
 International Journal of Advanced and Applied Sciences, 11(7) 2024, Pages: 57-62

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

57

Rethinking the implementation and application of the Benczur-Karger
minimum cuts algorithm

Hanqin Gu *

Western Reserve Academy, Hudson, USA

A R T I C L E I N F O A B S T R A C T

Article history:
Received 23 February 2024
Received in revised form
23 June 2024
Accepted 27 June 2024

In graph theory and network analysis, finding the minimum cut in a graph is
a fundamental algorithmic challenge. This paper explores the development
and application of Benczur-Karger’s minimum cut algorithms, focusing on
the relationship between theoretical advancements and practical
implementation. Despite the algorithm's advantages, there are challenges
related to its implementation complexities and the effects of compression
factor settings. To address these issues, this paper first implements Benczur-
Karger’s minimum cuts algorithm in Python and discusses the
implementation details. Additionally, we propose a new compression factor
setting for Benczur-Karger’s minimum cuts algorithm and conduct an
experiment with this new setting. The experimental results show that our
proposed compression factor performs better than the original one. Finally,
we discuss the application of Benczur-Karger’s minimum cuts algorithm in
social network analysis, a field where its use has been limited. The code is
available at https://github.com/HarleyHanqin/Modified_BK.

Keywords:
Minimum cut
Graph theory
Benczur-Karger algorithm
Compression factor
Social network analysis

© 2024 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*In the realm of graph theory and network
analysis, the concept of finding the minimum cut in a
graph has emerged as a fundamental and
indispensable algorithmic challenge (Gayathri et al.,
2024; Henzinger et al., 2018). The significance of
minimum cut algorithms lies at the core of numerous
real-world applications, ranging from network
reliability and transportation optimization (Niu et
al., 2020) to image segmentation (Niazi and Rahbar,
2024) and community detection (Becchetti et al.,
2020). Moreover, minimum cut algorithms can be
incorporated into pre-trained language models for
natural language processing tasks (Huang et al.,
2024a), such as multi-hop question and answering
(Huang et al., 2024b; Jin et al., 2023). As we delve
into the intricate world of graph algorithms, it
becomes evident that the efficient identification of a
minimum cut not only bears theoretical importance
but also holds practical implications in diverse
domains.

* Corresponding Author.
Email Address: guh25@wra.net
https://doi.org/10.21833/ijaas.2024.07.007

 Corresponding author's ORCID profile:
https://orcid.org/0009-0003-1609-2800
2313-626X/© 2024 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

The evolution of minimum cut algorithms reflects
the continuous interplay between theoretical
insights and practical applicability (Manoharan and
Sathesh, 2020). From classic methods such as the
Ford-Fulkerson algorithm (Bulut and Özcan, 2021)
and the Stoer-Wagner algorithm (Zhao et al., 2020)
to more recent contributions such as randomized
contraction algorithms (Cygan et al., 2020) and
multi-phase algorithms (Zhou et al., 2019),
researchers have tirelessly strived to enhance the
efficiency, scalability, and versatility of minimum cut
computations. This evolution is particularly crucial
in the context of ever-expanding datasets and
complex network structures encountered in modern
applications.

In the dynamic and ever-evolving landscape of
graph theory, the quest for efficient algorithms to
address fundamental problems, such as identifying
cuts in graphs, remains a focal point of research. One
notable and increasingly recognized paradigm in this
pursuit is the application of random sampling
techniques. The use of randomness as a tool for
algorithmic design has gained prominence, as it
offers a fresh perspective and innovative solutions to
long-standing challenges (Karger, 1994a; 1994b).

Benczur and Karger (1996) enhanced existing
random sampling methodologies to approximate
solutions for graph problems involving cuts. They
introduce a linear time construction, which converts
a graph with 𝑛 vertices into an 𝑂(𝑛 log 𝑛)-edge graph
with the same vertices. In addition, the cuts in this

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:guh25@wra.net
https://doi.org/10.21833/ijaas.2024.07.007
https://orcid.org/0009-0003-1609-2800
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2024.07.007&domain=pdf&

Hanqin Gu/International Journal of Advanced and Applied Sciences, 11(7) 2024, Pages: 57-62

58

transformed graph possess approximately the same
value as those in the original graph. This modified
graph facilitates the application of the 𝑂(𝑚𝑛)-time
maximum flow algorithm by Goldberg and Tarjan,
enabling the identification of an s–t minimum cut in
𝑂(𝑛2) time. This corresponds to a (1 + ɛ)-
approximation of the minimum s–t cut in the original
graph. Similarly, they demonstrate an 𝑂(𝑛2)-time
approximation for the sparsest cut using this
approach.

