝑖0 +

𝑛𝑗0

𝑅
.                                                                        (13) 

 

Eliminating 𝑛𝑖2, 𝑣𝑖2, 𝑛𝑗2, 𝑣𝑗2, 𝜑2 and using Eq. 10h, 

for ion acoustic waves, we derive the following 
nonlinear FS equation, 
 

𝐷𝜏
𝛼𝜑 +

𝛼𝑣0(1−𝛽)

√𝜋
𝜑

1

2𝐷𝜉
𝛼𝜑 +

𝛼𝑣0

2
𝐷𝜉

𝛼𝛼𝛼𝜑 = 0.                           (14) 

2.3. Application of the extended hyperbolic 
function (EHF) method 

Consider an NPDE for 𝜑(𝜉, 𝜏) in the form, 
 
𝑃(𝜑, 𝐷𝜏

𝛼𝜑, 𝐷𝜉
𝛼𝜑, 𝐷𝜉𝜉

𝛼𝛼𝜑, 𝐷𝜏𝜉
𝛼𝛼𝜑, . . . ) = 0.                                 (15) 

 

Introducing the similarity variable 𝜁 = 𝑘(𝜉𝛼 −
𝑢0𝜏𝛼)/𝛼, where 𝑢0 is a steady speed, the wave 
number is 𝑘, hence the next ordinary differential 
equation (ODE) is satisfied by the function 𝜑(𝜉), 
 
𝐹(𝜑, 𝜑𝜁 , 𝜑𝜁𝜁 , 𝜑𝜁𝜁𝜁 , . . . ) = 0.                                                      (16) 

 

We suppose that the following to be the solution 
to Eq. 15, 
 

𝜑(𝜁) = 𝑎0 + ∑ [𝑎𝑖𝑔𝑖(𝜁) + 𝑏𝑖𝑔−𝑖(𝜁)]𝑁
𝑖=1 +

∑ 𝑐𝑖𝑔𝑖−2(𝜁)𝑔′(𝜁)𝑁
𝑖=2 + ∑ 𝑑−𝑖𝑔−𝑖(𝜁)𝑔′(𝜁)𝑁

𝑖=1 ,                      (17) 
 

where, the constants 𝑎0, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , and 𝑑𝑖  require 
determination, and where 𝑁 represents a positive 
integer. To ascertain the appropriate value for the 
positive integer 𝑁, one employs the method of 
homogeneous balance between the dominating 
nonlinear terms and the superior derivatives of the 
function φ(ζ) as delineated in Eq. 16. Additionally, 
the function 𝑔(𝜁) is indicative of the following 
solutions to the accompanying auxiliary ODEs.  
 

𝑑𝑔

𝑑𝜁
= 𝑔√𝐴 + 𝐵𝑔2,

𝑑2𝑔

𝑑𝜁2 = 𝐴𝑔 + 2𝐵𝑔3,

𝑑3𝑔

𝑑𝜁3 = 𝑔(𝐴 + 6𝐵𝑔2)√𝐴 + 𝐵𝑔2,                
                               (18) 

 

where, 𝐴 and 𝐵 are actual parameters that will be 
chosen based on 𝑔( 𝜁). By extending the mapping 
discussed earlier, we derive additional solutions. 
Incorporating Eq. 17 into Eq. 16, and integrating Eq. 
18, we can transform the left-hand side of Eq. 16 into 
a polynomial in terms of 𝑔𝑚( 𝜁), where 𝑚 
encompasses both negative and positive integers, 
including zero. The process of equating to zero the 
coefficients corresponding to each power of 𝑔𝑚( 𝜁) 
results in a suite of algebraic equations for the 
parameters 𝑘, 𝑎0, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖  and 𝑑𝑖 . Utilizing software 
such as Maple facilitates solving these equations and 
allows us to express 𝑘, 𝑎0, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖  and 𝑑𝑖  in terms of 
constants 𝑞0, 𝑞2, and 𝑞4. Subsequently integrating 
these findings back into Eq. 17 and employing the 
previously defined mapping leads to the derivation 
of periodic wave solutions for Eq. 16. 
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In Eq. 14, if we set 𝜑(𝜉, 𝜏) = 𝑢2(𝜉, 𝜏), we obtain, 
 
