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This paper illustrates the successful implementation of the method of 
variation of parameters in combination with the method of characteristics 
and other techniques to obtain exact solutions for a wide range of partial 
differential equations. The proposed approach reduces partial differential 
equations (PDEs) to first-order differential equations, referred to as classical 
equations, including Bernoulli, Ricatti, and Abel equations. In addition, the 
techniques proposed have the ability to produce precise solutions for 
nonlinear second order PDEs. For each PDE class, the method's effectiveness 
is demonstrated through illustrative examples. 
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1. Introduction 

*Partial differential equations are widely used as 
models to describe complex physical phenomena in 
various fields of science, especially in fluid 
mechanics, solid state physics, and plasma waves. 
Nonlinear differential equations also include optics, 
bio-hydrodynamics, and nonlinear quantum 
mechanics (Dubey et al., 2020; Guo et al., 2020).  

In recent years, we have seen significant progress 
in the development of effective methods for 
obtaining exact solutions of nonlinear partial 
differential equations, such as the inverse scattering 
transform (Ablowitz and Clarkson, 1991), the 
extended Tanh function method (Fan, 2000), the 
truncated expansion method (Kudryashov and 
Loguinova, 2008), the F-expansion method (Zhang, 
2005a; 2005b), the Jacobi elliptic method (Shikuo et 
al., 2001), the Backlund transformations (Lu et al., 
2006), the sine-cosine function method (Wazwaz, 
2004), the (G'/G) expansion method (Wang et al., 
2008) and the extended Kudryashov method 
(Hassan et al., 2014). 
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One of the effective tools to solve PDEs is the 
method of characteristics (Higgins, 2019; Myint and 
Debnath, 2007; Zachmanoglou and Thoe, 1986; Rhee 
et al., 1986). The core idea of this method is to 
reduce the partial differential equation and give 
initial conditions to a set of differential equations 
that can be easily and directly solved resulting in 
general exact solutions for the initial problem. 

The method of variation of parameters 
(Hounkonnou and Sielenou, 2009; Polyanin and 
Manzhirov, 2006; Kečkić Jovan, 1976; Olver, 2014; 
Kevorkian, 1990) can also be successfully used in 
some cases to reduce by one the order of nonlinear 
partial differential equations. By reducing the order 
of these equations, suitable analytical methods can 
be applied for resolution.  

However, there are certain classes of nonlinear 
second-order partial differential equations that 
cannot be exactly solved using classical methods. 
Therefore, it is necessary to resort to novel methods 
to solve a wide variety of PDEs. 

In this paper, we begin by presenting the 
relatively well-known results, focusing on the 
solutions of linear PDEs in section 2. Subsequently, 
in section 3, we establish the exact solutions of 
nonlinear PDEs. These ideas will then be extended to 
more complex cases and several examples will be 
provided for illustrative purposes. 

In sections 4 and 5, we solve some classes of PDEs 
called Bernoulli type and Ricatti Model: 

 
𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥 = 𝑏(𝑥, 𝑡)𝑢 + 𝛼(𝑥, 𝑡)𝑢𝑛,  

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sbgana@iau.edu.sa
https://doi.org/10.21833/ijaas.2023.10.009
https://orcid.org/0000-0003-2083-8583
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2023.10.009&amp;domain=pdf&amp


Mhadhbi et al/International Journal of Advanced and Applied Sciences, 10(10) 2023, Pages: 78-85 

79 
 

and  
 

𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥 = 𝑏(𝑥, 𝑡)𝑢(𝑥, 𝑡) + 𝛼(𝑥, 𝑡) + β(𝑥, 𝑡)𝑢2. 
 

