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The magnetohydrodynamic flow of an Oldroyd-B fluid across a vertical 
stretching sheet through a porous medium is investigated. Using a similarity 
transformation, the boundary layer equations for momentum, thermal 
energy, and concentration can be simplified into a set of linked ordinary 
differential equations. The successive linearization method is then used to 
numerically solve the system of ordinary differential equations. Graphical 
and tabular representations of the physical parameter effects on velocity, 
temperature, concentration profiles, the local skin friction coefficient, and 
heat and mass transfer rates are provided. Deborah's number in terms of 
relaxation time has been reported to resist and slow down the motion of fluid 
particles at different time instants in terms of relaxation time. By raising 
Deborah's numbers in terms of relaxation time, the temperature profile rises. 
Additionally, excellent agreement was found after the current results were 
examined and contrasted with the published results. 
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1. Introduction 

*Oldroyd-B fluids are non-Newtonian viscoelastic 
fluids classified as the rate type model. Models of the 
rate type are suitable for describing many of the 
non-Newtonian characteristics shown by polymeric 
materials, such as stress-relaxation, normal stress 
differences in simple shear flows and creep (Rubbab 
et al., 2009; Pires and Sequeira, 2011). Rheologists 
have recently paid a lot of attention to the Oldroyd-B 
model since it is primarily useful for simulating the 
behavior of diluted polymeric solutions. However, 
rate-type models are unable to accurately represent 
the complex rheological behavior of many real fluids, 
such as blood, where non-Newtonian viscosity 
factors play a significant role (Pires and Sequeira, 
2011). Non-Newtonian fluids are used in a variety of 
fields of business and technology, including 
biomedicine, chemical engineering, the food and 
pharmaceutical industries, the manufacture of 
plastic sheets, and the extrusion of polymers via slit 
dies in the polymer sector, among others (Hayat et 
al., 2013; 2014; Azeem et al., 2014; Mabood et al., 
2020; Shankaralingappa et al., 2021). An Oldroyd-B 
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model's boundary layer stagnation point flow 
toward a moving sheet was originally started by 
Sajid et al. (2010). They offered numerical answers 
for the velocity distribution of an infinite speed. 
Hayat et al. (2015) examined the mixed convection 
flow of an Oldroyd-B fluid over a radiative surface 
with the effects of double stratification and chemical 
reactions. Motsa et al. (2015) demonstrated 
numerically the three-dimensional flow of an 
Oldroyd-B fluid with time dependence. In the 
presence of homogeneous and heterogeneous 
processes, the Cattaneo-Christov heat flux was 
investigated by Hayat et al. (2016) in the context of 
the magnetohydrodynamic flow of an Oldroyd-B 
fluid. Similar studies can be found in the literature 
(Yasir et al., 2021; 2023; Yasir and Khan, 2023). 

Gireesha et al. (2018) investigated the three-
dimensional flow and nonlinear radiative heat 
transfer of an Oldroyd-B nanofluid flow over a 
stretching surface with the addition effects of a 
uniform heat source/sink and convective boundary 
conditions. They found that when the values of 
Deborah's numbers 𝛽1 were increased, temperature 
and concentration profiles increased. 

Nonlinear equations can model many cosmic 
events that we encounter daily in science, physics, 
and geometry. Using approximate mathematical 
analytical techniques, some of these nonlinear 
equations can be solved, such as the Homotopy 
(HAM) analysis method introduced by Liao (2003) 
and the Adomian decomposition method (ADM) 
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(Makinde, 2008). Some of these equations can be 
resolved using traditional numerical techniques like 
the Keller box, Runge-Kutta, and finite difference 
methods. Recent investigations have demonstrated 
the effectiveness of a technique known as the 
successive linearization method (SLM). Numerous 
non-linear issues in science and engineering have 
been successfully solved using this approach. This 
technique has been used to convert the governing 
non-linear equations into a system of linear 
differential equations. To solve the higher-order 
deformation in linear differential equations, we used 
the Chebyshev pseudo-spectral approach. In 
comparison to other current semi-analytical 
approaches, such as the Adomian decomposition 
method, they demonstrated that the SLM swiftly 
converges to numerical values and is flexible, 
efficient, and accurate. The SLM technique can also 
be used to handle boundary value problems 
involving highly non-linear systems instead of more 
traditional numerical approaches (Makukula et al., 
2010a; 2010b; Narayana and Sibanda, 2012; Shateyi 
and Motsa, 2010; Ahmed et al., 2015; Khidir, 2023; 
Daoud et al., 2021; Salah et al., 2019). 

Chemical reactions are used in a variety of 
industrial processes, such as hot rolling, chemical 
plating of flat surfaces, polymer extrusion, and heat 
exchange (Reddy et al., 2021; Salah and Sidahmed, 
2022). Seini and Makinde (2013) investigated how 
the MHD boundary layer moved across an 
exponentially stretched sheet when chemical 
reactions and radiation were present. By employing 
the Bvp4c method, Paul and Das (2023) studied a 
two-dimensional stable issue that integrates the 
magnetohydrodynamic effect with three separate 
flows of fluid from the boundary layer across an 
exponentially stretched sheet under the impact of 
thermal radiation and chemical reactions. There are 
some interesting contributions to chemical reactions 
in the literature (Khan et al., 2022; Salah, 2022; 
Sidahmed and Salah, 2022; Yasir and Khan, 2023). 

The purpose of this study is to extend the results 
of Noor (2012) and Shateyi (2013), such as how the 
magnetohydrodynamic flow of an Oldroyd-B model 
affects across a vertical stretching sheet through a 
porous medium with chemical reaction.  