However, the implementation of Benczur-
Karger’s minimum cuts algorithm is quite
complicated, and the setting of the compression
factor impacts the algorithm's performance.
Moreover, Benczur-Karger’s minimum cuts
algorithm is mostly used for image segments, and
less attention has been given to other applications,
such as social network analysis. In this paper, we
rethink the implementation and application of
Benczur-Karger’s Minimum Cuts Algorithm. The
contributions of this paper are summarized below:

1. First, we implement Benczur-Karger’s minimum

cuts algorithm in Python and discuss the details of
the implementation.

2. We introduce a new compression factor for
Benczur-Karger’s minimum cuts algorithm and
conduct an experiment for the proposed
compression factor.

3. Finally, we will conduct Benczur-Karger’s
minimum cuts algorithm on a social network
dataset and discuss its application for social
network analysis.

2. Relative work

2.1. Graph cut algorithms

Graph cut algorithms have been a cornerstone in
the field of graph theory, offering essential solutions
for a wide array of applications, including image
segmentation, network optimization, and community
detection. Pioneering works laid the groundwork for
classical algorithms such as the Ford–Fulkerson
algorithm (Ford and Fulkerson, 1956) and the Stoer-
Wagner algorithm (Stoer and Wagner, 1997), which
addressed the minimum cut problem by iteratively
finding maximum flows. Nagamochi and Ibaraki
(1992a, 1992b) explored the scope of the minimum
cut problem and introduced a linear-time algorithm
for finding a sparse k-connected spanning subgraph
of a k-connected graph. Inspired by the studies of
Nagamochi and Ibaraki’s (1992a, 1992b) studies, we
combine a linear-time algorithm with the Benczur-
Karger minimum cut algorithm (Benczúr and Karger,
1996) to improve the performance. The 2-respecting
min-cut problem, a subroutine within Karger's
(2000) well-known randomized near-linear-time
min-cut algorithm, has undergone examination. The
objective is to identify, in any weighted graph G and
its spanning tree T, the minimum cut among those
containing at most two edges in T. Mukhopadhyay
and Nanongkai (2020) introduced a novel approach

to address this problem, offering an easily
implementable solution across various contexts. This
has subsequently led to the development of
randomized min-cut algorithms for weighted graphs.

2.2. Random Sampling for Graphs

Random sampling techniques have emerged as
powerful tools for addressing computationally
challenging problems in graph theory. Early
contributions by Karger and Stein (1996) showcased
the potential of randomized contraction algorithms
for approximating minimum cuts. Building upon this
foundation, Batson et al. (2014) introduced
innovative linear-time constructions for
transforming graphs while preserving cut
properties.

In the domain of sparsest cut approximation,
Arora et al. (2009) proposed a polynomial-time
algorithm with provable guarantees, illustrating the
effectiveness of random sampling in tackling diverse
graph cut problems. These approaches demonstrate
the adaptability and efficiency of random sampling
methodologies across various graph-related
challenges.

3. Implementation of Benczur-Karger’s minimum
cuts algorithm

3.1. Certificate

The implementation of the Certificate is shown in
Algorithm 1. The output of this algorithm is a set of
edges with a maximum size 𝑘(𝑛 − 1), including all
the edges with strong connectivity ≤ 𝑘. Notably, not
every edge in the output has strong connectivity less
than or equal to 𝑘.

Algorithm 1 Certificate (𝐺, 𝑘)
Input: A multi-graph 𝐺 = (𝑉, 𝐸), standard connectivity 𝑘.
Output: A set of edges containing all edges with strong
connectivity ≤ 𝑘.

1: 𝐸1 ← ∅, 𝐸2 ← ∅, · · · , 𝐸|𝐸| ← ∅.

