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The Poisson regression model (PRM) is widely used for count data, 
applicable when the response variable follows a Poisson distribution with 
equal dispersion. The Conway-Maxwell Poisson regression model (COMPRM) 
is more flexible and can handle both under-dispersion and over-dispersion. 
However, the COMPRM may involve correlated regressors, leading to 
multicollinearity, which makes the maximum likelihood estimator (MLE) 
inefficient. Biased estimation methods can address multicollinearity in data. 
This study proposes a Stein estimator, a biased estimation method, for the 
COMPRM that can simultaneously address correlated regressors and 
dispersion issues. The estimated mean square error (EMSE) is used to 
evaluate performance. The proposed estimator's performance is assessed 
both theoretically and numerically. The numerical evaluations include a 
simulation study under various parametric conditions and a real-world 
application. The results from both the simulation study and the real 
application demonstrate that the Stein estimator outperforms the MLE. 
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1. Introduction 

*Count data models are widely used for counting 
responses. One of the most popular models is the 
Poisson model. The Poisson model works with a 
single parameter as the mean and variance are equal. 
This property reduces its application and is unable 
to explain the dispersion problem. Different models 
are proposed to handle dispersion. Examples include 
the negative binomial model (Hilbe, 2011), the bell 
regression model (Majid et al., 2022), and the 
Poisson mixture, which are used for over-dispersed 
data and cannot handle underdispersion cases 
(McLachlan, 1997). A Conway-Maxwell Poisson 
regression model (COMPRM) can capture both over 
and under-dispersion for modeling queuing systems 
with state-dependent service rates introduced by 
Conwaay and Maxwell (1962).  

Moreover, the count data models may be with 
correlated regressors. In this situation, the maximum 
likelihood estimator (MLE) provides an inefficient 
regression coefficient estimate. To address the issue 
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of correlated regressors, Stein proposed the Stein 
estimator (SE) for the LRM (Stein, 1960). Stein 
estimator is proposed for the logistic regression 
model. In his study, he presented three biased 
estimators, ridge, Stein, and principal component 
regression, and compared them using a Monte Carlo 
simulation study, but no theoretical comparison is 
provided (Schaefer, 1986). For the Inverse Gaussian 
Regression Model, SE performs as an efficient 
proposed estimator (Akram et al., 2021).  

The SE for the logistic regression was proposed 
by Schaefer (1986). The SE for the Poisson 
regression model as a case of count data model deals 
with correlated regressors and equal dispersion by 
Amin et al. (2022). Akram et al. (2021) considered 
the SE for the inverse Gaussian regression model. 
Recently, the SE was adapted for the beta regression 
model (Amin et al., 2023a). The response variable 
might be in count form with overdispersion, 
underdispersion, and correlated regressors. 
Therefore, we need a biased estimator for the 
COMPRM. We are considering using the SE as a 
biased estimator to address the issue of correlated 
regressors in the COMPRM. Although some 
researchers have studied this biased estimator, there 
is no study specifically on using the SE for the 
COMPRM to address correlated regressors. Thus, we 
propose a new estimator, the COMP Stein Estimator 
(COMPSE), to reduce the impact of correlated 
regressors. The remainder of this study is organized 
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as follows: Section 2 introduces the COMPRM model 
and its estimation methods. Additionally, we explain 
COMPRM and COMPSE along with their MSEs and 
provide a theoretical comparison of the proposed 
estimator with the Maximum Likelihood Estimator 
(MLE). In Section 3, we assess the performance of 
the estimator using a Monte Carlo simulation. 
Section 4 involves the application of the model to 
real data. The final section summarizes the 
conclusions of the study.  

2. Methodology 

2.1. The COMP regression model 

The COMP distribution is flexible enough to 
handle the dispersion in count data with an 
additional parameter (𝜈) and deals with both 
overdispersion (𝜈 < 1 ) and under dispersion (𝜈 > 1). 
The COMP distribution is the generalization of some 
well-known discrete distributions. When 𝜈 =1, then 
the COMP distribution approaches the Poisson 
distribution, when 𝜈 =0 and λ< 1, the COMP 
distribution is converted to Geometric distribution, 
and when 𝜈 →∞, the COMP distribution approaches 

the Bernoulli distribution with probability (
𝜆

1+𝜆
). 

Suppose y is a random variable and follows a COMP 
(λ, 𝜈) with a probability mass function as 
 

𝑃(𝑌 = 𝑦; 𝜆, 𝜈) =
1

𝑍(𝜆,𝜈)

𝜆𝑦

(𝑦!)𝜈
,     𝑦 = 0,1,2, , , , ∞                       (1) 

 

where, 𝑍(𝜆, 𝜈) = ∑
𝜆𝑛

(𝑛!)𝜈
∞
𝑛=0  is the normalizing 

constant, λ is the mean parameter, and 𝜈 (𝜈 > 0) is 
the dispersion parameter (Chatla and Shmueli, 
2018). The mean and variance of the COMP 
distribution using an asymptotic expression for Z in 
Eq. 1 are, respectively (Shmueli et al., 2005). 
 

𝐸(𝑌) ≈ 𝜆
1

𝜈 +
1

2𝜈
−

1

2
, 

𝑉𝑎𝑟(𝑌) ≈
1

𝜈
𝜆

1

𝜈                     (2) 

 

The reparametrized COMP function is obtained 

by setting 𝜇 = 𝜆
1

𝜈 in Eq. 1 (Guikema and Goffelt, 
2008). The new formulation of (1) is given as, 
 

𝑃(𝑌 = 𝑦; 𝜇, 𝜈) =
1

𝑆(𝜇,𝜈)
(

𝜇𝑦

𝑦!
)

𝜈

,  𝑦 = 0,1,2, , , , ∞                       (3) 

 

where, 
 

𝑆(𝜇, 𝜈) = ∑ (
𝜇𝑛

𝑛!
)

𝜈
∞
𝑛=0                     (4) 

 

The mean and variance of the distribution from 

Eq. 3 are derived as 𝐸(𝑌) ≈ 𝜇 +
1

2
𝜈 −

1

2
 and 𝑉𝑎𝑟(𝑌) ≈

𝜇

𝜈
, it becomes accurate for 𝜇 > 10 and 𝜈 ≤ 1 (Shmueli 

et al., 2005). Now, the new parameterization allows 
𝜇 and 𝜈 as centering and shape parameters, 
respectively. The COMPRM consists of two types of 
models: the mean model and the dispersion model. 