An original study is currently being conducted on 
the MHD flow of an Oldroyd-B fluid over a stretching 
sheet when thermophoresis and chemical reaction 
effects are present. MHD is employed with the 
governing equations for the Oldroyd-B liquid. The 
numerical solution to the resulting nonlinear 
problem is computed using the SLM method. 
Embedded flow parameters are described and 
displayed using diagrams. 

2. Mathematical formulation 

2.1. Governing equations and boundary 
conditions 

Here, we are interested in the steady two-
dimensional laminar flow of an incompressible MHD 

Oldroyd-B fluid through a flat sheet that lines up 
with the plane 𝑦 =  0, stopping the flow at 𝑦 >  0. 
Equal forces are applied to two opposed objects 
along the 𝑥 −axis. As a result, the wall is stretched, 
and the origin is fixed. Along the sheet, there are 
variations in both the temperature distribution 
𝑇𝑊(𝑥) and the concentration distribution 𝐶𝑊(𝑥). 
While 𝑇𝑊 > 𝑇∞ and 𝐶∞, the fluid has a uniform 
ambient temperature 𝑇∞ and concentration 𝐶∞. The 
continuity constitutive equation of the Oldroyd-B 
fluid and energy equation is given below under the 
constant and boundary layer assumptions (Cortell, 
2006; Waqas et al., 2018; Ghadikolaei et al., 2018). 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                     (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝛽 (𝑢2 𝜕2𝑢

𝜕𝑥2 + 𝑣2 𝜕2𝑢

𝜕𝑦2 + 2𝑢𝑣
𝜕2𝑢

𝜕𝑥𝜕𝑦
) =

𝜐 [
𝜕2𝑢

𝜕𝑦2 + Γ (
𝜕

𝜕𝑥
(𝑢

𝜕2𝑢

𝜕𝑦2) +
𝜕𝑢

𝜕𝑦

𝜕2𝑣

𝜕𝑦2 + 𝑣
𝜕3𝑢

𝜕𝑦3)] −
𝜎𝐵0

2

𝜌
(𝑢 +

𝛽𝑣
𝜕𝑢

𝜕𝑦
) −

𝜐

𝐾
𝑢 + 𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞),                      (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
−

𝜎𝐵0
2

𝜌𝑐𝑝
𝑢2 =

𝜆𝑔

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
+

𝜇

𝜌𝑐𝑝
(

𝜕𝑢

𝜕𝑦
)

2
−

1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
,           (3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2
−

𝜕(𝑉𝑇𝐶)

𝜕𝑦
− 𝑘2𝐶.                                          (4) 

 

With boundary conditions, 
 
𝑢(𝑥, 0) = 𝑈𝑊(𝑥) = 𝑎𝑥,          𝑣(𝑥, 0) = 0,

𝑇(𝑥, 0) = 𝑇∞ + 𝑏𝑥,          𝐶(𝑥, 0) = 𝐶 + 𝑐𝑥,
                             (5) 

𝑢(𝑥, ∞) = 0,   𝑇(𝑥, ∞) = 𝑇∞,    𝐶(𝑥, ∞) = 𝐶∞,                       (6) 
 

where, (𝑢, 𝑣) are the components of velocity in (𝑥, 𝑦) 

directions, 𝛽 is the relaxation time, 𝜐 (=
𝜇

𝜌
) is the 

kinematic viscosity, 𝜇 is the dynamic viscosity, Γ is 
the retardation time, 𝜌 is density of fluid, 𝐾 is the 
permeability of the porous medium, 𝜎 is the electric 
conductivity, 𝐵0 is the uniform magnetic fluid, 𝑔 is 
the gravitational acceleration, 𝐶 is the fluid 
concentration, 𝑇 is the fluid temperature, 𝛽𝑇 is the 
coefficient of thermal expansion, 𝛽𝐶  is the coefficient 
of concentration expansion, 𝜆𝑔 is the fluid thermal 

conductivity, 𝑐𝑝 is the specific heat at constant 

pressure, 𝑞𝑟 is the radiative heat flux, 𝐷 is the 
molecular diffusivity of the species concentration, 𝑉𝑇 
is the thermophoretic velocity and 𝐾2 is the chemical 
reaction parameter. The radiative heat flux 𝑞𝑟 can be 
written by Raptis (1998). 
 

𝑞𝑟 = −
4𝜎∗

3𝐾𝑠

𝜕𝑇4

𝜕𝑦
.                                                                                (7) 

 

The Rosseland mean absorption coefficient and 
the Stefan-Boltzman constant, respectively, are 
denoted by 𝜎∗and 𝐾𝑠. Assuming that the temperature 
changes within the flow are negligibly small, 𝑇4 can 
be represented as a linear function of temperature. 
 