2𝑢𝐷𝜏

𝛼𝑢 + 2𝑎𝑢2𝐷𝜉
𝛼𝑢 + 𝛼𝑣0𝑢𝐷𝜉

𝛼𝛼𝛼𝑢 + 3𝛼𝑣0𝐷𝜉
𝛼𝑢𝐷𝜉

𝛼𝛼𝑢 = 0,  (19) 
 

with 𝑎 =
𝛼𝑣0(1−𝛽)

√𝜋
, and through replacing, 

 

𝑢(𝜉, 𝜏) = 𝜓(𝜁), 𝜁 = 𝑘(𝜉𝛼 − 𝑢0𝜏𝛼)/𝛼,                                   (20) 
 

into Eq. 19, after performing a single integration 
with respect to 𝜁 and setting the integration constant 
to zero, we obtain, 
 

−𝑢0𝜓2 + 𝛼𝑣0𝑘2 [(
𝑑𝜓

𝑑𝜁
)

2
+ 𝜓

𝑑2𝜓

𝑑𝜁2 ] +
2𝑎

3
𝜓3 = 0,                  (21) 

 

taking the answer when 𝜓3 and 𝜓
𝑑2𝜓

𝑑𝜁2  are balanced 

since it yields the leading order, 𝑁 =  2. 
 

𝜓(𝜁) = 𝑎0 + 𝑎1𝑔(𝜁) + 𝑎2𝑔2(𝜁) +
𝑏1

𝑔(𝜁)
+

𝑏2

𝑔2(𝜁)
+ 𝑐2𝑔′(𝜁) +

𝑑1𝑔′(𝜁)

𝑔(𝜁)
+

𝑑2𝑔′(𝜁)

𝑔2(𝜁)
,                                                                            (22) 

 

where, 𝑔( 𝜁) is the solution to Eq. 18, 
𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐2, 𝑑1, 𝑑2 and 𝑘 are constants that 
must be founded. Eq. 18 and Eq. 22 are substituted 
into Eq. 21 with the coefficients of 𝑔𝑚( 𝜁) set to zero. 
This result is a system of nonlinear algebraic 
equations for 𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐2, 𝑑1, 𝑑2 and 𝑘, which 
can be solved using Maple, we have: 
 
 Case 1: 
 

𝑎2 = −
15𝐵𝑢0

8𝑎𝛼𝐴𝑣0
, 𝑘 = ±√

𝑢0

8𝛼𝐴𝑣0
, 𝑎0 = 𝑎1 = 𝑏1 = 𝑏2 = 𝑐2 =

𝑑1 = 𝑑2 = 0.                                                                                 (23) 
 

 Case 2: 

𝑎0 =
15𝑢0

22𝑎
, 𝑘 = ±√

2𝑢0

11𝐴𝛼𝑣0
, 𝑏2 =

15𝑢0𝐴

44𝑎𝐵
,           

𝑑2 = −
15𝑢0

22𝑎√𝐵
, 𝑎1 = 𝑎2 = 𝑏1 = 𝑐2 = 𝑑1 = 0.

                       (24) 

 Case 3: 
 

𝑎0 =
9𝑢0𝐴2

8𝑎
, 𝑘 = ±√

−𝑢0𝐴3

10𝛼𝑣0
, 𝑎2 =

3𝑢0𝐴𝐵

2𝑎
,          

𝑏2 = −
3𝐴3𝑢0

16𝑎𝐵
, 𝑎1 = 𝑏1 = 𝑐2 = 𝑑1 = 𝑑2 = 0.

