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The relationship between algebraic structures and graphs has become an 
interesting topic of research nowadays. In this paper, we have considered the 
conjugate graph related to the conjugacy relation of a group. The vertices of 
the said graph are the noncentral elements of the group, and two vertices are 
adjacent if they are conjugate. For this particular study, we focused on the 
conjugate graph of a K-metacyclic group of order 𝑝(𝑝 − 1). We first 
determine the conjugacy classes of this group and then obtain its conjugate 
graph. Various graph properties such as planarity, line graph, complement 
graph, clique number, dominating number, spectrum, and Laplacian are also 
studied in this paper. 
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1. Introduction 

*The construction of graphs with the help of 
groups has become one of the most interesting 
topics of research, and many works have been done 
in relation to this in the past few years (Fortunato, 
2010; Kumar et al., 2021). The concept of a conjugate 
graph was first introduced by Erfanian and Tolue 
(2012) and attracted many researchers afterward 
(Prasad et al., 2019; Alolaiyan et al., 2019; Ling and 
Qin, 2022). They defined it to be a graph whose 
vertices are the noncentral elements of a group, and 
two vertices are adjacent if they are conjugate. 
Several researchers are working to find the 
conjugate graph of specific finite groups. Some of 
these include the work by Zulkarnain et al. (2019), 
where they found the conjugacy classes of some 
finite p-groups and then determined their conjugate 
graph. Another work is by Alimon et al. (2017), who 
presented the adjacency matrix of a conjugate graph 
of some metacyclic 2-groups. Motivated by these 
works, we found the conjugate graph of a class of K-
metacyclic group and then studied its different 
properties. Here, we have considered the class of the 
K-metacyclic group that is of order 𝑝(𝑝 − 1). Hence, 
when we refer to a K-metacyclic group, its order will 
always be taken as 𝑝(𝑝 − 1) throughout this paper. 
We first give some preliminaries on group theory 
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and graph theory and then discuss some results on 
the conjugate graph of a class of K-metacyclic group. 

2. Preliminaries 

In this section, some preliminary definitions and 
results about group theory and graph theory are 
cited, which will be used throughout this paper. 

 
 Conjugate of an element: Suppose 𝐺 is a finite 

group. Two elements 𝑎 and 𝑏 of 𝐺 are called 
conjugate if there exists 𝑔 in 𝐺 with 𝑔−1𝑎𝑔 = 𝑏 
(Herstein, 2006). 

 Conjugacy class: Conjugacy is an equivalence 
relation, and the equivalence class that contains 
the element 𝑎 in 𝐺 denoted by 𝑐𝑙(𝑎) is called the 
conjugacy class of 𝑎 (Herstein, 2006). 

 Center of a group: Let 𝐺 be a group and let 𝑍(𝐺) =
{𝑥 ∈ 𝐺 | 𝑥𝑔 = 𝑔𝑥 for all 𝑔 ∈ 𝐺}. Then, 𝑍(𝐺) is called 
the center of the group 𝐺 (Herstein, 2006). 

 Primitive roots modulo m: An integer 𝑏 is a 
primitive root modulo 𝑚 if 𝑏 is coprime to 𝑚 and 
the order of 𝑏(mod 𝑚) is 𝜙(𝑚) (Childs, 2009). 

 K-metacyclic group: It is a group of order 𝑝(𝑝 −
1) generated by the elements 𝑎 and 𝑏 with defining 
relations (Dutta, 1997): 

 
𝑎𝑝 = 𝑏𝑝−1 = 1; 𝑏−1𝑎𝑏 = 𝑎𝑟; (𝑟 − 1, 𝑝) = 1  

 
where, 𝑟 is a primitive root modulo 𝑝 and 𝑝 is an odd 
prime. 
 
 Complete graph: A graph 𝐺 is said to be complete 

if every vertex in 𝐺 is connected with every other 
vertex (Godsil and Royle, 2001). 
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 Regular graph: A graph in which all vertices are of 
equal degree is called a regular graph (Godsil and 
Royle, 2001). 

 Girth: The girth of a graph is the length of the 
shortest cycle in it (Godsil and Royle, 2001). 

 Chromatic number: A chromatic number of a 
graph 𝐺, denoted as 𝜒(𝐺), is the minimal number of 
colors required to color the vertices of 𝐺 in such a 
way that no two adjacent vertices have the same 
color (Erfanian and Tolue, 2012). 

 Clique number: A subset 𝐶 of vertices of Γ is called 
a clique if the induced subgraph on 𝐶 is a complete 
graph. The maximum size of a clique is called the 
clique number of the graph 𝐺 and is denoted by 
𝜔(𝐺) (Erfanian and Tolue, 2012). 

 Independent set: A subset 𝑋 of the vertices of the 
graph 𝐺 is called an independent set if the induced 
subgraph on 𝑋 has no edges. The maximum size of 
an independent set in the graph 𝐺 is called the 
independence number of the graph denoted by 
𝛼(𝐺) (Erfanian and Tolue, 2012). 