The COMP regression model is a dual-link GLM, as 
mean and variance depend on covariates. Y is the 
count variable (response variable), 𝑥𝑖  and 𝑧𝑖  are the 
covariates used in the mean link function and 
variance link function with p and q terms, 
respectively (Francis et al., 2012).  
 

𝑙𝑛( 𝜇𝑖) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗 =
𝑝
𝑗=1 𝑥𝑖

𝑡𝛽                   (5) 

𝑙𝑛( 𝜈𝑖) = 𝛿0 + ∑ 𝛿𝑘𝑧𝑖𝑘 =
𝑞
𝑘=1 𝑧𝑖

𝑡𝛿                   (6) 
 

The mean and variance models in Eqs. 5 and 6 
are used to estimate the coefficients of the COMPRM. 
For simplicity, we will assume a single value of ν and 
use the mean model for estimation purposes. Let 
𝜂𝑖 = 𝑙𝑜𝑔( 𝜇𝑖) = 𝑥𝑖

′𝛽 is the linear predictor with a log 
link, where 𝛽 is the vector of regression coefficients, 
including the intercept. Based on the new 
formulation, the likelihood function of Eq. 3 (Francis 
et al., 2012). The log-likelihood function can be 
written as 
 

𝑙(𝑦𝑖; 𝛽, 𝜈) = 𝜈 ∑ 𝑦𝑖𝜂𝑖 − ∑ 𝜈 𝑙𝑜𝑔( 𝑦𝑖!) −𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑙𝑜𝑔[ 𝑆(𝜂𝑖 , 𝜈)]𝑛
𝑖=1                                       (7) 

 

For the estimation of parameters vector 𝛽 and 
dispersion parameter υ, we solve the log-likelihood 
function defined in Eq. 7. For this purpose, by 
differentiating Eq. 7 w.r.t 𝛽 and 𝜈, it becomes 
(Francis et al., 2012). 
 
𝜕𝑙

𝜕𝛽𝑗
= ∑ (𝑦𝑖𝜈 −

𝜕

𝜕𝜂𝑖
𝑙𝑜𝑔[ 𝑆(𝜂𝑖 , 𝜈)])𝑛

𝑖=1 𝑥𝑖𝑗                                    (8) 

𝜕𝑙

𝜕𝜈
= ∑ (− 𝑙𝑜𝑔( 𝑦𝑖!) −

𝜕

𝜕𝜐
𝑙𝑜𝑔[ 𝑆(𝜂𝑖 , 𝜈)])𝑛

𝑖=1                   (9) 

 

The solution to Eqs. 8 and 9 is obtained using the 
iterative reweighted least squares (IRLS) method 
(Sellers and Shmueli, 2010). To estimate the 
parameter β, it is necessary to fix ν, and the same 
procedure applies to estimate the second parameter. 
For more details, refer to Shmueli et al. (2005). One 
disadvantage of using the MLE is that the variance 
becomes inflated when there is severe collinearity 
among the explanatory variables. Under these 
conditions, it becomes very difficult to determine 
whether the regression coefficients are significant. 
Fixing ν, the maximum likelihood (ML) of β is,  
 

�̂�𝑀𝐿𝐸 = (𝑆)−1𝑋𝑡�̂�𝑞,                  (10) 
 

where, 𝑆 = 𝑋𝑡�̂�𝑋, 𝑞 = 𝑙𝑜𝑔(�̂�) +
(𝑦−�̂�)

𝑉𝑎𝑟(�̂�)
  is a vector of 

the adjusted response variable, and �̂� is a matrix of 

weights, i.e. �̂� = 𝑑𝑖𝑎𝑔(𝑉𝑖), where 𝑉𝑖 =
𝜏𝑖

𝜈
+

𝜈𝑖
2−1

24𝜈𝑖
3 𝜏𝑖

−1 +
𝜈𝑖

2−1

12𝜈𝑖
4 𝜏𝑖

−2 +
𝜈𝑖

2−1

6𝜈𝑖
5 𝜏𝑖

−3 with 𝜏𝑖 =
�̂�𝑖

𝜈
. �̂� and q 

both are evaluated by using the Fisher scoring 
procedure. The matrix MSE (MMSE) and scalar MSE 
of Eq. 10 are respectively given as, 
 

𝑀𝑆𝐸(�̂�𝑀𝐿𝐸) = 𝐸(�̂�𝑀𝐿𝐸 − 𝛽)
𝑡
(�̂�𝑀𝐿𝐸 − 𝛽)   

𝑀𝑆𝐸(�̂�𝑀𝐿𝐸) = �̂�𝑡𝑟(S) = �̂� ∑
1

𝜆𝑗

𝑟
𝑗=1 ,                  (11) 

 

where, 𝜆𝑗  is the jth eigenvalue of the S matrix, �̂� is 

estimated dispersion parameter.  
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2.2. The Stein estimator for COMP regression 
model 

Stein (1960) proposed an estimator as a remedy 
for correlated regressors in the LRM. For the 
COMPRM, we proposed a Stein estimator to 
overcome the effect of correlated regressors. The 
proposed COMPSE is defined as: 
 

�̂�𝑠 = 𝑐�̂�𝑀𝐿𝐸 ,                    (12) 
 

where, 𝑐 (0 < 𝑐 < 1) is the Stein parameter. When 

c=1, �̂�𝐶𝑂𝑀𝑃𝑆𝐸 = �̂�𝑀𝐿𝐸 . The estimated bias and 
covariance of Eq. 12 can be computed as,  
 