 
In sections 6, 7, and 8, we demonstrate the 

successful implementation of the variation of 
parameters in combination with the characteristic 
method to obtain the exact solutions of the nonlinear 
second-order partial differential equations of the 
form:  

 
𝑢𝑡𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥𝑡 = 𝑏(𝑥, 𝑡) + (𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥)𝑓(𝑢), 
𝑢𝑥𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥𝑥 = 𝑏(𝑥, 𝑡) + (𝑎(𝑥, 𝑡)𝑢𝑥 + 𝑢𝑡)𝑓(𝑢), 
𝑓′(𝑢𝑡)(𝑢𝑡𝑡 + 𝑎𝑢𝑥𝑡) = 𝐵(𝑥, 𝑡) + 𝐴(𝑢)(𝑢𝑡 + 𝑎𝑢𝑥). 
 

In the final section, we extend the proposed 
method to general classes of nonlinear second order 
partial differential equations of the form:  

 
𝑢𝑡𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥𝑡 + 𝑏(𝑢)𝑢𝑡(𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥) =

α(𝑥, 𝑡)𝑒− ∫ 𝑏(𝑢)𝑑𝑢 + 𝐺(𝑢)(𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥).  
 

The special cases 𝑏(𝑢) = −
1

𝑢
 and 𝐺(𝑢) =

β𝑢𝑛  have been investigated by Hounkonnou and 
Sielenou (2009). We apply our approach to find 
more general exact solutions. 

2. Partial differential equations of the form 𝒖𝒕 +
𝒂(𝒙, 𝒕)𝒖𝒙 − 𝛂(𝒙, 𝒕)𝒖 = 𝒃(𝒙, 𝒕)  

We consider the first order partial differential 
equation of the following form:  
 

{
𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥 − 𝛼(𝑥, 𝑡)𝑢 = 𝑏(𝑥, 𝑡)
𝑢(𝑥, 0) = 𝜙(𝑥).

                   (1) 

 

where, 𝑢 is a function of (𝑥, 𝑡) ∈ ℝ2. First, we solve 
the differential equation  
 

{
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎(𝑥(𝑡), 𝑡)

𝑥(0) = 𝑥0.
 . 

 

Then Eq. 1 can be rewritten as  
 
𝑢𝑡(𝑥(𝑡), 𝑡) + 𝑎(𝑥(𝑡), 𝑡)𝑢𝑥 − 𝛼(𝑥(𝑡), 𝑡)𝑢 = 𝑏(𝑥(𝑡), 𝑡).        (2) 
 

We multiply Eq. 2 by 𝑒− ∫
𝑡

0 𝛼(𝑥(𝑠),𝑠)𝑑𝑠, we get  
 
𝑑

𝑑𝑡
[𝑒− ∫

𝑡

0
𝛼(𝑥(𝑠),𝑠)𝑑𝑠𝑢] = 𝑏(𝑥(𝑡), 𝑡)𝑒− ∫

𝑡

0
𝛼(𝑥(𝑠),𝑠)𝑑𝑠.                   (3) 

 
Therefore, the following statement holds. 
 

Proposition 1: The first order partial differential Eq. 
1 can be reduced to the differential Eq. 3 and the 
solution of Eq. 1 is  

 

𝑢(𝑥, 𝑡) = 𝜙(𝑥0)𝑒∫
𝑡

0
𝛼(𝑥(𝑠),𝑠)𝑑𝑠 +

𝑒∫
𝑡

0
𝛼(𝑥(𝑠),𝑠)𝑑𝑠 ∫

𝑡

0
𝑏(𝑥(𝜏), 𝜏)𝑒− ∫

𝜏

0
𝛼(𝑥(𝑠),𝑠)𝑑𝑠𝑑𝜏.  

 

For illustration, let us consider this example.  
 

Example 1: Let 𝑎(𝑥, 𝑡) = 𝑥, 𝛼(𝑥, 𝑡) = 1 and  

𝑏(𝑥, 𝑡) = 𝑥 + 𝑡.  

{
𝑢𝑡 + 𝑥𝑢𝑥 − 𝑢 = 𝑥 + 𝑡
𝑢(𝑥, 0) = 𝜙(𝑥).