 Dominating number: For a graph Γ and a subset 𝑆 
of vertices, denote by 𝑁𝛤[𝑆] the set of vertices in Γ 
which are in 𝑆 or adjacent to a vertex in 𝑆. If 
𝑁𝛤[𝑆] = 𝑉(𝛤), then 𝑆 is called a dominating set for 
Γ. The dominating number 𝛾(𝛤) of Γ is the 
minimum size of a dominating set of the vertices of 
Γ (Erfanian and Tolue, 2012). 

 Planar graph: A graph is called planar if it can be 
drawn without crossing edges (Godsil and Royle, 
2001). 

 Line graph: The line graph of a graph 𝑋 is the 
graph 𝐿(𝑋) with the edges of 𝑋 as its vertices, and 
where two edges of 𝑋 are adjacent if and only if 
they are incident in 𝑋 (Godsil and Royle, 2001). 

 Complement graph: The complement �̅� of a graph 
𝑋 has the same vertex set as 𝑋, where vertices 𝑥 
and 𝑦 are adjacent in �̅� if and only if they are not 
adjacent in 𝑋 (Godsil and Royle, 2001). 

 Adjacency matrix: The adjacency matrix𝐴(𝑋) of a 
directed graph 𝑋 is the integer matrix with rows 
and columns indexed by the vertices of 𝑋, such that 
the 𝑢𝑣-entry of 𝐴(𝑋) is equal to the number of arcs 
from 𝑢 to 𝑣 (Godsil and Royle, 2001). 

 Spectrum: The spectrum of a matrix is the list of 
its eigenvalues together with their multiplicities 
(Godsil and Royle, 2001). 

 Laplacian matrix: The Laplacian matrix of a graph 
𝐺 = (𝑉, 𝐸) where 𝑉 is the vertex set and 𝐸 is the 
edge set is an 𝑛 × 𝑛 symmetric matrix with one 
row and column for each node defined by, 𝐿 = 𝐷 −
𝐴, where 𝐷 is the degree matrix, which is the 
diagonal matrix formed from the vertex degrees 
and 𝐴 is the adjacency matrix. The diagonal 
elements 𝑙𝑖𝑗  of 𝐿 are therefore equal to the degree 

of vertex 𝑣𝑖  and off-diagonal elements 𝑙𝑖𝑗  are −1 if 

the vertex 𝑣𝑖  is adjacent to 𝑣𝑗  and 0 otherwise 

(Merris, 1994). 
 Conjugate graph: A conjugate graph is a graph 

whose vertices are the noncentral elements of a 
group 𝐺 and two distinct vertices are adjacent if 
they are conjugate. It is denoted by 𝛤𝐺

𝑐  (Erfanian 
and Tolue, 2012). 

 Result 2.20: Kuratowski’s theorem: A graph is 
nonplanar if and only if it contains a subdivision of 
𝐾5 or 𝐾3,3 (Koltz, 1989). 

3. Results and discussion 

In this section, we have obtained the conjugate 
graph of a K-metacyclic group and then studied some 
of its properties. We first calculated the conjugacy 
classes for different values of 𝑝, taking 𝑝 = 3, 5, and 
7, and obtained their respective conjugate graphs as 
follows. 

Taking 𝑝 = 3, order = 3(3-1) = 6, the primitive 
root mod 3 is 2. Hence, the defining relation becomes 
as follows: 
 
𝑎3 = 𝑏2 = 1; 𝑏−1𝑎𝑏 = 𝑎2 

 
The elements are= {1, 𝑎, 𝑎2, 𝑏, 𝑏𝑎, 𝑏𝑎2}. The 

conjugacy classes are found to be as follows, and the 
conjugate graph is shown in Fig. 1. 

 
C.C (1) = {𝑎, 𝑎2} 
C.C (2) = {𝑏, 𝑏𝑎, 𝑏𝑎2} 
 

 
 

Fig. 1: Conjugate graph with 𝑝 = 3 

 
Taking 𝑝 = 5, order = 5(5-1) = 20, the primitive 

root mod 5 is 2, 3. Hence, the defining relation 
becomes as follows: 
 
𝑎5 = 𝑏4 = 1; 𝑏−1𝑎𝑏 = 𝑎2 (taking 𝑟 = 2) 

 
The elements are: 

  
={1, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑏, 𝑏2, 𝑏3, 𝑏𝑎, 𝑏𝑎2, 𝑏𝑎3, 𝑏𝑎4, 𝑏2, 𝑏2𝑎, 𝑏2𝑎2, 𝑏2𝑎3, 𝑏2𝑎4, 𝑏3𝑎, 𝑏3𝑎2,𝑏3𝑎3, 𝑏3𝑎4} 

  
 

The conjugacy classes are found to be as follows, 
and the conjugate graph is shown in Fig. 2.  
 