𝐵𝑖𝑎𝑠(�̂�𝑠) = 𝐸(�̂�𝑠) − 𝛽 

𝐵𝑖𝑎𝑠(�̂�𝑠) = 𝑐𝛽 − 𝛽   

Bias =𝐵𝑖𝑎𝑠(�̂�𝑠) = (𝑐 − 𝐼𝑟)𝛽,                  (13) 

 

where, 𝐼𝑟  is the identity matrix of order 𝑟 × 𝑟. The 
variance of the COMPSE is calculated as, 
 

𝐶𝑜𝑣(�̂�𝑠)=𝑐2𝐶𝑜𝑣(�̂�𝑀𝐿𝐸) 

𝑀𝑆𝐸(�̂�𝑠) = 𝐶𝑜𝑣(�̂�𝑠) + 𝐵𝑖𝑎𝑠(�̂�𝑠)
2

  

𝑀𝑆𝐸(�̂�𝑠) = �̂� ∑
𝑐2

𝜆𝑗
+ (𝑐 − 1)2 ∑ 𝛼𝑗

2 ,𝑟
𝑗=1

𝑟
𝑗=1                 (14) 

 

where, 𝛼𝑗
2 is the jth element of 𝑄𝑡�̂�𝑀𝐿𝐸  and Q is the 

eigenvector of the matrix Q(Λ)Q𝑡 , where Λ =

𝑑𝑖𝑎𝑔(𝜆𝑗) and c is a biasing parameter of the COMPSE 

and 𝜆𝑗  are eigenvalues. The MSE of the COMPSE 

depends on the value of c. An appropriate value of 
the c yields the minimum MSE of the COMPSE. 
Therefore, we suggest some new estimating methods 
to estimate the value of c for the COMPSE in the next 
subsection. 

2.3. Proposed biasing parameters 

For the selection of the biasing parameter, an 
optimum value of the biasing parameter can be 
obtained by taking a derivative of Eq. 14 and 
equating it to zero,  
 
𝜕(𝑀𝑆𝐸(�̂�𝑠))

𝜕𝑐
= �̂� ∑

2𝑐

𝜆𝑗
+ 2(𝑐 − 1) ∑ 𝛼𝑗

2𝑟
𝑗=1 = 0𝑟

𝑗=1   

∑ 2𝑐(�̂� + 𝜆𝑗𝛼𝑗
2)𝑟

𝑗=1 = 2 ∑ 𝛼𝑗
2𝑟

𝑗=1 𝜆𝑗 . 

 

On simplification, we obtain the value of c as, 
 

𝑐 =
∑ 𝛼𝑗

2𝑟
𝑗=1 𝜆𝑗

∑ 𝜈+𝛼𝑗
2𝜆𝑗

𝑟
𝑗=1

.                     (15) 

 

Based on the work of Hoerl and Kennard (1970) 
and Kibria (2003), Eq. 15 generally can be written as  
 

𝑐𝑗 =
𝛼𝑗

2𝜆𝑗

𝜈+𝛼𝑗
2𝜆𝑗

  

 
Furthermore, using the above expression, we 

proposed the following biasing parameters for the 
COMPSE, 
 

𝑐1 = 𝑚𝑎𝑥(𝑐𝑗),                    (16) 

𝑐2 =
∏ 𝑐𝑗

(1
𝑟⁄ )𝑟

𝑗=1

max (𝑐𝑗)
,                   (17) 

𝑐3 = (
1

𝑟
) ∑ 𝑐𝑗

𝑟
𝑗= ,                    (18) 

𝑐4 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑐𝑗),                   (19) 

𝑐5 = ∏ 𝑐𝑗
(1

𝑟⁄ )𝑟
𝑗=1 ,                   (20) 

𝑐6 =
∑ 𝛼𝑗

2𝑟
𝑗=1

∑ 𝛼𝑗
2𝑟

𝑗=1 +𝑣 ∑
1

𝜆𝑗

𝑟
𝑗=1

.                                    (21) 

2.4. The theoretical comparison of the proposed 
estimator  

The superiority of the COMPSE is compared with 
the MLE using the following theorem. 

 
Lemma 2.1: Let M be a positive definite (p.d.) 
matrix, a be a vector of nonzero constants and c be a 
positive constant. Then 𝑐𝑀 − 𝛼𝛼𝑡> 0   if and only if 
𝛼𝑡𝑀𝛼 < c (Farebrother, 1976). 

 
Theorem 2.1: Under COMPSE, consider c > 0, 

𝑏𝐶𝑂𝑀𝑃𝑆𝐸= 𝐵𝑖𝑎𝑠(�̂�𝐶𝑂𝑀𝑃𝑆𝐸) is the bias of COMPSE then 

 𝑀𝑆𝐸(�̂�𝑀𝐿𝐸) − 𝑀𝑆𝐸(�̂�𝐶𝑂𝑀𝑃𝑆𝐸) > 0 if 

𝑏𝐶𝑂𝑀𝑃𝑆𝐸[�̂�(𝑆)−1 − �̂�𝑐2((𝑆)−1)] 𝑏𝐶𝑂𝑀𝑃𝑆𝐸
𝑡  < 1. 

 
Proof: The difference in MSE from Eqs. 11 and 14 
can be, 
 
∆1= 𝑀𝑀𝑆𝐸(�̂�𝑀𝐿𝐸) − 𝑀𝑀𝑆𝐸(�̂�𝐶𝑂𝑀𝑃𝑆𝐸)  
= 𝑣[(𝑆)−1 − 𝑐2((𝑆)−1)] − 𝑏𝐶𝑂𝑀𝑃𝑆𝐸𝑏𝐶𝑂𝑀𝑃𝑆𝐸

𝑡 .                (22) 
 

From Eq. 22, we can write it as,  
 
= 𝑣(𝑆)−1[1 − 𝑐2] − 𝑏𝐶𝑂𝑀𝑃𝑆𝐸𝑏𝐶𝑂𝑀𝑃𝑆𝐸

𝑡   
 

The difference between the scalar MSE functions 
of MLE and COMPSE is as, 
 
𝑀𝑆𝐸(�̂�𝑀𝐿𝐸) − 𝑀𝑆𝐸(�̂�𝐶𝑂𝑀𝑃𝑆𝐸)  

= ∑ (
�̂�

𝜆𝑗
−

�̂�𝑐2

𝜆𝑗
+ (𝑐 − 1)2𝛼𝑗

2)𝑟
𝑗=1   

= ∑ (�̂�
(1−𝑐2)

𝜆𝑗
+ (𝑐 − 1)2𝛼𝑗

2)𝑟
𝑗=1 . 