𝑇4 ≈ 4𝑇∞

3 𝑇 − 3𝑇∞
4 .                                                                        (8) 

 

When we apply Eqs. 7 and 8 to the final term in 
Eq. 3, we get: 
 
𝜕𝑞𝑟

𝜕𝑦
=

16𝜎∗𝑇∞
3

3𝐾𝑠

𝜕2𝑇

𝜕𝑦2.                                                                            (9) 
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Eq. 4 contains the thermophoretic velocity 𝑉𝑇 , 
which is expressed as: 
 

𝑉𝑇 =
𝑘𝜐

𝑇𝑟

𝜕𝑇

𝜕𝑦
,                                                                                     (10) 

 

where, 𝑘 is the thermophoretic coefficient, having a 
range of values from 0.2 to 1.2, and 𝑇𝑟 is the 
reference temperature. A thermophoretic parameter 
𝜏 is defined as: 
 

𝜏 = −
𝑘(𝑇𝑤−𝑇∞)

𝑇𝑟
.                                                                             (11) 

2.2. Similarity transformation 

The following non-dimensional variables (Cortell, 
2006; Ghadikolaei et al., 2018) can be used to 
convert the governing Eqs. 2-4 into a set of nonlinear 
ordinary differential equations: 
 

𝑢 = 𝑐𝑥𝑓′(𝜂), 𝑣 = −√𝑐𝜐𝑓(𝜂), 𝜂 = √
𝑐

𝜐
 , 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 , 𝜙 =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
.                                                                                             (12) 

 

The following set of non-linear ordinary 
differential equations is produced by applying Eq. 12 
to the governing equations. 
 
𝑓′′′ + (1 + 𝑀𝛽1)𝑓𝑓′′ − 𝑓′2 + 𝛽1(2𝑓𝑓′𝑓′′ − 𝑓2𝑓′′′) +

𝛽2(2𝑓′𝑓′′′ − 𝑓′′2−𝑓𝑓𝑖𝑣) − (𝑀 + 𝜆)𝑓′ + 𝛾[𝜃 + 𝑁𝜙] = 0,  

                                                                                                         (13) 

(1 +
4

3
𝑅) 𝜃′′ + 𝑃𝑟(𝑓𝜃′ − 𝑓′𝜃) + Pr 𝐸𝑐(𝑀𝑓′2 + 𝑓′′2) = 0,  

                                                                                                         (14) 
𝜙′′ + 𝑆𝑐[𝑓𝜙′ − 𝑓′𝜙 − 𝜏(𝜃′𝜙′ + 𝜃′′𝜙)] − 𝐾2𝜙 = 0.           (15) 
 

where, 𝛽1(= 𝛽𝑐) and 𝛽2(= 𝑐 Γ) is relaxation and 
retardation times, respectively, 𝑀(= 𝜎𝛽0

2/𝑐𝜌)  is the 

Hartman number, 𝜆 (=
𝜐

𝑎𝐾
) is the porosity 

parameter, 𝛾 (=
𝐺𝑟𝑥

𝑅𝑒𝑥
2) is the local buoyancy 

parameter, 𝑅 = 4𝜎∗/𝐾𝑠𝜆𝑔 is the radiation parameter, 

𝑃𝑟 is the Prandtl number, 𝐸𝑐 is the Eckert number, 
Sc is the Schmidt number and 𝐾2 is the chemical 
reaction. The boundary conditions are: 
 
𝑓(0) = 0,      𝑓′(0) = 1,      𝜃(0) = 1,      𝜙(0) = 1,            (16) 
 𝑓′ → 0,       𝜃 → 0,        𝜙 → 0,     as  𝜂 → ∞.                         (17) 

3. Numerical methods 

We employ SLM to solve the current problem 
numerically. The SLM works by iteratively 
converting the controlling nonlinear Eqs. 13-15 into 
a set of linear differential equations, which are then 
solved analytically or numerically. 

The SLM technique presupposes that the solution 
of system of Eqs. 13-15 can be represented as (Salah 
et al., 2023; Ahmed et al., 2016; Salah and Elhafian, 
2019): 
 

𝑓(𝜂) = 𝑓𝑖(𝜂) + ∑ 𝑓𝑛(𝜂)
𝑖−1

𝑛=0
,    𝜃(𝜂) = 𝜃𝑖(𝜂) +

∑ 𝜃𝑛(𝜂)
𝑖−1

𝑛=0
,   𝜙(𝜂) = 𝜙𝑖(𝜂) + ∑ 𝜙𝑛(𝜂)

𝑖−1

𝑛=0
.                     (18) 

 

Starting from an initial guess that is appropriate 
for 𝑓0(𝜂),  𝜃0(𝜂) and 𝜙0(𝜂) and satisfies the boundary 
conditions of Eq. 16 and Eq. 17, suitable functions 
are as follows. 
 
𝑓0(𝜂) = 1 − 𝑒−𝜂 ,  𝜃0(𝜂) = 𝑒−𝜂 ,  𝜙0(𝜂) = 𝑒−𝜂 .                    (19) 
 

Substituting Eq. 18 into the controlling Eqs. 13-15 
while neglecting the nonlinear factors in 
𝑓𝑖(𝜂),  𝜃𝑖(𝜂)and 𝜙𝑖(𝜂)and their derivatives yields: 
 

(−𝛽2 ∑ 𝑓𝑗
𝑖−1
𝑗=0 )𝑓𝑖

𝑖𝑣 + (1 − 𝛽1(∑ 𝑓𝑗
𝑖−1
𝑗=0 )