C.C (1) = {𝑎, 𝑎2, 𝑎3, 𝑎4} 

C.C (2) = {𝑏, 𝑏𝑎, 𝑏𝑎2, 𝑏𝑎3, 𝑏𝑎4} 
C.C (3) = {𝑏2, 𝑏2𝑎, 𝑏2𝑎2, 𝑏2𝑎3, 𝑏2𝑎4} 
C.C (4) = {𝑏3, 𝑏3𝑎, 𝑏3𝑎2, 𝑏3𝑎3, 𝑏3𝑎4} 
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Fig. 2: Conjugate graph with 𝑝 = 5 

 
Taking 𝑝 = 7, order = 7(7-1) = 42, the primitive 

root mod 7 is 3, 5. Hence, the defining relation 
becomes as follows: 

𝑎7 = 𝑏6 = 1; 𝑏−1𝑎𝑏 = 𝑎3 (taking 𝑟 = 3) 
The elements are:   

  
{1, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑏, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏𝑎, 𝑏𝑎2, 𝑏𝑎3, 𝑏𝑎4, 𝑏𝑎5, 𝑏𝑎6, 𝑏2𝑎, 𝑏2𝑎2, 𝑏2𝑎3, 𝑏2𝑎4, 
𝑏2𝑎5, 𝑏2𝑎6, 𝑏3𝑎, 𝑏3𝑎2, 𝑏3𝑎3, 𝑏3𝑎4, 𝑏3𝑎5, 𝑏3𝑎6, 𝑏4𝑎, 𝑏4𝑎2, 𝑏4𝑎3, 𝑏4𝑎4, 𝑏4𝑎5, 𝑏4𝑎6, 𝑏5𝑎, 𝑏5𝑎2, 

𝑏5𝑎3, 𝑏5𝑎4, 𝑏5𝑎5, 𝑏5𝑎6} 

  
 
The conjugacy classes are found to be as follows, 

and the conjugate graph is shown in Fig. 3.  
 
C.C (1) = { 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6} 
C.C (2) = {𝑏, 𝑏𝑎, 𝑏𝑎2, 𝑏𝑎3, 𝑏𝑎4, 𝑏𝑎5, 𝑏𝑎6} 
C.C (3) = {𝑏2, 𝑏2𝑎, 𝑏2𝑎2, 𝑏2𝑎3, 𝑏2𝑎4, 𝑏2𝑎5, 𝑏2𝑎6} 

C.C (4) = { 𝑏3, 𝑏3𝑎, 𝑏3𝑎2, 𝑏3𝑎3, 𝑏3𝑎4, 𝑏3𝑎5, 𝑏3𝑎6} 
C.C (5) = { 𝑏4, 𝑏4𝑎, 𝑏4𝑎2, 𝑏4𝑎3, 𝑏4𝑎4, 𝑏4𝑎5, 𝑏4𝑎6} 
C.C (6) = { 𝑏5, 𝑏5𝑎, 𝑏5𝑎2, 𝑏5𝑎3, 𝑏5𝑎4, 𝑏5𝑎5, 𝑏5𝑎6} 

 
 

 

 
Fig. 3: Conjugate graph with 𝑝 = 7 

 
Continuing in this manner, if we consider the 

conjugacy class of a K-metacyclic group  for any 𝑝, 
we get the following result: 

 
Theorem 3.1: There are 𝑝 − 1 noncentral conjugacy 
classes in a K-metacyclic group of  order 𝑝(𝑝 − 1) 
and they are: 
 
C.C (1) = { 𝑎, 𝑎2, 𝑎3, … , 𝑎𝑝−1} 

C.C (2) = {𝑏, 𝑏𝑎, 𝑏𝑎2, 𝑏𝑎3, … , 𝑏𝑎𝑝−1} 
C.C (3) = {𝑏2, 𝑏2𝑎, 𝑏2𝑎2, 𝑏2𝑎3, … , 𝑏2𝑎𝑝−1}  
⋮ 
C.C (𝑝 − 1) = {𝑏𝑝−2, 𝑏𝑝−2𝑎, 𝑏𝑝−2𝑎2, 𝑏𝑝−2𝑎3, … , 𝑏𝑝−2𝑎𝑝−1} 

 
Proof: Let us consider a K-metacyclic group 𝐺 with 
generators 𝑎 and 𝑏. Then, the  elements of this group 
are of the form (Hall, 2018): 

  
1, 𝑎, 𝑎2, … , 𝑎𝑝−1, 𝑏, 𝑏2, … , 𝑏𝑝−2, 𝑏𝑎, 𝑏𝑎2, … , 𝑏𝑎𝑝−1, 𝑏2𝑎, 𝑏2𝑎2, … , 𝑏2𝑎𝑝−1, … , 𝑏𝑝−2𝑎, 𝑏𝑝−2𝑎2, … , 𝑏𝑝−2𝑎𝑝−1. 
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Thus, we see that the elements of this group are 
always either the identity or of the form 𝑎𝑥  or 𝑏𝑦 or 

𝑏𝑦𝑎𝑥 , where, 1 ≤ 𝑥 ≤ 𝑝 and 1 ≤ 𝑦 ≤ 𝑝 − 1. 
 

For the conjugacy class of 𝒂: 
Case 1: If 𝑔 ∈ 𝐺 is either equal to 1 or is a power of 
𝑎, then the value of 𝑔−1𝑎𝑔 will be 𝑎 itself as 𝑔−1 and 
𝑔 would cancel, leaving us with simply a power of 𝑎. 
Case 2: If 𝑔 is a power of 𝑏, say  
 
𝑔 = 𝑏𝑥 (1 ≤ 𝑥 ≤ 𝑝 − 1). 