                         (4) 

 

Let 𝑥(𝑡) be the solution of {
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥

𝑥(0) = 𝑥0 
,  

then 𝑥(𝑡) = 𝑥0𝑒𝑡 . Eq. 4 can be rewritten as  
 
𝑑

𝑑𝑡
𝑢(𝑥(𝑡), 𝑡) = 𝑢(𝑥(𝑡), 𝑡) + 𝑥 + 𝑡. 

 
Then  
 

𝑑𝑢

𝑑𝑡
− 𝑢 = 𝑥 + 𝑡, 

𝑒−𝑡
𝑑𝑢

𝑑𝑡
− 𝑒−𝑡𝑢 = (𝑥(𝑡) + 𝑡)𝑒−𝑡, 

𝑑

𝑑𝑡
(𝑒−𝑡𝑢) = (𝑥(𝑡) + 𝑡)𝑒−𝑡. 

 
Therefore 
 

𝑢(𝑥(𝑡), 𝑡) = 𝑒𝑡𝜙(𝑥0) + 𝑒𝑡 ∫
𝑡

0
(𝑥(𝑠) + 𝑠)𝑒−𝑠𝑑𝑠 =

𝑒𝑡𝜙(𝑥𝑒−𝑡) + 𝑒𝑡 ∫
𝑡

0
(𝑥0𝑒𝑠 + 𝑠)𝑒−𝑠𝑑𝑠.  

 
The solution of Eq. 4 is  

 
𝑢(𝑥, 𝑡) = 𝑒𝑡𝜙(𝑥𝑒−𝑡) + 𝑥𝑡 − 𝑡 − 1 + 𝑒𝑡 . 

 
Fig. 1 shows the solution of Eq. 4 with 𝜙(𝑥) = 𝑥2. 
 

 
Fig. 1: Solution of Eq. 4 with 𝜙(𝑥) = 𝑥2 

3. Partial differential equations of the form 𝒖𝒕 +
𝒂(𝒙, 𝒕)𝒖𝒙 = 𝒇(𝒖)𝒃(𝒙, 𝒕) 

Let us consider the first order partial differential 
equation of the following type:  
 

{
𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥 = 𝑓(𝑢)𝑏(𝑥, 𝑡)
𝑢(𝑥, 0) = 𝜙(𝑥).

                   (5) 

  

Let 𝑥(𝑡) be the solution of {
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎(𝑥(𝑡), 𝑡)

𝑥(0) = 𝑥0.
. 

Then Eq. 5 is transformed to  
 

𝑑

𝑑𝑡
𝑢(𝑥(𝑡), 𝑡) = 𝑓(𝑢(𝑥(𝑡), 𝑡))𝑏(𝑥(𝑡), 𝑡), 
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and  
 

𝑑𝑢

𝑓(𝑢)
= 𝑏(𝑥(𝑡), 𝑡)𝑑𝑡.                    (6) 

 
Then we deduce the following result. 
 

Proposition 2: The first order partial differential Eq. 
5 can be reduced to Eq. 6. Furthermore, let 𝐹(𝑢) =
𝐵(𝑡) where 𝐵(𝑡) = 𝑏(𝑥(𝑡), 𝑡) and 𝐹(𝑢(𝑥0, 0)) =
𝑏(𝑥0, 0), then the general solution of Eq. 5 is easily 
determined by solving the equation  

 

𝐹(𝑢) = 𝐹(𝜙(𝑥0)) + ∫
𝑡

0

𝑏(𝑥(𝑠), 𝑠)𝑑𝑠. 

 
As an illustration, let us consider the following 

examples. 
 

Example 2: Let 𝑎(𝑥, 𝑡) = 𝑥, 𝑓(𝑢) = 𝑢2 and  
𝑏(𝑥, 𝑡) = 1.  
 