 

On simplifying the results, we get  
 
𝑀𝑆𝐸(�̂�𝑀𝐿𝐸) − 𝑀𝑆𝐸(�̂�𝐶𝑂𝑀𝑃𝑆𝐸)  

=�̂� ∑ (
(1−𝑐2)+𝜆𝑗(𝑐−1)2𝛼𝑗

2

𝜆𝑗
)𝑟

𝑗=1 . 

 

The expression �̂�[(𝑆)−1𝑐2] is p.d if [1 − 𝑐2] > 0. 
Thus if 0 < c < 1, then the theorem is completed by 
Lemma 2.1 and it is enough to prove that the 
COMPSE is superior to the MLE in the form of scalar 
MSE for the COMPRM.  

3. Monte Carlo simulation study 

This section contains a numerical evaluation of 
the proposed estimator and a comparison with MLE 
using a Monte Carlo simulation. For this purpose, 
various factors are taken with different values. These 
factors include sample size, dispersion, correlated 
regressors, and the number of explanatory variables. 
The assumed values of these factors are given in 
Table 1.  
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Table 1: Assumed values of different factors for simulation 
study 

Factors Notation Values 
Number of explanatory variables p 3,6,9,12 

Number of replicates R 1000 
Dispersion parameter 𝑣 0.85,1,1.25 

Sample size n 50,100,150,200 
Degree of correlation 𝜌2 0.8,0.9,0.95,0.99 

 

The response variable of the COMPRM is 
generated from a 𝐶𝑀𝑃 (𝜇𝑖, 𝑣) distribution, where:  
 
𝜇𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝),   𝑖 = 1, … , 𝑛.                         (23) 
 

The correlated explanatory variables are 
generated as follows (Kibria, 2003). 
 
𝑥𝑖𝑗 = (1 − 𝜌2)1/2𝑧𝑖𝑗 + 𝜌𝑧𝑖(𝑗+1), 𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑝.              (24) 

 

where, 𝑧𝑖𝑗  are the independent standard normal 

pseudo-random numbers. The regression 
parameters are selected in such a way that ∑ 𝛽𝑗

2𝑝
𝑗=1 =

1, which is a commonly used restriction in the field 
(Amin et al., 2023b). For the different combinations 
of 𝑛, 𝑝, 𝜌, 𝑣, the data is repeatedly generated 1000 
times. The MSE criteria is used to gauge the 
performance of the estimators, which is defined by, 
 

𝑀𝑆𝐸(�̂�) =
∑ (�̂�𝑖−𝛽)

𝑡
(�̂�𝑖−𝛽)𝑅

𝑖=1

𝑅
,                  (25) 

 

where, (�̂�𝑖 − 𝛽) is the difference between the true 
parameter and estimated vectors of the proposed 
and other considered estimators at ith replication, 
and R represents the number of replications. 

3.1. Results and discussions 

The simulation study is performed under the 
various factors listed in Table 1. The estimated MSEs 
of the considered estimators are given in Tables 2-
13. The summary of simulation results is as follows, 

 
 Table 2 presents the estimated mean square error 

(EMSE) for p=3 and v=0.85 for the overdispersion 
case. It is observed that COMPSE with 𝑐5 at sample 
size n=50,100,150, and 200 has minimum EMSE 
for all levels of multicollinearity as compared to 
the MLE and COMPSE with all other proposed 
Stien parameter estimators. 

 On comparing the results of the proposed 
estimator concerning sample size, it is observed 
that an increase in sample size causes a decrease 
in the values of EMSEs. From Table 2, it is 
observed that for a fixed level of multicollinearity 
0.80, p=3, and v=0.85, the EMSEs are 0.8777, 
0.8440, 0.8835, and 0.8484, respectively. Hence, 
the gradual decrease in values of EMSEs shows the 
efficiency of the proposed estimator to combat 
multicollinearity by increasing the sample size. 

 From Table 3, for all levels of multicollinearity, 
when p=3, v=1, and n=50, the values of EMSEs of 𝑐5 
are 0.9797, 1.6971, 1.8197 and 5.8784. So, the 
performance as a function of multicollinearity for 
the fixed n, p, and v shows an increasing trend as 

the level of multicollinearity increases for the 
EMSE of the COMPSE. The same pattern is 
observed in Tables 2-13.  

 Tables 2, 5, 8, and 11 present the EMSE for p=3, 6, 
9, and 12, respectively, showing that as the 
number of explanatory variables increases, the 
EMSEs of the estimators also increase. For p=3, 
Tables 2, 3, and 4 represent the estimated MSE for 
overdispersion, equidispersion, and 
underdispersion, respectively. The results clearly 
show that the EMSE is the least affected by 
overdispersion as compared to the equal and 
under-dispersion cases. 

4. Application: Plastic plywood data 

In this section, the performance of the proposed 
estimator is evaluated with the help of a real-life 
dataset that is related to the plastic plywood dataset. 
This application was considered by many 
researchers with different variables (Azaman et al., 
2013; Demirkir et al., 2013; Fang et al., 2014). We 
consider this application to evaluate the 
performance of our proposed method and compare 
it with the MLE. This application consists of n=100 
observations, where the response variable y 
represents the number of defects that may increase 
or decrease per laminated plastic plywood area. The 
four explanatory variables include volumetric 
shrinkage (𝑥1), assembly time (𝑥2), wood density 
(𝑥3) and drying temperature (𝑥4). 