2: For all 𝑣 ∈ 𝑉 , 𝑟 (𝑣) ← 0
3: while 𝑉 is not empty do
4: choose a vertex 𝑥 with the largest 𝑟 (𝑥) value
5: for each edge(𝑥, 𝑦) ∈ 𝐺.𝐸 do
6: 𝐸𝑟 (𝑦)+1 ← 𝐸𝑟 (𝑦)+1 ∪ {(𝑥, 𝑦)}
7: if 𝑟 (𝑥) = 𝑟 (𝑦) then
8: 𝑟 (𝑥) ← 𝑟 (𝑥) + 1
9: end if
10: 𝑟 (𝑦) ← 𝑟 (𝑦) + 1
11: 𝐺.𝐸 ← 𝐺.𝐸 − (𝑥, 𝑦)
12: end for
13: 𝐺.𝑉 ← 𝐺.𝑉 − 𝑥
14: end while
15: return 𝐸1 ∪ 𝐸2 ∪ · · · ∪ 𝐸𝑘

The subroutine Certificate (𝐺, 𝑘) runs in 𝑂(𝑚)

time since the algorithm should iterate over each
edge exactly once (Benczúr and Karger, 1996). The
detailed proof can be found in Nagamochi and
Ibaraki (1992a). In Certificate, each node is assigned
a 𝑟(𝑣) value. We leverage a double linked list with

Hanqin Gu/International Journal of Advanced and Applied Sciences, 11(7) 2024, Pages: 57-62

59

each element in the list containing an 𝑟 value a set of
vertices with that 𝑟 value when searching for the
vertex with the largest 𝑟(𝑣) value. Two elements
with adjacent 𝑟 values are linked in both directions.
The implementation of this data structure
significantly reduces the time complexity for finding
the largest 𝑟(𝑣) value. In particular, adding 𝑟(𝑣) for
some vertex 𝑣 can be completed in 𝑂(1) time with
the implementation of a doubly linked list.

3.2. Partition

The output of Partition contains fewer edges with
connectivity greater than 𝑘, while Certificate is
capable of providing edges with low-standard
connectivity. The implementation of Partition is
shown in Algorithm 2. The Partition algorithm runs
in 𝑂(𝑚) time because it strictly iterates over each
edge exactly once. Partition requires contracting the

edges of the graph and returning the original edges
before they are contracted. We use a different data
structure to store which vertices are contracted to
the current vertex. The implementation of Partition
just needs to search for each edge in the original
graph once rather than calculate and confirm
whether it contracts to one of the selected edges.

3.3. WeakEdges and estimation

Using Partition, WeakEdges serves to determine
the 𝑘-weak edges. Unlike the two previous
algorithms, WeakEdges determines edges with less
strong connectivity instead of standard connectivity.
The implementation of WeakEdges is shown in
Algorithm 3. Based on WeakEdges, we estimate the
strong connectivity of each edge in the graph
through Estimation (shown in Algorithm 4).

Algorithm 2 Partition (𝐺, 𝑘, 𝐶1)

Input: A graph 𝐺 = (𝑉 , 𝐸), connectivity 𝑘
Output: A distilled set of edges containing all edges with strong connectivity ≤ 𝑘.

1: while 𝑚 > 𝐶1 ∗ 𝑘 ∗ (𝑛 − 1) do

2: 𝐸′ ← Certificate(𝐺, 𝑘)

3: for all edges (𝑥, 𝑦) in 𝐸 − 𝐸′ do

4: 𝐺.𝐸 ← 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝑥, 𝑦) ▷ contract vertex 𝑦 onto 𝑥

5: 𝐺.𝑉 ← 𝑉 − 𝑦

6: end for

7: end while

8: return All uncontracted edges of 𝐺

Algorithm 3 WeakEdges (G, k, C2)

Input: A graph G = (V, E), strong connectivity k

Output: A set of edges containing all the k-weak edges

1: 𝜺 ← ∅

2: for log(n) times do

3: E′ ← Partition(G, C2 * k)

4: 𝜺 ←𝜺 ∪ E′

5: G.E ← G.E − E′

6: end for

7: return 𝜀

Algorithm 4 Estimation (G, k)
Input: A graph G = (V, E, C3), current strong connectivity k
which starts at 1, C3 ∈ {1, 2}.
Output: A map that shows the estimation of the strong
connectivity for every edge.
1: E′ ← WeakEdges(G, C3 * k)
2: for all e ∈E′ do
3: k˜e ← k.
4: end for
5: G.E ← G.E − E′
6: for all nontrivial connected components H ∈ G do
7: Estimation(H, 2 * k)
 8: end for