2
+ 2𝛽2 ∑ 𝑓𝑗

′𝑖−1
𝑗=0 ) 𝑓𝑖

′′′ +

((1 + 𝑀𝛽1) ∑ 𝑓𝑗
𝑖−1
𝑗=0 + 2𝛽1 ∑ 𝑓𝑗

𝑖−1
𝑗=0 ∑ 𝑓𝑗

′ −𝑖−1
𝑗=0

2𝛽2 ∑ 𝑓𝑗
′′𝑖−1

𝑗=0 )𝑓𝑖
′′ + (2𝛽1 ∑ 𝑓𝑗

𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′ − 2 ∑ 𝑓𝑗
′ +𝑖−1

𝑗=0
𝑖−1
𝑗=0

2𝛽2 ∑ 𝑓𝑗
′′′𝑖−1

𝑗=0 − 𝜆 − 𝑀)𝑓𝑖
′ + ((1 + 𝑀𝛽1) ∑ 𝑓𝑗

′′𝑖−1
𝑗=0 +

2𝛽1 ∑ 𝑓𝑗
′𝑖−1

𝑗=0 ∑ 𝑓𝑗
′′𝑖−1

𝑗=0 − 2𝛽1 ∑ 𝑓𝑗
𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′′ −𝑖−1
𝑗=0

𝛽2 ∑ 𝑓𝑗
𝑖𝑣𝑖−1

𝑗=0 )𝑓𝑖 + 𝛾𝜃𝑖 + 𝑁𝛾𝜙𝑖 = 𝑟1,𝑖−1                                    (20) 

(1 +
4

3
𝑅) 𝜃𝑖

′′ + 𝑃𝑟(∑ 𝑓𝑗
𝑖−1
𝑗=0 )𝜃𝑖

′ − 𝑃𝑟(∑ 𝑓𝑗
′𝑖−1

𝑗=0 )𝜃𝑖 +

2 Pr 𝐸𝑐(∑ 𝑓𝑗
′′𝑖−1

𝑗=0 ) 𝑓𝑖
′′ + (2𝑀𝑃𝑟𝐸𝑐 ∑ 𝑓𝑗

′𝑖−1
𝑗=0 − 𝑃𝑟 ∑ 𝜃𝑗

𝑖−1
𝑗=0 )𝑓𝑖

′ +

𝑃𝑟(∑ 𝜃𝑗
′𝑖−1

𝑗=0 )𝑓𝑖 = 𝑟2,𝑖−1                                                               (21) 

𝜙𝑖
′′ + 𝑆𝑐(∑ 𝑓𝑗

𝑖−1
𝑗=0 − 𝜏 ∑ 𝜃𝑗

′𝑖−1
𝑗=0 )𝜙𝑖

′ + (𝐾2 − 𝑆𝑐 ∑ 𝑓𝑗
′𝑖−1

𝑗=0 −

𝑆𝑐 𝜏 ∑ 𝜃𝑗
′′𝑖−1

𝑗=0 )𝜙𝑖 − 𝑆𝑐 (∑ 𝜙𝑗
𝑖−1
𝑗=0 )𝑓𝑖

′ + 𝑆𝑐 (∑ 𝜙𝑗
′𝑖−1

𝑗=0 ) 𝑓𝑖 −

𝑆𝑐 𝜏 (∑ 𝜙𝑗
𝑖−1
𝑗=0 )𝜃𝑖

′′ − 𝑆𝑐 𝜏(∑ 𝜙𝑗
′𝑖−1

𝑗=0 )𝜃𝑖
′ = 𝑟3,𝑖−1                     (22) 

 

depending on the conditions at the boundary, 
 
𝑓𝑖(0) = 𝑓𝑖

′(0) = 𝑓𝑖
′(∞) = 0, 𝜃𝑖(0) = 𝜃𝑖(∞) = 0, 

 𝜙𝑖(0) = 𝜙𝑖(∞) = 0. 
 

where,  
 

  

𝑟1,𝑖−1 = 𝛽2 ∑ 𝑓𝑗
𝑖−1
𝑗=0 ∑ 𝑓𝑗

𝑖𝑣𝑖−1
𝑗=0 − ∑ 𝑓𝑗

′′′ − (1 + 𝑀𝛽1) ∑ 𝑓𝑗
𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′ + 𝛽1
𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′′𝑖−1
𝑗=0

𝑖−1
𝑗=0 (∑ 𝑓𝑗

𝑖−1
𝑗=0 )

2
− 2𝛽1 ∑ 𝑓𝑗 ∑ 𝑓𝑗

′𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′ −𝑖−1
𝑗=0

𝑖−1
𝑗=0

2𝛽2 ∑ 𝑓𝑗
′𝑖−1

𝑗=0 ∑ 𝑓𝑗
′′′ + 𝛽2

𝑖−1
𝑗=0 (∑ 𝑓𝑗

′′𝑖−1
𝑗=0 )

2
+ (∑ 𝑓𝑗

′𝑖−1
𝑗=0 )

2
+ (𝜆 + 𝑀) ∑ 𝑓𝑗

′𝑖−1
𝑗=0 − 𝛾 ∑ 𝜃𝑗 − 𝑁𝛾 ∑ 𝜙𝑗

𝑖−1
𝑗=0

𝑖−1
𝑗=0 ,  

𝑟2,𝑖−1 = − (1 +
4

3
𝑅) ∑ 𝜃𝑗

′′ − 𝑃𝑟𝑖−1
𝑗=0 ∑ 𝑓𝑗 ∑ 𝜃𝑗

′𝑖−1
𝑗=0

𝑖−1
𝑗=0 + 𝑃𝑟 ∑ 𝜃𝑗 ∑ 𝑓𝑗

′𝑖−1
𝑗=0

𝑖−1
𝑗=0 − 𝑃𝑟𝐸𝑐(∑ 𝑓𝑗

′′𝑖−1
𝑗=0 )

2
− (Pr )(𝐸𝑐)(𝑀)(∑ 𝑓𝑗

′𝑖−1
𝑗=0 )