The estimated dispersion parameter is found to 
be �̂� = 0.9614, which indicates that there is 
overdispersion in the data set. In the regression 
model, commonly used methods are variance 
inflation factor (VIF) and condition index (CI) to test 
the multicollinearity among the explanatory 

variables. The 𝐶𝐼 = √𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄ = 8634.73 of this 

data set shows severe multicollinearity among the 
explanatory variables. Hence, we use the COMPSE to 
overcome the effect of correlated explanatory 
variables in the COMPRM. The MSEs of the MLE and 
COMPSE with different shrinkage parameters are 
computed using Eqs. 11 and 14, respectively. The 
estimated regression coefficients and MSEs of 
different shrinkage parameters of the MLE, COMPSE 
are mentioned in Table 14. On comparing the 
performance of the COMPRM estimators, it is 
observed that our newly proposed estimator 
(COMPSE) with all five Stein parameters 
outperforms as compared to the MLE. Furthermore, 
when there are highly correlated regressors, MLE is 
the estimator that is most negatively affected. 

5. Conclusion 

In this study, we introduced a new estimator, the 
COMPSE, for the COMPRM to reduce the impact of 
correlated regressors. We evaluated the proposed 
estimator using a Monte Carlo simulation study, with 
the EMSE as the performance criterion, where a 
lower EMSE indicates better performance. 
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Table 2: EMSEs for 𝜈 = 0.85 and p=3 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 1.8731 1.8540 0.8804 0.8810 1.0033 0.8777 1.0032 

 0.9 3.7777 3.7405 1.3522 1.6757 1.9509 1.3453 1.9268 
 0.95 6.3936 6.3326 2.1981 2.9232 3.5155 2.1831 2.9709 
 0.99 36.5167 36.248 9.7654 16.282 20.312 9.6973 14.9107 

100 0.8 1.6016 1.5950 0.8449 0.8377 0.9673 0.8440 0.9471 
 0.9 3.2445 3.2312 1.2556 1.5366 1.8255 1.2531 1.7311 
 0.95 5.9275 5.9035 1.9772 2.7852 3.4530 1.9718 2.9880 
 0.99 30.8726 30.7512 9.1390 15.311 19.717 9.1046 14.0608 

150 0.8 1.7464 1.7419 0.8842 0.9127 1.0502 0.8835 1.0923 
 0.9 2.8779 2.8707 1.2421 1.4511 1.7099 1.2405 1.6625 
 0.95 5.6424 5.6276 1.9006 2.7152 3.4022 1.8974 3.0410 
 0.99 24.2021 24.1431 6.2130 11.498 15.362 6.1995 10.9629 

200 0.8 1.6339 1.6308 0.8488 0.8685 0.9873 0.8484 1.0202 
 0.9 3.1381 3.1319 1.2212 1.5147 1.8416 1.2200 1.7888 
 0.95 5.7624 5.7516 2.0636 2.8449 3.4706 2.0610 3.0242 
 0.99 20.2210 18.2341 5.1223 10.2120 14.7563 5.0100 10.1180 

Bold indicated the smaller EMSE 
 

Table 3: EMSEs for 𝜈 = 1 and p=3 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 2.5216 2.4943 0.9838 1.0589 1.1279 0.9797 1.2586 

 0.9 4.3082 4.2689 1.7066 2.0857 2.4095 1.6971 2.3400 
 0.95 6.1630 6.1047 1.8304 2.6973 3.3640 1.8197 2.7369 
 0.99 32.3845 32.1564 5.9207 13.202 17.2830 5.8784 12.9325 

100 0.8 1.5628 1.5558 0.8833 0.8280 0.9490 0.8823 0.9180 
 0.9 3.6075 3.5937 1.4076 1.7506 2.0526 1.4047 2.0296 
 0.95 6.3364 6.3088 1.9269 2.8399 3.5250 1.9215 2.9814 
 0.99 31.6043 31.4819 8.6775 15.6335 20.8690 8.6456 14.6645 

150 0.8 1.5385 1.5344 0.8700 0.8412 0.9892 0.8695 0.9504 
 0.9 3.0156 3.0077 1.0583 1.3934 1.7623 1.0572 1.6466 
 0.95 5.9811 5.9659 2.2116 3.0050 3.7501 2.2077 3.1833 
 0.99 30.9721 30.8964 8.5471 15.0428 19.7190 8.5288 15.1740 

200 0.8 1.7666 1.7632 0.9769 0.9950 1.1539 0.9762 1.1245 
 0.9 3.0860 3.0800 1.1884 1.5256 1.9210 1.1873 1.7502 
 0.95 5.2988 5.2891 2.0396 2.7508 3.3882 2.0371 2.9301 
 0.99 26.1379 26.0902 7.3227 12.9054 17.1422 7.3106 12.8037 

Bold indicated the smaller EMSE 
 

Table 4: EMSEs for 𝜈 = 1.25 and p=3 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 3.6527 3.5115 1.1557 1.3714 1.5082 1.1383 1.3434 

 0.9 8.3539 8.0320 1.7971 2.7803 2.9743 1.7514 2.4708 
 0.95 15.0446 14.4979 3.6317 5.6743 6.4204 3.5207 4.3157 
 0.99 82.8496 81.0760 18.7003 32.9074 38.3932 18.2613 22.5578 

100 0.8 3.9743 3.9003 1.2142 1.5167 1.6707 1.2051 1.6109 
 0.9 6.6259 6.5054 1.4900 2.4166 2.7908 1.4765 2.2696 
 0.95 13.4735 13.2394 2.7931 5.1436 6.1981 2.7563 3.9640 
 0.99 69.8082 68.7806 10.9614 28.0143 36.7776 10.7996 19.0875 