{
𝑢𝑡 + 𝑥𝑢𝑥 = 𝑢2

𝑢(𝑥, 0) = 𝑥.
                     (7) 

 

Since  
𝑑𝑢

𝑢2 = 1, we get  

 

𝑢(𝑥(𝑡), 𝑡) =
1

−𝑡 +
1

𝑥𝑒−𝑡

. 

 
Fig. 2 shows the solution of Eq. 7 with 𝜙(𝑥) = 𝑥. 
 

 

 
Fig. 2: Solution of Eq. 7 with 𝜙(𝑥) = 𝑥 

 
Example 3: Let 𝑎(𝑥, 𝑡) = 𝑥, 𝑓(𝑢) = 𝑢2 + 1 and 
𝑏(𝑥, 𝑡) = 𝑥 + 𝑡2.  
 

{
𝑢𝑡 + 𝑥𝑢𝑥 = (𝑢2 + 1)(𝑥 + 𝑡2)

𝑢(𝑥, 0) = 𝜙(𝑥).
                   (8) 

 
We get  

 
𝑑𝑢

𝑑𝑡
= (𝑢2 + 1)(𝑥 + 𝑡2), 

tan−1(𝑢) = tan−1(𝜙(𝑥𝑒−𝑡)) + ∫
𝑡

0

(𝑥0𝑒𝑠 + 𝑠2)𝑑𝑠. 

 
Then  

𝑢(𝑥, 𝑡) = tan(tan−1(𝜙(𝑥𝑒−𝑡)) + 𝑥(1 − 𝑒−𝑡) +
𝑡3

3
). 

 
Fig. 3 shows the solution of Eq. 8 with 𝜙(𝑥) = 𝑥. 

 
Fig. 3: Solution of Eq. 8 with 𝜙(𝑥) = 𝑥 

4. Bernoulli equation of the form 𝒖𝒕 + 𝒂(𝒙, 𝒕)𝒖𝒙 =
𝒃(𝒙, 𝒕)𝒖 + 𝜶(𝒙, 𝒕)𝒖𝒏 

We consider the Bernoulli Equation of the form:  
 

{
𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥 = 𝑏(𝑥, 𝑡)𝑢 + 𝛼(𝑥, 𝑡)𝑢𝑛

𝑢(𝑥, 0) = 𝜙(𝑥).
                  (9) 

 

Let 𝑥(𝑡) be the solution of {
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎(𝑥(𝑡), 𝑡)

𝑥(0) = 𝑥0.
.  

Let 𝑢 = 𝑢(𝑥(𝑡), 𝑡), then the general solution of Eq. 
9 can be obtained by using  
 
𝑑𝑢

𝑑𝑡
= 𝑏(𝑥(𝑡), 𝑡)𝑢 + 𝛼(𝑥(𝑡), 𝑡)𝑢𝑛, 

 
and taking 𝑣 = 𝑢1−𝑛 . 
 

Let us consider the following examples. 
 

Example 4: Let 𝑎(𝑥, 𝑡) = 𝑥, 𝑏(𝑥, 𝑡) = 𝑡, 
 𝛼(𝑥, 𝑡) = 𝑥 + 𝑡 and 𝑛 = 2.  
 

{
𝑢𝑡 + 𝑥𝑢𝑥 = 𝑡𝑢 + (𝑥 + 𝑡)𝑢2

𝑢(𝑥, 0) = 𝜙(𝑥).
                  (10) 

  
We have 𝑥(𝑡) = 𝑥0𝑒𝑡 , and  
 

𝑑𝑢

𝑑𝑡
= 𝑡𝑢 + (𝑥(𝑡) + 𝑡)𝑢2, 

 
where, 𝑢 = 𝑢(𝑥(𝑡), 𝑡). Let 𝑣 = 𝑢−1, we get  

 
𝑑𝑣

𝑑𝑡
+ 𝑡𝑣 = −(𝑥(𝑡) + 𝑡), 

 

and  
 

𝑑

𝑑𝑡
(𝑒

𝑡2

2 𝑣) = −(𝑥(𝑡) + 𝑡)𝑒
𝑡2

2 ,  

𝑣 = −𝑒−
𝑡2

2 𝑥0 ∫
𝑡

0
𝑒𝑠+

𝑠2

2 𝑑𝑠 − 𝑒−
𝑡2

2 (𝑒
𝑡2

2 − 1) +
𝑒−

𝑡2

2

𝜙(𝑥0)
.  