                        (25) 

 

Family 1: Substituting Eq. 23 into Eq. 22, we 
derive the subsequent concentration formulas for 
traveling wave solutions of Eq. 14 as: 
 

𝜑(𝜁) = [𝑎2 𝑔2( 𝜁)]2 = [
15𝐵𝑢0

8𝑎𝛼𝐴𝑣0
𝑔2( 𝜁)]

2
, 𝜁 = ±√

𝑢0

8𝛼4𝐴𝑣0

(𝜉𝛼 −

𝑢0𝜏𝛼) + 𝜃,                                                                                     (26) 
 

where, the parameter 𝜃 is the phase shift. 
 
1.  If 𝐴 > 0, 𝐵 > 0, then we can obtain: 
 

𝜑1(𝜁) = [
15𝑢0

8𝑎𝛼𝑣0
csch2(√𝐴𝜁)]

2
, 𝜁 = ±√

𝑢0

8𝛼4𝐴𝑣0
(𝜉𝛼 − 𝑢0𝜏𝛼) +

𝜃.                                                                                                      (27) 
 

2.  If 𝐴 < 0, 𝐵 > 0, then we can obtain: 
 

𝜑2(𝜁) = [
15𝑢0

8𝑎𝛼𝑣0
sec2(√−𝐴𝜁)]

2
, 𝜁 = ±√

𝑢0

8𝛼4|𝐴|𝑣0
(𝜉𝛼 −

𝑢0𝜏𝛼) + 𝜃.                                                                                     (28) 

𝜑3(𝜁) = [
15𝑢0

8𝑎𝛼𝑣0
csc2(√−𝐴𝜁)]

2
, 𝜁 = ±√

𝑢0

8𝛼4|𝐴|𝑣0
(𝜉𝛼 −

𝑢0𝜏𝛼) + 𝜃.                                                                                     (29) 
 

3.  If 𝐴 > 0, 𝐵 < 0, then we can obtain: 
 

𝜑4(𝜁) = [
15𝑢0

8𝑎𝛼 𝑣0
sech2(√𝐴𝜁)]

2
, 𝜁 = ±√

𝑢0

8𝛼3𝐴𝑣0
(𝜉𝛼 − 𝑢0𝜏𝛼) +

𝜃.                                                                                                      (30) 
 

Family 2: Substituting Eq. 24 into Eq. 22, we 
derive the subsequent concentration formulas for 
traveling wave solutions of Eq. 14 as: 

  

𝜑(𝜁) = [𝑎0 +
𝑏2

𝑔2(𝜁)
+

𝑑2𝑔′(𝜁)

𝑔2(𝜁)
]

2
= [

15𝑢0

22𝑎
+

15𝑢0𝐴

44𝑎𝐵𝑔2(𝜁)
−

15𝑢0𝑔′(𝜁)

22𝑎√𝐵𝑔2(𝜁)
]

2
,

𝜁 = ±√
2𝑢0

11𝛼 𝐴𝑣0

(𝜉𝛼 − 𝑢0𝜏𝛼) + 𝜃.                                               
                                                                                                               (31) 

  
 

1.  If 𝐴 > 0, 𝐵 > 0, then we obtain: 
 

𝜑5(𝜁) = [
15𝑢0

22𝑎
+

15𝑢0

44𝑎csch2(√𝐴𝜁)
+

15𝑢0 𝑐𝑜𝑡ℎ(√𝐴𝜁)

22𝑎csch(√𝐴𝜁)
]

2

.                 (32) 

 

2.  If 𝐴 < 0, 𝐵 > 0, then we obtain: 
 

𝜑6(𝜁) = [
15𝑢0

22𝑎
+

15𝑢0

44𝑎sec2(√−𝐴𝜁)
−

15𝑢0 𝑡𝑎𝑛(√−𝐴𝜁)

22𝑎sec(√−𝐴𝜁)
]