2
,  

𝑟3,𝑖−1 = − ∑ 𝜙𝑗
′′ − 𝑆𝑐𝑖−1

𝑗=0 ∑ 𝑓𝑗 ∑ 𝜙𝑗
′𝑖−1

𝑗=0
𝑖−1
𝑗=0 + 𝑆𝑐 𝜏 ∑ 𝜙𝑗

′ ∑ 𝜃𝑗
′𝑖−1

𝑗=0
𝑖−1
𝑗=0 + 𝑆𝑐 ∑ 𝜙𝑗 ∑ 𝑓𝑗

′𝑖−1
𝑗=0

𝑖−1
𝑗=0 + 𝑆𝑐 𝜏 ∑ 𝜙𝑗 ∑ 𝜃𝑗

′′ + 𝐾2
𝑖−1
𝑗=0 ∑ 𝜙𝑗 𝑖−1

𝑗=0
𝑖−1
𝑗=0 ,  

  
 

Using the Chebyshev collocation spectral method 
(Hussaini and Zang, 1987), the linearized system is 
solved, producing the following system of equations: 
 
𝐴11 𝑓𝑖 + 𝐴12 𝜃𝑖 + 𝐴13 𝜙𝑖 = 𝑟1,𝑖−1

𝐴21 𝑓𝑖 + 𝐴22 𝜃𝑖 + 𝐴23 𝜙𝑖 = 𝑟2,𝑖−1

𝐴31 𝑓𝑖 + 𝐴32 𝜃𝑖 + 𝐴33 𝜙𝑖 = 𝑟3,𝑖−1

                                              (23)  

 

We can write the system in Eq. 23 as matrix 
equation: 
 
𝐴𝑖−1𝑋𝑖 = 𝑅𝑖−1,                                                                             (24) 
 

where,  
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𝐴𝑖−1 = [

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

] ,  𝑋𝑖 = [

𝑓𝑖

𝜃𝑖

𝜙𝑖

] ,    𝑅𝑖−1 = [

𝑟1,𝑖−1

𝑟2,𝑖−1

𝑟3,𝑖−1

]  , 
 

and, 

  
𝐴11 = (−𝛽2 ∑ 𝑓𝑗

𝑖−1
𝑗=0 )𝐷4 + (1 − 𝛽1(∑ 𝑓𝑗

𝑖−1
𝑗=0 )

2
+ 2𝛽2 ∑ 𝑓𝑗

′𝑖−1
𝑗=0 ) 𝐷3 + ((1 + 𝑀𝛽1) ∑ 𝑓𝑗

𝑖−1
𝑗=0 + 2𝛽1 ∑ 𝑓𝑗

𝑖−1
𝑗=0 ∑ 𝑓𝑗

′ − 2𝛽2 ∑ 𝑓𝑗
′′𝑖−1

𝑗=0
𝑖−1
𝑗=0 )𝐷2 +

+(2𝛽1 ∑ 𝑓𝑗
𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′ − 2 ∑ 𝑓𝑗
′ + 2𝛽2

𝑖−1
𝑗=0

𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′′𝑖−1
𝑗=0 − 𝜆 − 𝑀)𝐷 + ((1 + 𝑀𝛽1) ∑ 𝑓𝑗

′′𝑖−1
𝑗=0 + 2𝛽1 ∑ 𝑓𝑗

′𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′𝑖−1
𝑗=0 − 2𝛽1 ∑ 𝑓𝑗

𝑖−1
𝑗=0 ∑ 𝑓𝑗

′′′ − 𝛽2 ∑ 𝑓𝑗
𝑖𝑣𝑖−1

𝑗=0
𝑖−1
𝑗=0 ), 

𝐴22 = (1 +
4

3
𝑅) 𝐷2 + 𝑃𝑟(∑ 𝑓𝑗

𝑖−1
𝑗=0 )𝐷 − 𝑃𝑟(∑ 𝑓𝑗

′𝑖−1
𝑗=0 ),   

𝐴21 = 2 Pr 𝐸𝑐 (∑ 𝑓𝑗
′′

𝑖−1

𝑗=0

) 𝐷2 + (2𝑀𝑃𝑟𝐸𝑐 ∑ 𝑓𝑗
′

𝑖−1

𝑗=0

− 𝑃𝑟 ∑ 𝜃𝑗

𝑖−1

𝑗=0

) 𝐷 + 𝑃𝑟 (∑ 𝜃𝑗
′

𝑖−1

𝑗=0

)  

𝐴33 = 𝐷2 + 𝑆𝑐(∑ 𝑓𝑗
𝑖−1
𝑗=0 − 𝜏 ∑ 𝜃𝑗

′𝑖−1
𝑗=0 )𝐷 + (𝐾2 − 𝑆𝑐 ∑ 𝑓𝑗

′𝑖−1
𝑗=0 − 𝑆𝑐 𝜏 ∑ 𝜃𝑗

′′𝑖−1
𝑗=0 )    

𝐴31 = −𝑆𝑐 (∑ 𝜙𝑗
𝑖−1
𝑗=0 )𝐷 + 𝑆𝑐 (∑ 𝜙𝑗

′𝑖−1
𝑗=0 )   

𝐴32 = −𝑆𝑐 𝜏 (∑ 𝜙𝑗

𝑖−1

𝑗=0

) 𝐷2 − 𝑆𝑐 𝜏 (∑ 𝜙𝑗
′

𝑖−1

𝑗=0

) 𝐷 

𝐴12 = 𝛾,     𝐴13 = 𝑁𝛾, 𝐴23 = 0. 
  