 
Then, 𝑔−1 = (𝑏𝑥)−1 = 𝑏𝑝−1−𝑥 . Thus, 

 
𝑔−1𝑎𝑔 = (𝑏𝑝−1−𝑥)𝑎𝑏𝑥 
𝑔−1𝑎𝑔 = 𝑏𝑝−1−𝑥𝑏𝑎𝑟𝑏𝑥−1 
𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥𝑎𝑟𝑏𝑥−1                    (1) 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥𝑎𝑟−1𝑏𝑎𝑟𝑏𝑥−2 
𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥𝑎𝑟−2𝑏𝑎𝑟𝑎𝑟𝑏𝑥−2 
𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥𝑎𝑟−3𝑏𝑎𝑟𝑎2𝑟𝑏𝑥−2 
𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥𝑎𝑟−4𝑏𝑎𝑟𝑎3𝑟𝑏𝑥−2 
𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥𝑎𝑟−5𝑏𝑎𝑟𝑎4𝑟𝑏𝑥−2 
𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥𝑎𝑟−5𝑏𝑎5𝑟𝑏𝑥−2 
⋮ 
and so on. 

 
This will continue until the power of 𝑎 in the left 

of the R.H.S comes to zero. Hence, the steps will 
continue for 𝑟 times and the expression after 
following the steps for 𝑟 times will be as follows: 
 
𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥𝑎𝑟−𝑟𝑏𝑎𝑟.𝑟𝑏𝑥−2 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥+1𝑎𝑟
2
𝑏𝑥−2                    (2) 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥+1𝑎𝑟
2−1𝑏𝑎𝑟𝑏𝑥−3 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥+1𝑎𝑟
2−2𝑏𝑎𝑟𝑎𝑟𝑏𝑥−3 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥+1𝑎𝑟
2−3𝑏𝑎𝑟𝑎2𝑟𝑏𝑥−3 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥+1𝑎𝑟
2−4𝑏𝑎𝑟𝑎3𝑟𝑏𝑥−3 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥+1𝑎𝑟
2−4𝑏𝑎4𝑟𝑏𝑥−3 

⋮ 
and so on. 

 
This will continue until the power of 𝑎 in the left 

side of the R.H.S comes to zero, and hence the steps 
must continue for 𝑟2 times, and the expression after 
all the steps will be as follows: 
 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥+1𝑎𝑟
2−𝑟2𝑏𝑎𝑟

2𝑟𝑏𝑥−3 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥+2𝑎𝑟
3
𝑏𝑥−3                    (3) 

⋮ 
and so on. 
 

Now, looking at Eqs. 1, 2, and 3, if we continue to 
follow the same steps and keep reducing the power 
of b in the right side of the R.H.S until it comes to 
zero, the end expression will be: 
 

𝑔−1𝑎𝑔 = 𝑏𝑝−𝑥+(𝑥−1)𝑎𝑟
𝑥
𝑏𝑥−𝑥 

𝑔−1𝑎𝑔 = 𝑏𝑝−1𝑎𝑟
𝑥
 

𝑔−1𝑎𝑔 = 𝑎𝑟
𝑥
 

 

This will give distinct powers of 𝑎 from 1 up to 
𝑝 − 1 as 1 ≤ 𝑥 ≤ 𝑝 − 1 and 𝑎𝑝 = 1. Hence, the 
conjugacy class of 𝑎 contains all the powers of 𝑎. 

 

Case 3: If 𝑔 is of the form 𝑏𝑦𝑎𝑥, where 1 ≤ 𝑥 ≤ 𝑝 and 
1 ≤ 𝑦 ≤ 𝑝 − 1, then, 
 
𝑔−1 = (𝑏𝑦𝑎𝑥)−1 = 𝑎−𝑥𝑏−𝑦 = 𝑎𝑝−𝑥𝑏𝑝−𝑦−1 

 
and, 
 
𝑔−1𝑎𝑔 = (𝑎𝑝−𝑥𝑏𝑝−𝑦−1)𝑎(𝑏𝑦𝑎𝑥) 
𝑔−1𝑎𝑔 = 𝑎𝑝−𝑥(𝑏𝑝−𝑦−1𝑎𝑏𝑦)𝑎𝑥 

𝑔−1𝑎𝑔 = 𝑎𝑝−𝑥𝑎𝑟
𝑦
𝑎𝑥 (from case 2) 

𝑔−1𝑎𝑔 = 𝑎𝑝+𝑟
𝑦

 

𝑔−1𝑎𝑔 = 𝑎𝑟
𝑦

 
 

which is again a power of 𝑎. Hence, the conjugacy 
class of 𝑎 contains exactly all the powers of 𝑎. 
Meaning the conjugacy class of 𝑎 =
{𝑎, 𝑎2, 𝑎3, … , 𝑎𝑝−1} 
 
For the conjugacy class of 𝒃: 
Case 1: If 𝑔 = 1 or 𝑔 is a power of 𝑏, then the value 
of 𝑔−1𝑏𝑔 will be 𝑏 itself as 𝑔−1 and 𝑔 would cancel 
each other. 
Case 2: If 𝑔 is a power of 𝑎, say  
 
𝑔 = 𝑎𝑥(1 ≤ 𝑥 ≤ 𝑝)  
 

then, 
 

𝑔−1 = 𝑎−𝑥 = 𝑎𝑝−𝑥 
 

and, 
 

𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥𝑏𝑎𝑥 
𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥−1𝑏𝑎𝑟𝑎𝑥 
𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥−2𝑏𝑎𝑟𝑎𝑟𝑎𝑥 
𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥−3𝑏𝑎𝑟𝑎2𝑟𝑎𝑥 
𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥−4𝑏𝑎𝑟𝑎3𝑟𝑎𝑥 
𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥−5𝑏𝑎𝑟𝑎4𝑟𝑎𝑥 
𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥−2𝑏𝑎5𝑟𝑎𝑥 
⋮ 
and so on. 