4. Generic compression factor

Benczur and Karger (1996) defined the

compression factor 𝜌 as 𝑂 (
𝑑ln𝑛

𝜖2
), which leads to

setting the compression factor to 𝑂(ln𝑛). We

introduce a new compression factor 𝜌 =
2𝑘average

(2+𝜎2𝑚)
 for

Benczur-Karger’s Minimum Cuts Algorithm, which
can improve the performance of the algorithm (see
section 5. Experiment and Results).

4.1. Proof

Lemma 1: Each cut in a graph should have an

expected cut size
𝑚

2
.

Proof: By randomly choosing a cut, we split the set
of vertices. If each vertex 𝑣 ∈ 𝐺. 𝑉 is set into one of
two sets, the two sides are split by the cut. For each
edge 𝑒 ∈ 𝐺. E, the probability of its two vertices
coming up on the two different sides of the cut is
exactly 1/2. Therefore, each edge is present in
exactly half of the cuts, so that the average cut size is
𝑚

2
.

We assume that the strong connectivity 𝑘𝑒s

remain relatively close for edges in the same graph.
Consequently, the compression probability 𝑝 is the
same. Assuming that the probability is the same for
all edges, for each edge, it is kept with probability 𝑝

(with weight
1

𝑝
) and discarded with probability 1 − 𝑝.

Thus, the resulting cut size for each cut can be
expressed with a binomial distribution. We redefine

𝜖 as the expected value of |
 new cut value

 old cut value
− 1|.

Hanqin Gu/International Journal of Advanced and Applied Sciences, 11(7) 2024, Pages: 57-62

60

Lemma 2: Let 𝑐 be the value of the selected cut;

given 𝜖, the expected compression factor 𝑝 is
1

1+𝜖2𝑐

Proof: As a result of the binomial distribution, the
standard deviation 𝜎 satisfies:

𝑝𝜎 = √𝑐𝑝(1 − 𝑝) (1)

by definition,

𝜖 =
𝜎

𝑐
 (2)

simplifying, we obtain:

𝜖2 =
1−𝑝

𝑐𝑝
=

1

𝑐𝑝
−

1

𝑐
 (3)

by substituting 𝑝 =
𝜌

𝑘𝑒
 and 𝑐 =

𝑚

2
, we obtain:

(2 + 𝜎2𝑚)𝜌 = 2𝑘𝑒 (4)

Since 𝑘𝑒 is the strong connectivity in the graph,
we can obtain the average of the strong
connectivities of all the edges in the graph, which
accounts for the new expression for the compression
factor:

𝜌 =
2𝑘average

(2+𝜎2𝑚)
 (5)

5. Experiment and results

5.1. Datasets

We conducted the experiment using the social
circle (Facebook) dataset (Leskovec and Mcauley,
2012). This dataset comprises 'circles' or 'friends
lists' sourced from Facebook and collected through a
Facebook app administered to survey participants. It
encompasses node features (profiles), circles, and
ego networks. To ensure privacy, Facebook data
have undergone anonymization by substituting the
original Facebook-internal IDs for each user with
new values. Additionally, feature vectors in this
dataset were presented in an anonymized manner,
obscuring the interpretation of these features. For
example, where the original dataset may have
denoted a feature as "political=Democratic Party,"
the anonymized data would instead display
"political=anonymized feature 1." Consequently,
while the anonymized data allows for the
identification of shared political affiliations between
two users, they do not disclose the specific nature of
individual political affiliations. The dataset statistics
are shown in Table 1. Note that these statistics in
Table 1 were compiled by combining the ego
networks, including the ego nodes themselves (along
with an edge to each of their friends).

5.2. Results

We conducted an experiment to compare the
performance of our proposed compression factor

with the original factor. We measured the
performance of Benczur-Karger’s minimum cuts
algorithm by analyzing the cut values. As shown in
Table 2, the results indicate that our proposed
compression factor outperforms the original one for
cut values ranging from 1,000 to 7,000. Performance
was measured by the time taken to reach the cut
values. Compared to the original algorithm, the
algorithm with the new compression factor reduced
the running time by approximately 51.6% on
average. As the cut values increase, our proposed
compression factor significantly decreases the
algorithm's search time; however, it only reduces the
time by 0.9 seconds in the range from 6,000 to 7,000.
This suggests that while the new compression factor
effectively improves the algorithm's performance, it
has certain limitations.