 

Then  

𝑢(𝑥, 𝑡) = (−𝑒−
𝑡2

2
−𝑡𝑥 ∫

𝑡

0
𝑒𝑠+

𝑠2

2 𝑑𝑠 + (𝑒−
𝑡2

2 − 1) +
𝑒−

𝑡2

2

𝜙(𝑥𝑒−𝑡)
)−1.  

 

Fig. 4 shows the solution of Eq. 10 with 𝜙(𝑥) = 𝑥. 
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Fig. 4: Solution of Eq. 10 with 𝜙(𝑥) = 𝑥 

 

Example 5: Let 𝑎(𝑥, 𝑡) = 𝑥, 𝑏(𝑥, 𝑡) = 1, 𝛼(𝑥, 𝑡) = 𝑡 
and 𝑛 = 2.  
 

{
𝑢𝑡 + 𝑥𝑢𝑥 = 𝑢 + 𝑡𝑢2

𝑢(𝑥, 0) = 𝜙(𝑥).
                  (11) 

 

Let 𝑢 = 𝑢(𝑥(𝑡), 𝑡); we get  
 

𝑑𝑢

𝑑𝑡
− 𝑢 = 𝑡𝑢2.  

 

Let 𝑣 = 𝑢−1, then  
 

𝑑𝑣

𝑑𝑡
+ 𝑣 = −𝑡,  

 
and 

  
𝑑

𝑑𝑡
(𝑒𝑡𝑣) = −𝑡𝑒𝑡 . 

 
Hence, we obtain  

 

𝑒𝑡𝑣 = ∫
𝑡

0
− 𝑠𝑒𝑠𝑑𝑠 + 𝑣(𝑥0, 0),  

𝑣(𝑥, 𝑡) = −𝑡 + 1 − 𝑒−𝑡 +
𝑒−𝑡

𝜙(𝑥𝑒−𝑡)
  

 
and 
 

𝑢(𝑥, 𝑡) = (−𝑡 + 1 − 𝑒−𝑡 +
𝑒−𝑡

𝜙(𝑥𝑒−𝑡)
)−1.  

 
Fig. 5 shows the solution of Eq. 11 with 𝜙(𝑥) =

𝑥2. 
 

 
Fig. 5: Solution of Eq. 11 with 𝜙(𝑥) = 𝑥2 

Example 6: Let 𝑎(𝑥, 𝑡) = 1, 𝑏(𝑥, 𝑡) = 𝑡, 𝛼(𝑥, 𝑡) = 𝑥 
and 𝑛 = 2.  
 

{
𝑢𝑡 + 𝑢𝑥 = 𝑡𝑢 + 𝑥𝑢2

𝑢(𝑥, 0) = 𝜙(𝑥).
                  (12) 

  
Let 𝑥(𝑡) = 𝑡 + 𝑥0 and 𝑢 = 𝑢(𝑥(𝑡), 𝑡),  
 

𝑑𝑢

𝑑𝑡
= 𝑡𝑢 + (𝑡 + 𝑥0)𝑢2.  

 
Let 𝑣 = 𝑢−1, we get  
 

𝑑𝑣

𝑑𝑡
+ 𝑡𝑣 = −(𝑡 + 𝑥0),  

𝑑

𝑑𝑡
(𝑒

𝑡2

2 𝑣) = −(𝑡 + 𝑥0)𝑒
𝑡2

2 ,  

 
and  
 

𝑒
𝑡2

2 𝑣 = − ∫
𝑡

0
(𝑠 + 𝑥0)𝑒

𝑠2

2 𝑑𝑠 +
1

𝜙(𝑥−𝑡)
.  