 

The resultant system of Eq. 24 is readily solved 
as: 
 
𝑋𝑖 = 𝐴𝑖−1

−1 𝑅𝑖−1.                                                                             (25) 

4. Convergence analysis 

The convergence of series solutions to the 
momentum, temperature, and concentration 
equations is shown in Table 1. Table 1 clearly shows 
that a few orders of the SLM series, starting from the 
third iteration and delivering accuracy up to nine 
decimal places, are in great agreement with the 
findings obtained by SLM. 

5. Numerical scheme testing 

Here, we test the validity of our numerical results 
and contrast them with those of published works as 

limiting examples. So, we contrast the outcomes of 
this study with those found in the literature 
(Ghadikolaei et al., 2018; Salah and Elhafian, 2019; 
Noor, 2012; Shateyi, 2013). It is found that our 
results are in excellent agreement with Noor (2012) 
and Shateyi (2013) as shown in Tables 2-5. 

6. Results and discussion 

The outcomes of the successive linearization 
method are presented in this section. The local skin 
friction coefficient, the local Nusselt number, and the 
local Sherwood number are reported for various 
values of the physical parameters significant in this 
study based on the numerical computations shown 
in Table 5. The dimensionless velocity, temperature, 
and concentration for various values of the magnetic 
field parameter 𝑀 are shown, accordingly, in Fig. 1. 

 
Table 1: Convergence of SLM solutions with respect to several orders of approximations when 𝑃𝑟 = 0.7, 𝑅 = 0.3, 𝑆𝑐 =  𝐸𝑐 =

0.5; 𝐵1 = 𝜏 =  0.2, 𝐵2 = 0.01, 𝑀 = 𝐾2 = 𝜆 = 𝛾 = 𝑁 = 1 
Order of approximation −𝑓′′(0) −𝜃′(0) −𝜙′(0) 

1 1.015899184 0.526023196 1.270002402 
2 1.016473962 0.526877992 1.269425856 
3 1.016474784 0.526880803 1.269425842 
4 1.016474783 0.526880805 1.269425843 
5 1.016474783 0.526880805 1.269425843 

10 1.016474783 0.526880805 1.269425843 
20 1.016474783 0.526880805 1.269425843 
30 1.016474783 0.526880805 1.269425843 
40 1.016474783 0.526880805 1.269425843 
50 1.016474783 0.526880805 1.269425843 

 
Table 2: Comparison of the SLM findings of −𝑓′′(0), −𝜃′(0) and −𝜙′(0) with those found in Noor (2012) and Shateyi (2013) 

for various magnetic parameter values 

M 
−𝑓′′(0)  −𝜃′(0)  −𝜙′(0) 

(Noor, 
2012) 

(Shateyi, 
2013) 

Present  
(Noor, 
2012) 

(Shateyi, 
2013) 

Present  
(Noor, 
2012) 

(Shateyi, 
2013) 

Present 

0.0 0.61105 0.61105243 0.61105243  0.63589 0.63588754 0.63588754  1.30284 1.30284353 1.30284355 
0.5 0.81242 0.81241682 0.81241680  0.53469 0.53469349 0.53469349  1.28395 1.28395421 1.28395421 
1.0 0.99660 0.99658887 0.99658887  0.44624 0.44621677 0.44621678  1.26728 1.26727829 1.26727829 
2.0 1.38934 1.32487675 1.32487676  0.28290 0.28719193 0.29719196  1.24527 1.23899430 1.23899343 

 
Table 3: Comparison of the SLM findings of −𝑓′′(0), −𝜃′(0) and −𝜙′(0) with those found in Noor (2012) and Shateyi (2013) 

for various chemical reaction parameter values 

𝐾2 
−𝑓′′(0)  −𝜃′(0)  −𝜙′(0) 

(Noor, 
2012) 

(Shateyi, 
2013) 

Present  
(Noor, 
2012) 

(Shateyi, 
2013) 

Present  
(Noor, 
2012) 

(Shateyi, 
2013) 

Present 

0.0 0.92029 0.92027899 0.92027900  0.47847 0.47854048 0.47854048  0.70970 0.70959986 0.70959986 
0.5 0.96935 0.96934259 0.96934259  0.45647 0.45644780 0.45644781  1.03512 1.03512125 1.03512125 
1.0 0.99660 0.99658887 0.99658887  0.44624 0.44621677 0.44621678  1.26728 1.26727829 1.26727829 
2.0 1.03073 1.03072331 1.03072331  0.43520 0.43517486 0.43517487  1.62744 1.62744240 1.62744240 
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Table 4: Comparison of SLM finding of 𝑓(𝜂) with those found in Ghadikolaei et al. (2018) and Salah and Elhafian (2019) for 
various values of 𝜂 when 𝑀 = 𝛽1 = 𝜆 = 0.0 and 𝛽2 = 0.01 

𝛽2 𝜂 (Ghadikolaei et al., 2018) (Salah and Elhafian, 2019) Present 

0.01 

0 0 0 0 
0.1 0.095199 0.095194 0.095186 
0.2 0.181400 0.181338 0.181357 
0.5 0.394050 0.393892 0.393919 
1 0.633463 0.633460 0.633440 
2 0.866679 0.867642 0.867634 
3 0.952228 0.954211 0.954216 
4 0.983566 0.986229 0.986225 
5 - 0.998059 0.998057 

 