2

.               (33) 

𝜑7(𝜁) = [
15𝑢0

22𝑎
+

15𝑢0

44𝑎csc2(√−𝐴𝜁)
+

15𝑢0 𝑐𝑜𝑡(√−𝐴𝜁)

22𝑎csc(√−𝐴𝜁)
]

2

.               (34) 

3.  If 𝐴 > 0, 𝐵 < 0, then we obtain: 
 

𝜑8(𝜁) = [
15𝑢0

22𝑎
+

15𝑢0

44𝑎sech2(√𝐴𝜁)
+

15𝑢0tanh(√𝐴𝜁)

22𝑎sech(√𝐴𝜁)
]

2

.                  (35) 

 

Family 3: Substituting Eq. 25 into Eq. 22, we 
derive the subsequent concentration formulas for 
traveling wave solutions of Eq. 14 as: 

  
 

𝜑(𝜁) = [𝑎0 + 𝑎2𝑔2(𝜁) +
𝑏2

𝑔2(𝜁)
]

2
= [

9𝑢0𝐴2

8𝑎
+

3𝑢0𝐴𝐵

2𝑎
𝑔2(𝜁) −

3𝐴3𝑢0

16𝑎𝐵

1

𝑔2(𝜁)
]

2

,

𝜁 = ±√
−𝑢0𝐴3

10𝛼3𝑣0

(𝜉𝛼 − 𝑢0𝜏𝛼).                                                                       

                                                                                                    (36) 
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1.  If 𝐴 > 0, 𝐵 > 0, then we obtain: 
 

𝜑9(𝜁) = [
9𝑢0𝐴2

8𝑎
+

3𝑢0𝐴2

2𝑎
csch2(√𝐴𝜁) −

3𝐴2𝑢0

16𝑎

1

csch2(√𝐴𝜁)
]

2

.  (37) 

 

2.  If 𝐴 < 0, 𝐵 > 0, then we obtain: 
 

𝜑10(𝜁) = [
9𝑢0𝐴2

8𝑎
+

3𝑢0𝐴2

2𝑎
sec2(√−𝐴𝜁) −

3𝐴2𝑢0

16𝑎

1

sec2(√−𝐴𝜁)
]

2

.  

                                                                                                         (38) 

𝜑11(𝜁) = [
9𝑢0𝐴2

8𝑎
+

3𝑢0𝐴2

2𝑎
csc2(√−𝐴𝜁) −

3𝐴2𝑢0

16𝑎

1

𝑐𝑠𝑐2(√−𝐴𝜁)
]

2

.  

                                                                                                         (39) 
 

3.  If 𝐴 > 0, 𝐵 < 0, then we obtain: 
 

𝜑12(𝜁) = [
9𝑢0𝐴2

8𝑎
+

3𝑢0𝐴2

2𝑎
sech2(√𝐴𝜁) −

3𝐴2𝑢0

16𝑎

1

sech2(√𝐴𝜁)
]

2

.  

                                                                                                         (40) 
 

From solution of Eq. 30, the quantity 𝐴𝑚 =
225𝜋𝑢0

2

64𝛼4(1−𝛽)2𝑣0
4 represent the wave amplitude and 𝑊 =

√
8𝛼4𝑣0

𝑢0
 represent the wave width depending on the 

fractional order 𝛼. It should be highlighted in this 
solution that the perturbation method is not 
applicable for large propagation and is only suitable 
for small but finite amplitude limits. There are 
isolated waves with only positive potential as 𝑢0 > 0. 
Empirical observations indicate that an increase in 
the initial condition 𝑢0 correlates with a reduction in 
width and an augmentation in amplitude. 
Conversely, a rise in the absolute value of 𝛽 is 
associated with a diminution of amplitude when 𝛽 is 
less than zero and an enhancement when 𝛽 is 
greater than zero. Additionally, the FS equation's 
stationary solitary solution is, 
 