150 0.8 3.7132 3.6685 1.1713 1.4597 1.6050 1.1657 1.5676 
 0.9 5.7822 5.7136 1.4829 2.0971 2.3049 1.4741 1.9301 
 0.95 11.4546 11.3204 2.2450 4.2160 5.0250 2.2270 3.3182 
 0.99 65.2814 64.6202 11.0595 25.9822 33.6440 10.9467 19.6371 

200 0.8 3.5341 3.5035 1.2603 1.4582 1.5572 1.2555 1.5249 
 0.9 6.0415 5.9888 1.7040 2.3597 2.6470 1.6952 1.9957 
 0.95 11.8783 11.7739 2.8339 4.8364 5.9326 2.8151 4.0940 
 0.99 61.9594 61.4578 15.6510 27.4905 34.2896 15.5287 18.7061 

Bold indicated the smaller EMSE 
 

Table 5: EMSEs for 𝜈 = 0.85 and p=6 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 5.5244 5.4716 1.3559 1.8922 2.0588 1.3504 2.3479 

 0.9 10.0862 9.9881 1.7698 3.0566 3.3763 1.7598 3.5456 
 0.95 21.7299 21.4923 4.0275 7.2244 8.3026 3.9910 7.9582 
 0.99 97.0780 96.3202 12.2767 28.0876 28.1059 12.2013 28.9626 

100 0.8 4.4131 4.3941 1.1299 1.5226 1.7268 1.1280 2.049 
 0.9 8.0001 7.9648 1.5735 2.66216 2.9933 1.5696 3.2710 
 0.95 13.8590 13.7984 2.6634 4.4330 4.4197 2.6549 5.4104 
 0.99 70.3545 70.0583 11.1222 23.169 26.6673 11.0810 25.5155 

150 0.8 4.0898 4.0784 1.1505 1.4857 1.6306 1.1492 1.9053 
 0.9 6.7151 6.6967 1.3993 2.2573 2.5946 1.3974 2.9771 
 0.95 11.3812 11.3530 2.3845 4.1255 4.8588 2.3804 5.0517 
 0.99 64.0067 63.8508 12.0997 22.4253 23.2276 12.0724 26.1653 

200 0.8 3.6062 3.5991 1.0294 1.3149 1.4493 1.0287 1.7550 
 0.9 6.9126 6.8991 1.6564 2.5376 2.9479 1.6546 3.3209 
 0.95 11.5818 11.5596 2.1800 3.9879 4.2929 2.1772 4.8047 
 0.99 61.2940 61.1754 8.4401 20.4894 24.8705 8.4255 25.8117 

Bold indicated the smaller EMSE 
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Table 6: EMSEs for 𝜈 = 1 and p=6 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 9.7380 9.5465 1.2930 2.2997 2.2568 1.2812 2.6322 

 0.9 16.7992 16.4948 2.4856 4.6955 4.7940 2.4543 4.9610 
 0.95 29.3329 28.7969 3.3275 7.3523 7.0641 3.2781 7.0416 
 0.99 158.2569 156.1642 16.2835 40.8691 34.8033 16.0679 36.7931 

100 0.8 5.4680 5.4195 1.0782 1.5418 1.5392 1.0753 1.8331 
 0.9 10.8507 10.7598 1.8176 3.1737 3.4687 1.8089 3.5306 
 0.95 19.6763 19.5097 3.1715 5.6516 5.3441 3.1510 5.9439 
 0.99 102.6834 101.993 14.5491 31.1315 29.3552 14.4592 30.7586 

150 0.8 4.8208 4.7946 1.1193 1.5207 1.6000 1.1171 1.8253 
 0.9 8.2393 8.1952 1.3440 2.2222 2.1182 1.3409 2.5607 
 0.95 18.2975 18.1992 2.7970 5.4004 5.3754 2.7861 5.9125 
 0.99 88.0189 87.5731 12.8577 25.7513 24.5624 12.7971 26.6877 

200 0.8 4.5940 4.5759 1.0258 1.3803 1.3820 1.0247 1.6945 
 0.9 10.0725 10.0327 1.8709 3.0711 3.2428 1.8663 3.6242 
 0.95 16.2784 16.2148 2.3754 4.8462 4.9285 2.3688 5.7353 
 0.99 73.5241 73.2503 9.5098 21.1291 21.1951 9.4776 21.0472 

Bold indicated the smaller EMSE 
 

Table 7: EMSEs for 𝜈 = 1.25 and p=6 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 12.4644 11.9755 1.6703 2.8483 2.7768 1.6299 3.0068 

 0.9 24.1352 23.2601 2.6034 5.5108 4.7107 2.5360 5.0147 
 0.95 43.8464 42.3519 4.0853 9.6509 7.2007 3.9730 8.0726 
 0.99 242.5266 237.045 23.7372 57.3941 50.6290 23.1779 45.0071 

100 0.8 8.5819 8.4198 1.2109 2.0600 1.9042 1.2029 2.1939 
 0.9 16.8357 16.5257 2.1273 4.1330 3.8733 2.1009 4.0861 
 0.95 29.1483 28.6094 3.0947 6.6175 5.5064 3.0514 5.7289 
 0.99 143.819 141.6595 13.1633 34.3678 27.7705 12.9960 28.6092 

150 0.8 7.9381 7.8411 1.2152 1.9477 1.8511 1.2099 2.1776 
 0.9 14.2010 14.0362 1.7782 3.5553 3.5147 1.7672 3.7716 
 0.95 27.8953 27.5761 3.3276 6.8072 5.5076 3.2995 6.6319 
 0.99 125.6663 124.3192 10.7117 29.5072 21.8648 10.6022 23.5085 

200 0.8 8.1053 8.0344 1.4329 2.1181 2.0163 1.4272 2.3321 
 0.9 14.8690 14.7396 2.1142 3.8277 3.5558 2.1021 3.9285 
 0.95 21.4289 21.2401 2.0310 4.7601 4.3053 2.0201 4.3892 
 0.99 129.477 128.5728 10.4659 29.9874 23.5663 10.3983 30.4567 