Table 1: Dataset statistics
Nodes 4039
Edges 88234

Nodes in largest WCC 4039 (1.000)
Edges in largest WCC 88234 (1.000)
Nodes in largest SCC 4039 (1.000)
Edges in largest SCC 88234 (1.000)

Average clustering coefficient 0.6055
Number of triangles 1612010

Fraction of closed triangles 0.2647
Diameter (longest shortest path) 8
90-percentile effective diameter 4.7

Table 2: Experimental results comparing proposed

compression factor with the original
Cut values Original (sec) Our proposed (sec)

1,000 27.2 15.2
2,000 39.7 20.5
3,000 54.2 25.7
4,000 72.8 32.3
5,000 83.2 36.3
6,000 98.5 43.7
7,000 115.2 59.5

6. Application for social network analysis

We conduct an experiment with Benczur-
Karger’s minimum cuts algorithm on social circle
(Facebook) datasets and further discuss the
application of this algorithm to social network
analysis.

6.1. Community detection

Minimum cuts can be employed to identify
cohesive communities within a social network. By
identifying the edges with the lowest weights or,
conversely, removing edges with the highest
weights, the network can be divided into distinct
communities. This approach aids in understanding
the natural divisions and subgroups within a larger
social network, revealing patterns of interactions
and relationships.

6.2. Identifying key connectors

Minimum cuts help pinpoint critical edges whose
removal would result in a significant disconnection

Hanqin Gu/International Journal of Advanced and Applied Sciences, 11(7) 2024, Pages: 57-62

61

between different parts of the network. These edges
often represent key connectors or bridges between
various communities. Identifying and understanding
these critical connectors is essential for assessing the
robustness and vulnerability of a social network.

6.3. Graph partitioning for scalability

In large-scale social networks, graph partitioning
based on minimum cuts can be employed to divide
the network into smaller, more manageable
components. This approach facilitates scalability in
terms of analysis and computational efficiency,
enabling researchers to focus on specific
subnetworks or communities within larger social
graphs.

6.4. Bi-partite graph analysis

Social networks often involve interactions
between two types of entities (e.g., users and
events). Minimum cuts in bipartite graphs can reveal
critical interactions or connections that bridge the
gap between these two types of information,
providing insights into the dynamics of user–event
relationships.

7. Conclusion

In this paper, we revisited the implementation
and application of the Benczur-Karger minimum cuts
algorithm, offering several notable contributions to
the field of graph theory and network analysis. We
began by implementing the Benczur-Karger
algorithm in Python, providing a comprehensive
discussion of the implementation details. This effort
highlights the practical complexities and challenges
involved in the algorithm's application.

A significant portion of our work focused on
introducing a new compression factor for the
Benczur-Karger algorithm. Through rigorous
experimentation, we demonstrated that this
proposed compression factor significantly
outperforms the original, especially for cut values
ranging from 1,000 to 7,000. Our results indicate an
average reduction in running time of approximately
51.6%, showcasing the efficiency and potential of
our proposed method. However, we also observed
that the performance gains diminish for higher cut
values, suggesting that while the new compression
factor is effective, it has certain limitations.

Furthermore, we explored the application of the
Benczur-Karger minimum cuts algorithm within the
realm of social network analysis, an area where its
use has been relatively limited. We demonstrated
how the algorithm can be utilized for various tasks
such as community detection, identifying key
connectors, graph partitioning for scalability, and
bipartite graph analysis. These applications
underline the versatility and practical relevance of
the Benczur-Karger algorithm in analyzing complex
social networks. Our work not only bridges

theoretical advancements with practical
implementation but also extends the utility of the
Benczur-Karger minimum cuts algorithm to new
domains. Future research could focus on further
refining the compression factor and exploring
additional applications in other types of networks.

In conclusion, this paper contributes to both the
theoretical and practical aspects of minimum cut
algorithms, offering insights and tools that can
enhance their performance and applicability in
diverse fields.