Fig. 1a shows that when the magnetic parameter 
𝑀 increases, the velocity profiles decrease. The 
Lorentz force, which opposes the flow, is produced 
physically by increasing the magnetic field intensity 
normal to the flow in an electrically conducting fluid. 
Delaying the transition from laminar to turbulent 
flow is therefore possible by applying a mild 
magnetic field to the flow. Figs. 1b and 1c show how 
the heat and concentration profiles increase as a 
result of a reduction in flow velocity brought on by 
an increase in magnetic field intensity. In terms of 
physics, creating a magnetic field heats the fluid, 
which minimizes heat and mass transfers from the 
wall and raises the fluid temperature and 
concentration distributions. We show how the 
permeability of the medium affects the flow velocity, 
temperature, and concentration in Fig. 2, 
accordingly. As the values of the porosity parameter 

are raised, we notice that the dimensionless velocity 
drops. Physically, as shown in Figs. 2b and 2c, 
porosity causes more fluid to be removed from the 
boundary layer, which reduces the velocity 
boundary layer but raises the thermal and solutal 
boundary layers. The impact of a chemical reaction 
on the fluid velocity and concentration profiles is 
depicted in Fig. 3. In this study, we examine the 
results of a chemical reaction that is destructive 
(𝐾2 > 0). When the chemical reaction increases, it is 
observed that both velocity and concentration 
distributions decrease. Chemical reactions in 
destructive cases physically occur with numerous 
disturbances. High molecular mobility is therefore 
brought on by this, increasing the transport 
phenomena and lowering the concentration 
distributions in the fluid flow. 

 
Table 5: Different values of skin friction coefficient, local Nusselt number, and local Sherwood number using SLM for 

different parameters 
𝑀 𝑃𝑟 𝑆𝑐 𝐸𝑐 𝜏 𝑅 𝛽1 𝛽2 𝜆 𝐾2 −𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.0 0.7 0.5 0.5 0.2 0.3 0.2 0.01 1 1 0.609947046 0.636445163 1.303014577 
0.5          0.809881616 0.535280287 1.284165328 
1          0.992898218 0.446813554 1.267516387 
2          1.319413986 0.297779647 1.239261478 
 0.5         0.972400832 0.380094847 1.266122992 
 0.7         0.992898218 0.446813554 1.267516387 
 1         1.016474783 0.526880805 1.269425843 
 2         1.065420133 0.705817782 1.274594135 
  0.0        0.960370583 0.459290077 1.000000000 
  0.5        0.992898218 0.446813554 1.267516387 
  1        1.018513539 0.438066037 1.509998780 
  2        1.056076046 0.427095037 1.939824715 
   0.0       1.016399546 0.640108398 1.280537658 
   0.5       0.992898218 0.446813554 1.267516387 
   2       0.919976327 -0.117554638 1.230756511 
   3       0.868009849 -0.486173378 1.207998592 
    0.0      0.990253256 0.447659907 1.242019127 
    0.2      0.992898218 0.446813554 1.267516387 
    1      1.003259304 0.443559447 1.371633438 
    2      1.015708041 0.439782694 1.506363067 
     0.0     1.015096607 0.522098484 1.269304699 
     0.3     0.992898218 0.446813554 1.267516387 
     1     0.962535424 0.348907815 1.265536154 
     2     0.939473855 0.278314048 1.264369955 
      0.0    0.946737992 0.460960811 1.272433121 
      0.2    0.992898218 0.446813554 1.267516387 
      0.5    1.062647573 0.426458080 1.260452328 
      0.7    1.109107790 0.413527999 1.255976908 
       0.00   1.005663188 0.443350315 1.358033239 
       0.01   1.001983519 0.443954786 1.358436203 
       0.02   0.998352682 0.444554934 1.358836087 
       0.03   0.994769168 0.445150843 1.359232957 
        0.0  0.611558666 0.506969158 1.293013786 
        0.5  0.811605985 0.477045411 1.279575541 
        1  0.992898218 0.446813554 1.267516387 
        2  1.312896499 0.388145096 1.246753000 
         0.0 0.916446055 0.479043487 0.710066972 
         0.5 0.965620269 0.457013247 1.035419418 
         1 0.992898218 0.446813554 1.267516387 
         2 1.027038431 0.435809893 1.627625067 
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(a) (b) 

 
(c) 

Fig. 1: Effect of the magnetic field M on a) velocity, b) temperature, and c) concentration 
 

  
(a) (b) 

 
(c) 

Fig. 2: Effect of the porosity parameter λ on a) velocity, b) temperature, and c) concentration 
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(a) (b) 

Fig. 3: Effect of the chemical reaction 𝐾2 on a) velocity and b) concentration 
 

Fig. 4, respectively, shows the impacts of the 
Deborah number 𝛽1 on the velocity and temperature 
curves. As the temperature rises, we see that the 
boundary layer thickness decreases with rising 
values of 𝛽1. The Deborah number, in terms of 
physics, is the ratio between the relaxation time, 
which describes how long a material needs to 
respond to pressures or deformations, and the 
typical time scale of an experiment exploring the 
response of the material. Higher Deborah numbers 
result in a material's behavior that is increasingly 
dominated by elasticity and behaves solidly, 
decreasing the flow velocity and raising the fluid's 
temperature. 

Fig. 5 shows accordingly how thermal radiation 
affects fluid velocity and temperature. It has been 
noted that thermal radiation increases the boundary 
layer's fluid velocity. It's noteworthy to notice that 
the distribution of temperature inside the fluid is 
significantly influenced by thermal radiation. As the 
heat radiation increases, the fluid temperature rises, 
as seen in Fig. 5b. This is a result of the fact that 
rising thermal radiation parameter values imply 
rising boundary layer radiation, which raises the 
thermal boundary layer temperature profile values. 