 
Then  

 

𝑢(𝑥, 𝑡) = (−1 + 𝑒−
𝑡2

2 − (𝑥 − 𝑡)𝑒−
𝑡2

2 ∫
𝑡

0
𝑒

𝑠2

2 𝑑𝑠 +
𝑒−

𝑡2

2

𝜙(𝑥−𝑡)
)−1.  

 

Fig. 6 shows the solution of Eq. 12 with 𝜙(𝑥) =
𝑥2. 

  

 
Fig. 6: Solution of Eq. 12 with 𝜙(𝑥) = 𝑥2 

5. Riccati model 𝒖𝒕 + 𝒂(𝒙, 𝒕)𝒖𝒙 = 𝒃(𝒙, 𝒕)𝒖 +
𝜶(𝒙, 𝒕) + 𝜷(𝒙, 𝒕)𝒖𝟐 

Let 𝑢1 be the exact solution of the Riccati Model  
 

𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥 = 𝑏(𝑥, 𝑡)𝑢 + 𝛼(𝑥, 𝑡) + 𝛽(𝑥, 𝑡)𝑢2,  
 

then by using the substitution 𝑢 = 𝑢1 + 𝑤, we get the 
Bernoulli model  

 
𝑤𝑡 + 𝑎(𝑥, 𝑡)𝑤𝑥 = 𝛾(𝑥, 𝑡)𝑤 + 𝛽(𝑥, 𝑡)𝑤2 

 

which is solved in the previous section.  

6. Partial differential equations of the form 𝒖𝒕𝒕 +
𝒂(𝒙, 𝒕)𝒖𝒙𝒕 = 𝒃(𝒙, 𝒕) + (𝒖𝒕 + 𝒂(𝒙, 𝒕)𝒖𝒙)𝒇(𝒖) 

We consider the second order partial differential 
equation of the following type:  
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𝑢𝑡𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥𝑡 = 𝑏(𝑥, 𝑡) + (𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥)𝑓(𝑢).           (13) 

 
First, let 𝑥(𝑡) be the solution of  
 

 {
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎(𝑥(𝑡), 𝑡)

𝑥(0) = 𝑥0.
   

 
Then Eq. 13 takes the form  
 

𝑑

𝑑𝑡
(𝑢𝑡(𝑥(𝑡), 𝑡)) = 𝑏(𝑥, 𝑡) + (𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥)𝑓(𝑢).            (14) 

  
We suppose that 𝑢𝑡(𝑥(𝑡), 𝑡)) = 𝐻(𝑡) + 𝐾(𝑢). 

Then Eq. 14 is rewritten as  
 

𝑑

𝑑𝑡
(𝑢𝑡(𝑥(𝑡), 𝑡)) = 𝐻′(𝑡) + 𝐾′(𝑢)(𝑢𝑡 + 𝑎𝑢𝑥).  

 
It is clear that Eq. 14 will take place if  

 

 {
𝐻′(𝑡) = 𝑏(𝑥(𝑡), 𝑡)

𝐾′(𝑢) = 𝑓(𝑢).
  

  

Hence, we have the following result. 
 

Proposition 3: The second order partial differential 
Eq. 13 can be transformed to  

 
𝑑

𝑑𝑡
(𝑢𝑡(𝑥(𝑡), 𝑡)) = 𝐻′(𝑡) + 𝐾′(𝑢)(𝑢𝑡 + 𝑎𝑢𝑥),  

 
where, the functions 𝐻 and 𝐾 are the general 

solutions of  {
𝐻′(𝑡) = 𝑏(𝑥, 𝑡)

𝐾′(𝑢) = 𝑓(𝑢)
. Let us consider the 

following example.  
 