Compliance with ethical standards

Ethical considerations

This study adheres to ethical standards and
guidelines. The Facebook dataset used was
anonymized to protect privacy, and no personal
information was accessed. All algorithms were
developed and tested ethically. The application in
social network analysis was conducted using
publicly available anonymized data, ensuring privacy
and data security.

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Arora S, Rao S, and Vazirani U (2009). Expander flows, geometric
embeddings and graph partitioning. Journal of the ACM,
56(2): 5. https://doi.org/10.1145/1502793.1502794

Batson J, Spielman DA, and Srivastava N (2014). Twice-Ramanujan
sparsifiers. SIAM Journal on Computing, 41(6): 1704-1721.
https://doi.org/10.1137/090772873

Becchetti L, Clementi AE, Natale E, Pasquale F, and Trevisan L
(2020). Find your place: Simple distributed algorithms for
community detection. SIAM Journal on Computing, 49(4):
821-864. https://doi.org/10.1137/19M1243026

Benczúr AA and Karger DR (1996). Approximating s-t minimum
cuts in Õ(n2) time. In the Proceedings of the 28th Annual ACM
Symposium on Theory of Computing, Philadelphia, USA: 47-
55.

Bulut M and Özcan E (2021). Optimization of electricity
transmission by Ford–Fulkerson algorithm. Sustainable
Energy, Grids and Networks, 28: 100544.
https://doi.org/10.1016/j.segan.2021.100544

Cygan M, Komosa P, Lokshtanov D, Pilipczuk M, Pilipczuk M,
Saurabh S, and Wahlström M (2020). Randomized
contractions meet lean decompositions. ACM Transactions on
Algorithms (TALG), 17(1): 1-30.
https://doi.org/10.1145/3426738

Ford LR and Fulkerson DR (1956). Maximal flow through a
network. Canadian Journal of Mathematics, 8: 399-404.
https://doi.org/10.4153/CJM-1956-045-5

Gayathri G, Mathew S, and Mordeson JN (2024). Max-flow min-cut
theorem for directed fuzzy incidence networks. Journal of
Applied Mathematics and Computing, 70(1): 149-173.
https://doi.org/10.1007/s12190-023-01952-x

https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1137/090772873
https://doi.org/10.1137/19M1243026
https://doi.org/10.1016/j.segan.2021.100544
https://doi.org/10.1145/3426738
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1007/s12190-023-01952-x

Hanqin Gu/International Journal of Advanced and Applied Sciences, 11(7) 2024, Pages: 57-62

62

Henzinger M, Noe A, Schulz C, and Strash D (2018). Practical
minimum cut algorithms. Journal of Experimental
Algorithmics, 23: 1-22. https://doi.org/10.1145/3274662

Huang G, Li Y, Jameel S, Long Y, and Papanastasiou G (2024a).
From explainable to interpretable deep learning for natural
language processing in healthcare: How far from reality?
Computational and Structural Biotechnology Journal, 24: 362-
373.
https://doi.org/10.1016/j.csbj.2024.05.004
PMid:38800693 PMCid:PMC11126530

Huang G, Long Y, Luo C, Shen J, and Sun X (2024b). Prompting
explicit and implicit knowledge for multi-hop question
answering based on human reading process. Arxiv Preprint
Arxiv:2402.19350.
https://doi.org/10.48550/arXiv.2402.19350

Jin W, Zhao B, Yu H, Tao X, Yin R, and Liu G (2023). Improving
embedded knowledge graph multi-hop question answering by
introducing relational chain reasoning. Data Mining and
Knowledge Discovery, 37(1): 255-288.
https://doi.org/10.1007/s10618-022-00891-8

Karger DR (1994a). Random sampling in cut, flow, and network
design problems. In the Proceedings of the 26th Annual ACM
Symposium on Theory of Computing, Montreal, Canada: 648-
657. https://doi.org/10.1145/195058.195422

Karger DR (1994b). Using randomized sparsification to
approximate minimum cuts. In the Proceedings of the 5th
Annual ACM-SIAM Symposium on Discrete Algorithms,
Arlington, USA.