The fluctuation of the temperature and velocity 
distributions in the boundary layer for different 

Eckert number 𝐸𝑐 values are shown in Fig. 6. We see 
that the boundary layer's velocity distribution is only 
marginally affected by the Eckert number as it 
increases. By examining Fig. 6b, we can see that the 
Eckert number has a significant impact on raising the 
temperature in the flow region. This is because heat 
energy from frictional heating is stored in the liquid. 
Increased fluid temperature is the result of rising 𝐸𝑐, 
so to speak. 

The effects of the Prandtl number on the velocity 
and temperature distributions are shown in Fig. 7. 
As the Prandtl number rises, we notice that the 
velocity and temperature profiles both become 
smaller. This is due to the fact that as 𝑃𝑟 rises, 
thermal diffusivity declines, decreasing the thermal 
boundary layer's capacity to transport energy. 

Fig. 8 illustrates the impacts of the 
thermophoretic parameter 𝜏 and the Schmidt 
number 𝑆𝑐, respectively. We notice that as the 
thermophoretic parameter 𝜏 is increased, the 
particle concentration decreases across the flow 
region. We notice that the effect of increasing the 
thermophoretic parameter 𝜏 is restricted to 
significantly increasing the wall slope of the 
concentration profiles while lowering the 
concentration. 

 

  
(a) (b) 

Fig. 4: Effect of the Deborah number 𝛽1 on a) velocity and b) temperature 
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(a) (b) 

Fig. 5: Effect of the thermal radiation 𝑅 on a) velocity and b) temperature 
 

  
(a) (b) 

Fig. 6: Effect of the Eckert number 𝐸𝑐 on a) velocity and b) temperature 
 

  
(a) (b) 

Fig. 7: Effect of the Prandtl number 𝑃𝑟 on a) velocity and b) temperature 
 

The Schmidt number 𝑆𝑐 describes how effective 
species diffusion in the concentration boundary 
layer is compared to momentum transport diffusion 
in the hydrodynamic boundary layer. This graph 
makes it quite evident that as the Schmidt number 
𝑆𝑐 rises, the concentration boundary layer width 
decreases. This effect happens as a result of the 
concentration of species becoming heavier as 𝑆𝑐 
increases. 

Finally, Fig. 9 illustrates how 𝛽2 affects the 
velocity and temperature profiles. It should be noted 

that as 𝛽2 is increased, the influence is found to be 
extremely minimal for both aspects. Additionally, by 
setting 𝛽1 = 0, 𝛽2 = 0, and 𝛽1 = 𝛽2 = 0, the second-
grade, Maxwell, and viscous cases are recovered, 
respectively. 

7. Conclusion 

The magnetohydrodynamic flow of an Oldroyd-B 
fluid across a vertical stretching sheet in a Darcian 
porous medium under the impact of thermophoresis, 
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heat radiation, and a homogeneous chemical 
reaction has been solved using SLM. The analysis 
found that this strategy might potentially be applied 
to even the most challenging non-linear issues. 
Thermal radiation, porosity, Deborah number, and 
magnetic strength were all found to have a 
significant impact on velocity profiles. The 
temperature of the fluid was shown to rise with 
increasing magnetic force, porosity, Deborah 

number, thermal radiation, and Eckert number but 
to fall with increasing Prandtl number. As it has 
increased, the influence is found to be extremely 
minimal for both aspects. The existence of a chemical 
reaction and thermophoresis were both found to 
have a considerable impact on the fluid 
concentration profiles. In future work, we can 
modify the problem to three-dimensional 
coordinates with a heat sink. 

 

  
(a) (b) 

Fig. 8: Effects of the thermophoretic parameter a) 𝜏 and b) 𝑆𝑐 on concentration  
 

  
(a) (b) 

Fig. 9: Effects of Deborah number 𝛽2 on a) velocity and b) temperature 
 

List of symbols 

(𝑥, 𝑦) Cartesian coordinates [m] 
(𝑢, 𝑣) Velocity components [ms-1] 
𝜐 Kinematic viscosity [m2s-1] 
𝜇 Dynamic viscosity [kg m-1S-1] 
𝛽1 Relaxation time [s] 
𝛽2 Retardation time [s] 
𝜌 Density of fluid [Kg m-3] 
𝜎 The electric conductivity [Sm-1] 
𝐵0 Magnetic fluid [Wbm-2] 
𝑔 Gravitational acceleration [ms-2] 
𝐶 Fluid concentration 
𝑇 Fluid temperature [K] 
𝛽𝑇 Coefficient of thermal expansion 
𝛽𝐶  Coefficient of concentration expansion 
𝜆𝑔 Fluid thermal conductivity [Wm-1K-1] 

𝑐𝑝 Specific heat [JK-1m-3] 

𝑞𝑟 Radiative heat flux 

𝐷 Molecular diffusivity 
𝑉𝑇 Thermophoretic velocity 
𝐾2 Chemical reaction 
𝜏 A thermophoretic parameter 
𝛾 local buoyancy parameter 
𝑀 Hartman number 
𝜆 porosity parameter 
𝑅 Radiation parameter 
𝑃𝑟 Prandtl number 
𝐸𝑐 Eckert number 
𝑆𝑐 Schmidt number 
𝐶𝑤 Concentration field at the surface [mol] 
𝐶 Concentration of field [mol] 
𝐶∞ Ambient concentration field [mol] 
𝑈𝑤 Velocity at the wall [ ms-1] 
𝑇𝑤 Surface temperature [K] 
𝑇∞ Ambient temperature [K] 
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