Bold indicated the smaller EMSE 
 

Table 8: EMSEs for 𝜈 = 0.85 and p=9 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 12.1742 12.0412 1.6200 3.0387 3.1966 1.6104 4.0494 

 0.9 20.1100 19.8980 2.4295 4.8852 5.0000 2.4120 6.1762 
 0.95 44.9510 44.4881 4.7080 11.5664 11.5920 4.6714 13.3608 
 0.99 189.7279 188.2678 15.8642 45.5422 43.5135 15.7598 46.8489 

100 0.8 7.9619 7.9266 1.3268 2.1726 2.1689 1.3240 2.9569 
 0.9 15.27 15.1989 1.9019 3.9662 4.0940 1.8964 5.3999 
 0.95 27.2705 27.1466 3.1270 6.6739 6.1911 3.1166 8.7935 
 0.99 131.5003 131.0075 15.3322 35.2562 36.1952 15.2779 42.0009 

150 0.8 8.9205 8.8954 1.4012 2.4713 2.4747 1.3993 3.3992 
 0.9 14.1834 14.1451 2.1094 3.8912 3.9483 2.1058 5.2536 
 0.95 30.6178 30.5325 4.4406 8.6451 8.6224 4.4303 11.1534 
 0.99 157.0304 156.641 19.0963 42.8419 43.4421 19.0511 56.3899 

200 0.8 7.6837 7.6684 1.3629 2.2028 2.3043 1.3616 3.1764 
 0.9 15.4263 15.3952 2.1455 4.5035 5.0588 2.1426 6.1252 
 0.95 28.4487 28.3901 3.8966 7.9984 8.1217 3.8902 10.5169 
 0.99 143.018 142.7522 16.3336 39.3749 41.3574 16.3061 51.0804 

Bold indicated the smaller EMSE 
 

Table 9: EMSEs for 𝜈 = 1 and p=9 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 18.2156 17.8366 1.6494 3.5982 3.2220 1.6304 4.1569 

 0.9 30.5285 29.9479 2.8947 6.4574 5.8005 2.8567 7.1828 
 0.95 57.0240 56.0273 3.8033 11.2609 9.7477 3.7550 12.9065 
 0.99 315.518 312.7813 26.6251 69.7525 60.4392 26.4294 72.2782 

100 0.8 11.8646 11.7589 1.3819 2.6686 2.3961 1.3764 3.6635 
 0.9 20.4850 20.3032 2.2728 4.7265 4.3521 2.2592 5.5805 
 0.95 37.6053 37.2942 3.2184 7.9611 7.1267 3.1980 9.1454 
 0.99 186.9961 185.8586 14.221 38.9949 33.1379 14.1346 42.4321 

150 0.8 12.2911 12.2252 1.6152 3.0121 3.0144 1.6107 3.8892 
 0.9 21.7443 21.6253 2.4081 4.9657 4.5030 2.3991 5.9018 
 0.95 43.2059 42.9662 4.2817 10.0226 9.4526 4.2617 11.6322 
 0.99 211.1366 210.2504 16.1405 47.3655 42.7969 16.0792 55.2976 

200 0.8 10.7101 10.6662 1.4143 2.6393 2.7466 1.4117 3.3266 
 0.9 20.8369 20.7545 2.4984 5.1755 5.1097 2.4916 6.3813 
 0.95 39.1081 38.9539 3.8493 9.2920 9.1065 3.8370 11.3496 
 0.99 206.1406 205.471 19.4800 49.0255 43.9951 19.4176 59.9555 

Bold indicated the smaller EMSE 
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Table 10: EMSEs for 𝜈 = 1.25 and p=9 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 29.8120 28.5768 2.1102 4.9335 3.9226 2.0495 5.1110 

 0.9 50.7526 48.7797 3.0771 8.8107 7.1843 2.9813 8.9824 
 0.95 100.4128 97.1939 4.7484 16.3670 11.1816 4.6287 14.7239 
 0.99 519.9196 508.1721 29.7907 94.2948 70.3630 29.2287 83.3667 

100 0.8 16.2607 15.9571 1.3567 2.8967 2.5253 1.3465 3.0929 
 0.9 28.8359 28.2972 2.0835 4.9465 3.8663 2.0596 4.9256 
 0.95 62.6879 61.5431 4.0800 11.3018 8.7442 4.0185 11.0719 
 0.99 270.8632 267.4712 14.0441 45.1085 30.6100 13.8882 41.0175 

150 0.8 18.4796 18.2584 1.6304 3.4844 2.8335 1.6202 4.0118 
 0.9 31.2447 30.8644 2.3371 5.6250 4.3683 2.3175 5.7047 
 0.95 70.0785 69.2906 4.5931 13.0057 9.7575 4.5503 13.7462 
 0.99 317.0939 314.1604 23.3084 62.8703 51.9734 23.1080 61.9871 

200 0.8 17.3403 17.1807 1.6261 3.3796 2.9540 1.6183 3.9643 
 0.9 35.0910 34.7739 2.6425 6.9631 6.3796 2.6259 7.9898 
 0.95 59.5165 58.9942 4.4078 11.3089 9.3730 4.3775 11.2819 
 0.99 309.805 307.907 19.1649 60.9199 46.9694 19.0453 65.999 

Bold indicated the smaller EMSE 
 

Table 11: EMSEs for 𝜈 = 0.85 and p=12 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 30.2268 29.8619 2.0519 5.7249 4.8988 2.0369 7.4582 

 0.9 55.9570 55.3580 5.0961 11.8682 11.5056 5.0562 14.1663 
 0.95 130.3971 129.061 11.1001 30.1568 28.5111 11.0038 37.4655 
 0.99 530.9519 527.7231 36.4428 107.1048 102.876 36.2200 120.1458 

100 0.8 11.6471 11.5917 1.4046 2.6799 2.7015 1.4014 3.7111 
 0.9 21.8890 21.7877 2.4383 5.0299 4.7187 2.4306 6.9067 
 0.95 43.0677 42.8641 3.8081 9.3312 8.7583 3.7942 12.7959 
 0.99 217.66 216.93 18.5146 50.4187 53.1009 18.4600 66.7717 