2

𝛼𝑣0
𝐷𝜏

𝛼𝜑 +
4(−1+𝛽)

3√𝜋
𝐷𝜉

𝛼𝜑
3

2 + 𝐷𝜉
𝛼𝛼𝛼𝜑 = 0,                                (41) 

 

where, 𝑎 =
4(−1+𝛽)

3√𝜋
 is the result of applying the 

proper boundary condition, namely 𝜑 → 0, 𝐷𝜁
𝛼𝜑 → 0 

and 𝐷𝜁
𝛼𝛼𝜑 → 0 as |𝜒| → ∞, and assuming the single 

variable 𝜒 = 𝜁 − 𝑢0𝜏𝛼/𝛼 concerning the propagating 
velocity 𝑢0, which stands for the solitary wave speed. 
From the FS equation, the following fractional 
Sagdeev potential is obtained as: 
 

−
2𝑢0

𝛼𝑣0
𝜑′ + 𝑎 (𝜑

3

2) ′ + 𝜑′′′ = 0.                                                 (42) 

 

Upon integration of the preceding equation twice 
in accordance with the stipulated conditions, it is 
observed that the resulting constant of integration is 
zero, thereby confirming that Eq. 42 represents the 
definitive form. Therefore, 
 

−𝑉(𝜑) =
𝑢0

𝛼𝑣0
𝜑2 −

2𝑎

5
𝜑

5

2,                                                           (43) 

 

where, the pseudo-potential 𝑉(𝜑) for our purposes 
reads, 
 
1

2
(𝜑𝜒)

2
= −𝑉(𝜑).                                                                       (44) 

An analysis of Eq. 43 reveals that the condition 

(𝜑) =
𝑑𝑉(𝜑)

𝑑𝜑
= 0 is satisfied at 𝜑 = 0. Consequently, 

for Eq. 43 to admit solitary wave solutions, it is 
required that 𝑉(𝜑) be less than zero in the interval 
0 < 𝜑 < 𝜙 and that 𝑉(𝜙) equals zero when 𝜑 = 𝜙, 
with 𝜙 representing the amplitude of the solitary 
waves. The fulfillment of the initial criterion 

necessitates that (
𝑑2𝑉

𝑑𝜑2)𝜑=0 < 0 be negative. The other 

requirement, 𝑉(𝜙) = 0, yields a relationship 
between the amplitude ϕ and the speed 𝑢0 of the 
solitary wave, delineating what is known as the 
nonlinear dispersion relation. This facilitates 
deriving a solution for Eq. 43. 
 

𝜑(𝜉, 𝜏) =
25𝑢0

2

4𝛼2𝑣0
2𝑎2

sech4 (√
𝑢0

𝛼4𝑣0

(𝜁 − 𝑢0𝜏𝛼)),                      (45) 

 

where, 
25𝑢0

2

4𝛼2𝑣0
2𝑎2 

 is the amplitude and √
𝛼4𝑣0

𝑢0
 is the 

width which are depending on the fractional order 𝛼. 
Upon examining the findings acquired in this 

research and comparing them with prior studies, it 
can be observed that when the fractional order is 
equal to one, equations 1 through 13 correspond to 
the same equations as those derived by El-Kalaawy 
(2011). It is important to recognize that the 
solutions in the sequence from 26 to 40 correspond 
to those identified by El-Kalaawy (2011) when the 
conditions for the fractional order are set to one, and 
the parameters 𝛼 = 1, 𝑞0 = 0, 𝑞2 = 𝐴, 𝑞4 = 𝐵 are 
applied. Furthermore, it is noted that upon setting 
the fractional order to unity, Eq. 45 yields a solution 
that coincides with the results previously reported 
by Williams et al. (2014). 

3. Graphical representations  

In this section, the nature of nonlinear FS 
equation created from Eq. 14 is visualized in the 3D 
graphs. In addition, their physically interpretation is 
also discussed. 