Karger DR (2000). Minimum cuts in near-linear time. Journal of
the ACM, 47(1): 46-76.
https://doi.org/10.1145/331605.331608

Karger DR and Stein C (1996). A new approach to the minimum
cut problem. Journal of the ACM, 43(4): 601-640.
https://doi.org/10.1145/234533.234534

Leskovec J and Mcauley J (2012). Learning to discover social
circles in ego networks. In the Proceedings of Advances in
Neural Information Processing Systems 25 (NIPS 2012), Red
Hook, USA: 539–547.

Manoharan DS and Sathesh A (2020). Improved version of graph-
cut algorithm for CT images of lung cancer with clinical

property condition. Journal of Artificial Intelligence and
Capsule Networks, 2(4): 201-206.
https://doi.org/10.36548/jaicn.2020.4.002

Mukhopadhyay S and Nanongkai D (2020). Weighted min-cut:
Sequential, cut-query, and streaming algorithms. In the
Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, Chicago, USA: 496-509.
https://doi.org/10.1145/3357713.3384334 PMid:32629488

Nagamochi H and Ibaraki T (1992a). Computing edge-connectivity
in multigraphs and capacitated graphs. SIAM Journal on
Discrete Mathematics, 5(1): 54-66.
https://doi.org/10.1137/0405004

Nagamochi H and Ibaraki T (1992b). A linear-time algorithm for
finding a sparse k-connected spanning subgraph of a k-
connected graph. Algorithmica, 7(1): 583-596.
https://doi.org/10.1007/BF01758778

Niazi M and Rahbar K (2024). Setting the regularization
coefficient based on image energy in image segmentation
using kernel graph cut algorithm. Journal of Electronic
Imaging, 33(2): 023031.
https://doi.org/10.1117/1.JEI.33.2.023031

Niu YF, Wan XY, Xu XZ, and Ding D (2020). Finding all multi-state
minimal paths of a multi-state flow network via feasible
circulations. Reliability Engineering & System Safety, 204:
107188. https://doi.org/10.1016/j.ress.2020.107188

Stoer M and Wagner F (1997). A simple min-cut algorithm. Journal
of the ACM, 44(4): 585–591.
https://doi.org/10.1145/263867.263872

Zhao P, Yu J, Zhang H, Qin Z, and Wang C (2020). How to securely
outsource finding the min-cut of undirected edge-weighted
graphs. IEEE Transactions on Information Forensics and
Security, 15: 315-328.
https://doi.org/10.1109/TIFS.2019.2922277

Zhou Y, Li Y, Zhang Z, Wang Y, Wang A, Fishman EK, Yuille AL, and
Park S (2019). Hyper-pairing network for multi-phase
pancreatic ductal adenocarcinoma segmentation. In the
Medical Image Computing and Computer Assisted
Intervention–22nd International Conference, Springer
International Publishing, Shenzhen, China: 155-163.
https://doi.org/10.1007/978-3-030-32245-8_18

https://doi.org/10.1145/3274662
https://doi.org/10.1016/j.csbj.2024.05.004
https://doi.org/10.48550/arXiv.2402.19350
https://doi.org/10.1007/s10618-022-00891-8
https://doi.org/10.1145/195058.195422
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/234533.234534
https://doi.org/10.36548/jaicn.2020.4.002
https://doi.org/10.1145/3357713.3384334
https://doi.org/10.1137/0405004
https://doi.org/10.1007/BF01758778
https://doi.org/10.1117/1.JEI.33.2.023031
https://doi.org/10.1016/j.ress.2020.107188
https://doi.org/10.1145/263867.263872
https://doi.org/10.1109/TIFS.2019.2922277
https://doi.org/10.1007/978-3-030-32245-8_18

	Rethinking the implementation and application of the Benczur-Karger minimum cuts algorithm
	1. Introduction
	2. Relative work
	2.1. Graph cut algorithms
	2.2. Random Sampling for Graphs

	3. Implementation of Benczur-Karger’s minimum cuts algorithm
	3.1. Certificate
	3.2. Partition
	3.3. WeakEdges and estimation

	4. Generic compression factor
	4.1. Proof

	5. Experiment and results
	5.1. Datasets
	5.2. Results

	6. Application for social network analysis
	6.1. Community detection
	6.2. Identifying key connectors
	6.3. Graph partitioning for scalability
	6.4. Bi-partite graph analysis

	7. Conclusion
	Compliance with ethical standards
	Ethical considerations
	Conflict of interest
	References