 

This will continue until the power of 𝑎 in the left 
side reduces to zero, and hence the steps will go on 
for 𝑝 − 𝑥 times, and the end expression after those 
𝑝 − 𝑥 steps will be as follows: 
 
𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥−(𝑝−𝑥)𝑏𝑎(𝑝−𝑥)𝑟𝑎𝑥  
𝑔−1𝑏𝑔 = 𝑏𝑎𝑝𝑟−𝑥𝑟𝑎𝑥 

𝑔−1𝑏𝑔 = 𝑏𝑎𝑥(1−𝑟)+𝑟 
 

The power of 𝑎 in this expression will give us 
distinct values from 1 up to 𝑝 − 1 for different values 
of 𝑥 and fixed 𝑝 and 𝑟 as gcd(𝑟, 𝑝) = 1, 1 ≤ 𝑥 ≤ 𝑝 and 
𝑎𝑝 = 1. 

 
Case 3: If 𝑔 is of the form 𝑏𝑦𝑎𝑥, where 1 ≤ 𝑥 ≤ 𝑝 and 
1 ≤ 𝑦 ≤ 𝑝 − 1 
 
then, 

 
𝑔−1 = 𝑎−𝑥𝑏−𝑦 = 𝑎𝑝−𝑥𝑏𝑝−𝑦−1 

 
and, 
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𝑔−1𝑏𝑔 = (𝑎𝑝−𝑥𝑏𝑝−𝑦−1)𝑏(𝑏𝑦𝑎𝑥) 
𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥𝑏𝑝𝑎𝑥 
𝑔−1𝑏𝑔 = 𝑎𝑝−𝑥𝑏𝑎𝑥 
 

which is of the same form as in case 2 and hence the 
conjugacy class of 𝑏 = {𝑏, 𝑏𝑎, 𝑏𝑎2, 𝑏𝑎3, … , 𝑏𝑎𝑝−1} 
 
For conjugacy class of any power of 𝒃: 

For finding the conjugacy class of any power of 𝑏, 
say 𝑏𝑧, where 1 ≤ 𝑧 ≤ 𝑝 − 1, we follow the same 
steps as we did in finding the conjugacy class of 𝑏 
and simply replace 𝑏 with 𝑏𝑧. 

Thus, the conjugacy class of 𝑏𝑧 is given by 
{𝑏𝑧 , 𝑏𝑧𝑎, 𝑏𝑧𝑎2, … , 𝑏𝑧𝑎𝑝−1} for each 𝑧. Hence, we 
conclude that there are 𝑝 − 1 conjugacy classes in 
total, and they are: 
 
C.C (1) = { 𝑎, 𝑎2, 𝑎3, … , 𝑎𝑝−1} 
C.C (2) = {𝑏, 𝑏𝑎, 𝑏𝑎2, 𝑏𝑎3, … , 𝑏𝑎𝑝−1} 
C.C (3) = {𝑏2, 𝑏2𝑎, 𝑏2𝑎2, 𝑏2𝑎3, … , 𝑏2𝑎𝑝−1} 
⋮ 
C.C (𝑝 − 1) = {𝑏𝑝−2, 𝑏𝑝−2𝑎, 𝑏𝑝−2𝑎2, 𝑏𝑝−2𝑎3, … , 𝑏𝑝−2𝑎𝑝−1} 
 

Corollary 3.1: The center of a K-metacyclic group 
contains only the identity element. 
 
Proof: Total number of elements in all conjugacy 
classes as observed in theorem 3.1. 
 
= (𝑝 − 1) + 𝑝(𝑝 − 2) 
= 𝑝(𝑝 − 1) − 1  
= order of the group −1 

 
which implies that the center contains only one 
element, and hence, we can conclude that the center 
contains only the identity. 

 
Theorem 3.2: The different values of 𝑟 (the 
primitive root mod 𝑝) in a K-metacyclic group give 
the same conjugacy classes, and hence, only one 
conjugate graph is formed with each different 𝑟 for a 
fixed 𝑝 upto isomorphism. 
 
Proof: Let us suppose that there exist two values of 
𝑟, say 𝑥 and 𝑦. 
 
then, 
 
𝑎𝑏 = 𝑏𝑎𝑥 and 𝑎𝑏 = 𝑏𝑎𝑦 
𝑏𝑎𝑥 = 𝑏𝑎𝑦 
𝑎𝑥 = 𝑎𝑦 
 

which implies that they perform the same operation 
and, hence, will give the same conjugacy classes. 
Similarly, if there exist 𝑡 values of 𝑟, say 𝑥1, 𝑥2, … , 𝑥𝑡 ,  

 
then, 
 
𝑎𝑥1 = 𝑎𝑥2 = 𝑎𝑥3 = ⋯ = 𝑎𝑥𝑡  

 
hence the theorem. 