In Fig. 1, the phase velocity 𝑣0  of Eq. 13 is plotted 
via equilibrium density across varying values of the 
fractional order 𝛼 = 1, 0.98, 0.96, 0.94, 0.92, 0.9 at 
𝑅 = 4. Fig. 1A presents the phase velocity 𝑣0 with 
respect to equilibrium density positive ions with 
𝑛j0 = 480000. Fig. 1B represents the phase velocity 

𝑣0 with respect to equilibrium density negative ions 
with 𝑛i0 = 4800000. Fig. 1C is the 3D graph of the 
phase velocity 𝑣0 via the equilibrium density positive 
and negative ions. Fig. 1 illustrates how the 
variations in equilibrium densities of both positively 
and negatively charged ions influence the phase 
velocity (𝑣0) within the spatiotemporal domain 
described by coordinates (𝑥, 𝑡). For 𝛼 = 1, the 
increase of the 𝑛j0 and 𝑛i0 leads to increase of 𝑣0. 

Decreasing the fractional order from 0.98 to 0.90 has 
been observed to enhance the phase velocity of the 
wave, illustrating that variations in the fractional 
order 𝛼 are directly associated with alterations in 
wave propagation characteristics. 
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A: phase velocity 𝑣0 with respect to equilibrium density positive ions with 𝑛j0 = 480000 B: phase velocity 𝑣0 with respect to equilibrium density negative ions with 𝑛i0 = 4800000 

 
C: 3D graph of the phase velocity 𝑣0 via the equilibrium density positive and negative ions 

Fig. 1: The phase velocity 𝑣0 versus the equilibrium density positive and negative ions with various fractional order, 𝛼 =
1, 0.98, 0.96, 0.94, 0.92, 0.9 at 𝑅 = 4 

 

Fig. 2 presents the wave amplitude 𝐴𝑚 
(presented after Eq. 40) when 𝛽 = −1.75, with 
varied fractional order values, 𝛼 =
1, 0.95, 0.9, 0.8, 0.7, 0.6. In Fig. 2A the amplitude 𝐴𝑚 is 
plotted versus 𝑣0 when 𝑢0 = 0.25. As shown in Fig. 
2A the amplitude 𝐴𝑚 decreases when 𝑣0 varies from 
1 to 2. The small value 𝐴𝑚 when 𝛼 = 1 (green line). 

By decreasing the 𝛼 from 0.95 to 0.6, we see that 𝐴𝑚 
increases. Fig. 2B presents the graph of wave 
amplitude 𝐴𝑚 verses 𝑢0  when 𝑣0 = 1.25. Fig. 2C and 
Fig. 2D show 3D graphs for the wave amplitude 𝐴𝑚 
verses 𝑣0 and 𝑢0 with 𝛼 = 1 and 𝛼 = 0.9 
respectively.  

 

  
A: amplitude 𝐴𝑚 is plotted versus 𝑣0 when 𝑢0 = 0.25 B: graph of wave amplitude 𝐴𝑚 verses 𝑢0  when 𝑣0 = 1.25 
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C: 3D graphs for the wave amplitude 𝐴𝑚 verses 𝑣0 and 𝑢0 with 𝛼 = 1 D: 3D graphs for the wave amplitude 𝐴𝑚 verses 𝑣0 and 𝑢0 with 𝛼 = 0.9 
Fig. 2: The amplitude 𝐴𝑚 versus 𝑣0 and 𝑢0with various fractional order 𝛼 = 1, 0.95, 0.9, 0.8, 0.7, 0.6 at 𝑅 = 4 

 