150 0.8 11.6700 11.6357 1.6905 3.1125 3.3012 1.6876 4.4215 
 0.9 20.1339 20.0777 2.2421 4.9004 4.9984 2.2381 7.0077 
 0.95 41.8159 41.6944 4.1354 9.7494 9.8362 4.1259 14.1508 
 0.99 176.3168 175.9053 17.5253 42.9961 44.5394 17.4879 57.3847 

200 0.8 9.3094 9.2902 1.3341 2.3564 2.3524 1.3329 3.5667 
 0.9 17.8146 17.7792 2.0370 4.5573 4.7551 2.0345 6.5408 
 0.95 34.6227 34.5528 3.4577 8.2844 8.4306 3.4523 11.7178 
 0.99 156.448 156.193 15.5181 38.1152 38.2063 15.4951 54.4191 

Bold indicated the smaller EMSE 
 

Table 12: EMSEs for 𝜈 = 1 and p=12 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 48.5934 47.4954 3.3632 8.7121 8.2088 3.3029 10.1686 

 0.9 77.4855 76.0530 4.4443 13.4171 11.6011 4.3811 15.7877 
 0.95 150.571 147.9989 8.2944 28.4764 29.9445 8.1640 30.9811 
 0.99 800.6394 793.2687 47.6374 145.4789 125.4188 47.1892 150.6116 

100 0.8 16.4466 16.3000 1.6439 3.4035 3.1997 1.6362 4.3053 
 0.9 33.5598 33.2668 2.4338 6.5862 6.0150 2.4192 8.5112 
 0.95 62.0426 61.5142 4.5741 12.1235 10.3679 4.5423 13.8004 
 0.99 318.6942 316.7213 17.0613 57.4023 47.2060 16.9632 68.0070 

150 0.8 15.8929 15.8042 1.4558 3.2192 3.0713 1.4521 4.5957 
 0.9 27.6453 27.4919 2.3008 5.3943 4.8452 2.2922 7.096 
 0.95 55.3014 54.9955 3.9494 10.5169 8.3756 3.9326 13.9478 
 0.99 277.5442 276.3905 20.3704 55.6302 46.0304 20.2893 70.2910 

200 0.8 14.2363 14.1776 1.3940 2.9350 2.8181 1.3915 4.0668 
 0.9 25.0326 24.9315 2.1893 5.0682 4.3449 2.1836 6.8289 
 0.95 49.4963 49.2973 4.0990 10.3963 9.4561 4.0858 13.5885 
 0.99 247.9527 247.1612 18.4930 52.1994 49.0265 18.4388 67.0262 

Bold indicated the smaller EMSE 
 

Table 13: EMSEs for 𝜈 = 1.25 and p=12 

𝑛  𝜌2 
COMPSE 

MLE 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 
50 0.8 66.5138 64.0073 3.0372 9.7563 7.0821 2.9489 10.2700 

 0.9 114.975 110.9237 6.1130 18.2827 14.9224 5.9085 16.9588 
 0.95 225.1859 219.2014 8.7937 32.8742 22.2083 8.5763 28.9148 
 0.99 1220.882 1201.324 46.8510 180.4798 139.0976 46.1052 146.2542 

100 0.8 23.8395 23.4027 1.4939 3.4445 2.6202 1.4816 3.8261 
 0.9 47.6500 46.7618 2.7865 7.4517 5.9284 2.7503 7.9167 
 0.95 93.3668 91.8145 4.5054 14.0700 10.4409 4.4413 14.7955 
 0.99 485.9481 481.4397 17.6006 73.2696 51.4461 17.4287 80.1791 

150 0.8 22.8557 22.5772 1.3937 3.3526 2.6201 1.3870 3.9435 
 0.9 42.4388 41.9304 2.2662 6.5493 4.9716 2.2484 7.7202 
 0.95 87.6691 86.7035 4.3972 13.8002 9.6368 4.3614 15.7909 
 0.99 394.6527 391.5111 19.5328 62.4182 49.1158 19.3725 67.6536 

200 0.8 20.6514 20.4682 1.5539 3.4525 2.8835 1.5474 4.3300 
 0.9 38.2561 37.9073 2.3842 6.4367 5.2434 2.3707 7.6864 
 0.95 71.4081 70.7905 3.8656 11.0292 8.2573 3.8390 12.2316 
 0.99 358.3625 355.8587 17.0435 58.2462 45.1041 16.9289 62.7291 

Bold indicated the smaller EMSE 
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Table 14: Estimated COM Poisson regression coefficients and MSEs for plastic plywood data 

Terms MLE 
COMPSE 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 

Constant 1.4397 1.4393 0.5670 0.8577 1.2232 0.5668 0.4532 
𝑥1 0.4937 0.4936 0.1944 0.2941 0.4195 0.1944 0.1554 
𝑥2 0.6011 0.6009 0.2367 0.3581 0.5107 0.2367 0.1892 
𝑥3 0.3818 0.3817 0.1504 0.2275 0.3244 0.1503 0.1202 
𝑥4 0.7401 0.7399 0.2915 0.4409 0.6288 0.2914 0.2330 

MSE 6.7689 4.9352 3.5339 3.1553 5.3734 2.3767 2.3100 
 

With a fixed sample size, explanatory variables, 
and dispersion parameter, the EMSEs of the 
COMPSE, using all proposed Stein parameters, were 
lower than those of the MLE. When the model 
included correlated regressors, the EMSE decreased 
as the sample size increased. Additionally, 
multicollinearity and the number of regressors 
directly affected the performance of the estimators. 
The EMSEs were lowest for overdispersion 
compared to underdispersion and equidispersion. 
Therefore, based on simulation and real application 
results, we conclude that our newly proposed 
estimator for the COMPRM is more appropriate than 
the MLE in the presence of multicollinearity and 
dispersion. 
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