 
Theorem 3.3: The conjugate graph of a K-metacyclic 
group 𝐺 is a union of 𝑝 − 1 complete graphs, 𝑝 − 2 of 

which is of order 𝑝 and the other one is of order 𝑝 −

1. This graph contains a total of 
(𝑝+1)(𝑝−1)(𝑝−2)

2
 edges. 

 
Proof: The first part of the theorem is evident by 
looking at Theorem 3.1 and the definition of a 
conjugate graph. 

For the number of edges, since the center of a K-
metacyclic group only contains the identity (by 
corollary), hence the total number of vertices of 𝐺 
will be 𝑝(𝑝 − 1) − 1, and the total number of edges 
will be: 

 

= ∑ (|𝑥𝑖
𝐺|
2
)

𝑝−1
𝑖=1   

 
where |𝑥𝑖

𝐺| is the size of the conjugacy class of 𝑥𝑖  
 

= (𝑝−1
2
) + (𝑝

2
) + (𝑝

2
) + ⋯((𝑝 − 2)times) 

=
(𝑝 − 1)(𝑝 − 2)

2
+ (𝑝 − 2)

𝑝(𝑝 − 1)

2
 

=
(𝑝 − 1)(𝑝 + 1)(𝑝 − 2)

2
 

 

Theorem 3.4: The clique number and chromatic 
number of the conjugate graph of a K-metacyclic 
group 𝐺 are equal and is equal to 𝑝. 
 
𝜔(𝛤𝐺

𝑐) = 𝜒(𝛤𝐺
𝑐) = 𝑝 

 
Proof: We know that for a conjugate graph, the 
clique number is equal to the chromatic number 
(Erfanian and Tolue, 2012). Since the conjugate 
graph of a K-metacyclic group is a union of 𝑝(𝑝 − 1) 
complete graphs and the largest of them is of size 𝑝 
(from Theorem 3.3), hence the clique number equals 
chromatic number equals 𝑝. 
 
Example: Let 𝑋 be a K-metacyclic group taking 𝑝 =
3.Then, 𝑟(primitive root mod 3)=2 and the elements 
of 𝑋 = {1, 𝑎, 𝑎2, 𝑏, 𝑏𝑎, 𝑏𝑎2}. The conjugate graph of 𝑋 
is given in the Fig. 4. 

 

 
Fig. 4: Conjugate graph with 𝑝 = 3 

 
Clearly, Clique number 𝜔(Γ𝐺

𝑐) =Chromatic 
number 𝜒(Γ𝐺

𝑐) = 3 
 

Theorem 3.5: The conjugate graph of a K-metacyclic 
group is planar if 𝑝 = 3 and nonplanar if 𝑝 ≥ 5. 

 
Proof: Kuratowski’s theorem states that a graph is 
nonplanar if and only if it contains a subdivision of 
𝐾5 or 𝐾3,3 (Koltz, 1989). 
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Now, by definition, a subset 𝐶 of vertices of 𝐺 is 
called a clique if the induced subgraph on 𝐶 is a 
complete graph, and the maximum size of a clique is 
called the clique number of the graph 𝐺. If a graph 
has a clique number that is greater than or equal to 
5, then the graph clearly contains a subdivision of 𝐾5 
and hence is nonplanar. Since for the conjugate 
graph of a K-metacyclic group, the clique number is 
equal to 𝑝, where 𝑝(𝑝 − 1) is the order of the K-
metacyclic group, we can conclude that the graph is 
nonplanar when 𝑝 = 5. 

Now, when 𝑝 = 3, the conjugate graph is as given 
in the previous example, which is clearly planar, 
hence the theorem. 

 
Theorem 3.6: The independence number and the 
dominating number of the conjugate graph of a K-
metacyclic group are equal to 𝑝 − 1. 
𝛼(Γ𝐺

𝑐) = 𝛾(Γ𝐺
𝑐) = 𝑝 − 1  

 
Proof: We know that for a conjugate graph, the 
independence number is equal to the dominating 
number (Erfanian and Tolue, 2012). Since the 
conjugate graph of a K-metacyclic group is a union of 
𝑝 − 1 complete graphs (from Theorem 3.3), hence 
the independence number equals the dominating 
number equals 𝑝 − 1. 

 

Example: Let 𝑋 be a K-metacyclic group taking 𝑝 =
5. Then, 𝑟(primitive root mod 3)=2,3 and the 
elements of 
 
𝑋 = {1, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑏, 𝑏2, 𝑏3, 𝑏𝑎, 𝑏𝑎2, 𝑏𝑎3, 𝑏𝑎4,  
𝑏2, 𝑏2𝑎, 𝑏2𝑎2, 𝑏2𝑎3, 𝑏2𝑎4, 𝑏3𝑎, 𝑏3𝑎2, 𝑏3𝑎3, 𝑏3𝑎4}.  