Fig. 3 represents the wave width 
𝑊(presented after Eq. 40) versus 𝑢0 when 𝑛𝑖0 =
4800000, 𝑛𝑗0 = 480000 and 𝑅 = 4 across varied 

fractional order values, 𝛼 = 1, 0.95, 0.9, 0.8, 0.7, 0.6. 
As shown in Fig. 3A, the wave width 𝑊 decreasing 
with the variation of 𝑢0 from 0.1 to 0.7 and 𝑊 begins 
from a greater value of 𝛼 = 1 (green line). By 
decreasing 𝛼 from 0.95 to 0.6, we observe that 𝑊 
becomes smaller. Fig. 3B presents wave width 𝑊 
versus 𝑛𝑖0, where 𝑛𝑖0  varies from 1000000 to 

6000000 when 𝑛𝑗0 = 480000, 𝑢0 = 0.3 and 𝑅 = 4 

with different values of the fractional order 𝛼 =
1, 0.95, 0.9, 0.8, 0.7, 0.6. Fig. 3C presents wave width 
𝑊 versus 𝑛𝑗0 where 𝑛𝑗0  varies from 100000 to 

600000 when 𝑛𝑖0 = 4800000, 𝑢0 = 0. 3 and 𝑅 = 4 
different values of the fractional order 𝛼 =
1, 0.95, 0.9, 0.8, 0.7, 0.6. From Fig. 3, we deduce that 
wave width 𝑊 decreasing by decreasing the 
fractional order 𝛼. 

 

  
A: wave width 𝑊 decreasing with the variation of 𝑢0 from 0.1 to 0.7 B: wave width 𝑊 versus 𝑛𝑖0 where 𝑛𝑖0  varies from 1000000 to 6000000 

 
C: wave width 𝑊 versus 𝑛𝑗0 where 𝑛𝑗0  varies from 100000 to 600000 

Fig. 3: The wave width versus 𝑢0 when 𝑛𝑖0 = 4800000, 𝑛𝑗0 = 480000 and 𝑅 = 4 

 

Fig. 4 represents the evolution behavior of soliton 
solution of Eq. 30 with 𝑢0 = 0.75, 𝑣0 = 2.5, 𝛽 =

−1.75, 𝑎 = 6.875/√𝜋. The green layer when 𝛼 = 1, 
the red layer when 𝛼 = 0.95 and the blue layer when 
𝛼 = 0.9. We observe that the amplitude peak moves 
apart with the variation of fractional order. This 
means that the soliton solution depended on the 
fractional order. 

4. Conclusion 

This study investigated the complex non-linear 
space-time dynamics of a plasma system composed 
of a mixture of electrons, positive ions, and negative 
ions. This has been conducted within the context of 
the FS equation's framework. The EHF method was 
effectively employed to derive analytical solutions 
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for the FS equation, which incorporates the CFD. 
Detailed investigations have been conducted to 
elucidate the influence of the fractional order on 

properties such as phase velocity, amplitude, and 
wave width within the context of solitary wave 
solutions.  

 

 
Fig. 4: Evolution behavior of soliton solution Eq. 30 with 𝑢0 = 0.75, 𝑣0 = 2.5, 𝛽 = −1.75 with different values of 𝛼 = 1, 0.95,

0.9 
 

A compendium of precise analytical solutions 
pertinent to the FS equation has been successfully 
delineated. To examine the influence of the fractional 
operator on resultant outcomes, we present the 
solutions obtained for varying magnitudes of the 
fractional order 𝛼. These are juxtaposed against their 
precise equivalents derived under the standard 
condition in which 𝛼 is equivalent to unity. This has 
been conducted to ascertain the effects of variable 
fractional orders, 𝛼, and to determine the extent to 
which alterations in 𝛼 modify the characteristics of 
the resultant solutions. The graphical depictions 
served to elucidate the physical properties of the 
solutions under investigation. This research 
demonstrated that the augmented hyperbolic 
function is an effective analytical instrument for 
deriving more encompassing exact solutions for 
numerous NLPDEs relevant to the field of 
mathematical physics. Future studies could explore 
the numerical solutions for the FS equation. 
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