 

The conjugate graph of 𝑋 is given in the Fig. 5. 
Clearly, independence number 𝛼(Γ𝐺

𝑐) = dominating 
number 𝛾(Γ𝐺

𝑐) = 4. 
 
Theorem 3.7: The line graph of the conjugate graph 
of a K-metacyclic group of order 𝑝(𝑝 − 1) is a 
disjoint union of 𝑝 − 1 regular graphs, (𝑝 − 2) of 

which are 2(𝑝 − 2)-regular graphs of order (𝑝
2
) and 

one is a 2(𝑝 − 3)-regular graph of order (𝑝−1
2
). 

 
Proof: We first state and prove two claims: 

 
Claim 1: The line graph formed with a complete 
graph of order 𝑝 − 1 will give a (2𝑝 − 3)-regular 

graph of order (𝑝−1
2
). 

 
Proof: Since the number of vertices of the complete 

graph = 𝑝 − 1, the number of edges = (𝑝−1
2
), thus, 

the number of vertices of the line graph = (𝑝−1
2
). 

 
Fig. 5: Conjugate graph with 𝑝 = 5 

 
Now, in the complete graph, the degree of each 

vertex is 𝑝 − 1 − 1 = 𝑝 − 2. Hence, if we consider an 
edge and count all edges incident to that particular 
edge, then we see that it is equal to 𝑝 − 2 + 𝑝 − 2 −
1 − 1 = 2(𝑝 − 3). Thus, the line graph formed with a 
complete graph of order (𝑝 − 1) is a 2(𝑝 − 2)-

regular graph of order (𝑝−1
2
). 

 

Claim 2: The line graph formed with a complete 
graph of order 𝑝 is a 2(𝑝 − 2)-regular graph of order 

(𝑝
2
). 

 

Proof: Number of vertices of complete graph= 𝑝, 

number of edges = (𝑝
2
), number of vertices of line 

graph = (𝑝
2
), in a complete graph, the degree of each 

vertex = 𝑝 − 1. Hence, if we consider an edge and 
count all edges incident to that particular edge, then 
we see that it is equal to 𝑝 − 1 + 𝑝 − 1 − 1 − 1 =
2(𝑝 − 2). 

Thus, the line graph formed with a complete 
graph of order (𝑝 − 1) is a 2(𝑝 − 2) regular graph of 

order (𝑝
2
). The definition of the conjugate graph of a 

K-metacyclic group, along with the above two claims, 
provides a proof for the theorem. 

 
Remark 3.1: Theorem 3.7 can further be 
generalized to find the line graph of any finite group. 
Consider the conjugate graph Γ𝐺

𝑐  of any finite group, 
say Γ𝐺

𝑐 = 𝐾𝑖 ∪ 𝐾𝑗 ∪ …∪ 𝐾𝑡 , where 2 ≤ 𝑖 ≤ 𝑗 ≤ ⋯ ≤ 𝑡 

and any 𝐾𝑟(𝑟 = 𝑖, 𝑗, … , 𝑡) is a complete graph of order 
𝑟. Then, the line graph of the conjugate graph is 
either a null graph, a regular graph, or a union of one 
or more regular graphs and/or a null graph. i.e., 
𝐿(Γ𝐺

𝑐) = 𝑋𝑖 ∪ 𝑋𝑗 ∪ …∪ 𝑋𝑡, 𝑖 ≤ 𝑗 ≤ ⋯ ≤ 𝑡 where any 

𝑋𝑟 is a 2(𝑟 − 2)-regular graph of order (𝑟
2
). 

 
Theorem 3.8: The complement graph of the 
conjugate graph of a K-metacyclic group is a 
complete multipartite graph 𝐾𝑝−1,𝑝,𝑝,…,𝑝{(𝑝−2) times}. 

 
Proof: Since the conjugate graph of the K-metacyclic 
group is a disjoint union of (𝑝 − 1) complete graphs 
(Theorem 3.3), thus, in its complement graph, every 
vertex in each component is connected to every 
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vertex in every other component except vertices in 
its own component. Thus, going in this manner, we 
find that the complement graph of the conjugate 
graph of a K-metacyclic group is the complete 
multipartite graph, 𝐾𝑝−1,𝑝,𝑝,…,𝑝{(𝑝−2) times}. 

 
Remark 3.2: Theorem 3.8 can be further 
generalized to find the complement graph of the 
conjugate graph of any finite group. 

 

Consider the conjugate graph Γ𝐺
𝑐  of any finite 

group, say Γ𝐺
𝑐 = 𝐾𝑖 ∪ 𝐾𝑗 ∪ …∪ 𝐾𝑡 , where 2 ≤ 𝑖 ≤ 𝑗 ≤

⋯ ≤ 𝑡 and any 𝐾𝑟(𝑟 = 𝑖, 𝑗, … , 𝑡) is a complete graph 

of order 𝑟. Then, the complement graph Γ𝐺
𝑐̅̅ ̅ is always 

a complete multipartite graph and is given by, Γ𝐺
𝑐̅̅ ̅ =

Ki,j,…,t. 

 
Theorem 3.9: The Laplacian of the conjugate graph 
of a K-metacyclic group of order 𝑝(𝑝 − 1) is: 

  
 

𝐿𝑖,𝑗 =

{
 

 
𝑝 − 2,                                                          if 𝑖 = 𝑗 and 𝑣𝑖 ∈ 𝐶. 𝐶(1)
𝑝 − 1,                                                         if 𝑖 = 𝑗 and 𝑣𝑖 ∉ 𝐶. 𝐶(1)

−1,          if 𝑖 ≠ 𝑗 and 𝑣𝑖 , 𝑣𝑗 ∈ 𝐶. 𝐶(𝑘), where 𝑘 = 1,2, … , 𝑝 − 1

0,                                                                                            otherwise

 

  
 

Proof: According to the definition of Laplacian 
(Merris, 1994), 

 

𝐿𝑖,𝑗 = {

deg(𝑣𝑖) ,                                             if 𝑖 = 𝑗
−1,                  if 𝑖 ≠ 𝑗, 𝑣𝑖  is adjacent to 𝑣𝑗
0,                                                   otherwise

  

 
For the conjugate graph of a K-metacyclic group, 

deg(𝑣𝑖) = 𝑝 − 2 if 𝑣𝑖  belongs to C.C(1) (referring to 
theorem 3.1 and theorem 3.3) since the graph 

component formed from C.C(1) is a complete graph 
of order 𝑝 − 1. Similarly, the value of deg(𝑣𝑖) = 𝑝 −
1 if it belongs to any other conjugacy class. 

Now, we know that any vertex 𝑣𝑖 , in the graph is 
adjacent to any other vertex 𝑣𝑗  if and only if 𝑣𝑖  and 𝑣𝑗  

belong to a specific conjugacy class. Combining the 
definition of Laplacian and the above statements, we 
get, 

  

𝐿𝑖,𝑗 =

{
 

 
𝑝 − 2,                                                          if 𝑖 = 𝑗 and 𝑣𝑖 ∈ 𝐶. 𝐶(1)
𝑝 − 1,                                                         if 𝑖 = 𝑗 and 𝑣𝑖 ∉ 𝐶. 𝐶(1)

−1,          if 𝑖 ≠ 𝑗 and 𝑣𝑖 , 𝑣𝑗 ∈ 𝐶. 𝐶(𝑘), where 𝑘 = 1,2, … , 𝑝 − 1

0,                                                                                            otherwise

 

  
 

Theorem 3.10: The girth of the conjugate graph of a 
K-metacyclic group is 3. 
 
Proof: We know that the conjugate graph is a union 
of complete graphs, and hence, we always get a cycle 
of length 3. Thus, its girth is 3. 
 
Conjecture 3.1: The spectrum of the adjacency 
matrix of a conjugate graph of a K-metacyclic group 

is of the form: {−1𝑝(𝑝−2), 𝑝 − 2, (𝑝 − 1)𝑝−2}  
 

Examples: Listing the spectrum of the conjugate 
graph of a K-metacyclic group for small values of 𝑝 
with the help of a computer we get, 
 
When 𝑝 = 3: 
Spectrum = {−1(15), 3,4(3)} 
When 𝑝 = 5: 
Spectrum = {−1(15), 3,4(3)} 
When 𝑝 = 7: 
Spectrum = {−1(35), 5,6(5)} 
When 𝑝 = 11: 
Spectrum = {−199, 9, 109} 

4. Conclusion 

In our study, we have obtained the conjugate 
graph of a K-metacyclic group 𝐺, with defining 

relations, 𝑎𝑝 = 𝑏𝑝−1 = 1, 𝑏−1𝑎𝑏 = 𝑎𝑟 , (𝑟 − 1, 𝑝) = 1, 
where 𝑟 is the primitive root modulo 𝑝 and 𝑝 is an 
odd prime. We denote this graph by Γ𝐺

𝑐 . There are 
𝑝 − 1 noncentral conjugacy classes of 𝐺 irrespective 
of the values of 𝑟. The conjugate graph of the K-
metacyclic group 𝐺 presented above is 𝐾𝑝−1⋃ 𝐾𝑝𝑝−2 . 

The graph is found to be a perfect graph, and the 
girth of the graph is always 3. The graph is planar 
only for 𝑝 = 3, otherwise it is nonplanar. The line 
graph of Γ𝐺

𝑐  is a union of regular graphs having 𝑝 − 1 
components of a different order. The complement 
graph of Γ𝐺

𝑐  is a complete multipartite graph. 

List of symbols 

𝐺 K-metacyclic group with defining relations, 𝑎𝑝 =
𝑏𝑝−1 = 1, 𝑏−1𝑎𝑏 = 𝑎𝑟 , (𝑟 − 1, 𝑝) = 1 

𝑍 Center of a group 

𝐾𝑛  Complete graph of order 𝑛 

Γ𝐺
𝑐 Conjugate graph of 𝐺 

𝐿(Γ𝐺
𝑐) Line graph of Γ𝐺

𝑐 

Γ𝐺
𝑐̅̅ ̅ Complement graph of Γ𝐺

𝑐 

𝜒(𝐺) Chromatic number of 𝐺 

𝜔(𝐺) Clique number of 𝐺 

𝛼(𝐺) Independence nymber of 𝐺 

𝛾(𝐺) Dominating number of 𝐺 
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