Example 7: Let 𝑎(𝑥, 𝑡) = 𝑥, 𝑓(𝑢) = 𝑢2 and 𝑏(𝑥, 𝑡) =
𝑥 + 𝑡.  

 
𝑢𝑡𝑡 + 𝑥𝑢𝑥𝑡 = 𝑥 + 𝑡 + (𝑢𝑡 + 𝑥𝑢𝑥)𝑢2. 

 

First, we solve {
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥

𝑥(0) = 𝑥0

. The solution is 𝑥 =

𝑥0𝑒𝑡 . The functions 𝐻 and 𝐾 are general solutions of   
 
𝐻′(𝑡) =  𝑥(𝑡) + 𝑡,  
𝐾′(𝑢) = 𝑢2.  

 
Then we get  

 

𝐻(𝑡) = 𝑥0𝑒𝑡 +
𝑡2

2
+ 𝐶1, 

𝐻(𝑡) = 𝑥 +
𝑡2

2
+ 𝐶1,  

 

and  
 

𝐾(𝑢) =
1

3
𝑢3 + 𝐶2. 

 
which reduces the partial differential equation to the 
ODE of order one: 

 

𝑢𝑡(𝑥, 𝑡) = 𝑥 +
𝑡2

2
+

𝑢3

3
+ 𝐶, 

 

known as the Abel equation which can be solved by 
various methods. For more details, see Zwillinger 
(1998), Murphy (1960), and Kamke (1977). In 
Panayotounakos and Zarmpoutis (2011), the authors 
give implicit solutions using the first kind of Bessel’s 
functions and the second kind of Newmann functions 
for the canonical form of Abel’s equation. 

7. Partial differential equations of the form 𝒖𝒙𝒕 +
𝒂(𝒙, 𝒕)𝒖𝒙𝒙 = 𝒃(𝒙, 𝒕) + (𝒂(𝒙, 𝒕)𝒖𝒙 + 𝒖𝒕)𝒇(𝒖) 

Let us consider the second order partial 
differential equation of the following type:  
 
𝑢𝑥𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥𝑥 = 𝑏(𝑥, 𝑡) + (𝑎(𝑥, 𝑡)𝑢𝑥 + 𝑢𝑡)𝑓(𝑢).          (15) 

 
We take 𝑢𝑥(𝑥(𝑡), 𝑡) = 𝐻(𝑡) + 𝐾(𝑢), where the 

functions 𝐻 and 𝐾 are the general solutions of 
 
𝐻′(𝑡) = 𝑏(𝑥(𝑡), 𝑡)

𝐾′(𝑢) = 𝑓(𝑢).
  

 
Example 8: Consider the second order partial 
differential equation  

 
𝑢𝑥𝑡 + 𝑥𝑢𝑥𝑥 = 𝑥 + 𝑡 + (𝑢𝑡 + 𝑥𝑢𝑥)𝑢2.  

  
In Eq. 15, we take 𝑏(𝑥, 𝑡) = 𝑥 + 𝑡, 𝑎(𝑥, 𝑡) = 𝑥 and 

𝑓(𝑢) = 𝑢2. 
The functions 𝐻 and 𝐾 are the general solutions 

of  
 

𝐻′(𝑡) = 𝑥0𝑡 + 𝑡

𝐾′(𝑢) = 𝑢2.
   

 

Then  

𝑢𝑥(𝑥, 𝑡) = 𝑥 +
𝑡2

2
+

𝑢3

3
+ 𝐶. 

 
The latter is Abel’s equation which is integrable 

by various methods known in the literature. See 
Zwillinger (1998), Murphy (1960), and Kamke 
(1977) for more details  . 

8. Partial differential equations of the form 
𝒇′(𝒖𝒕)(𝒖𝒕𝒕 + 𝒂𝒖𝒙𝒕) = 𝑩(𝒙, 𝒕) + 𝑨(𝒖)(𝒖𝒕 + 𝒂𝒖𝒙) 

Consider the non linear second order differential 
equation of the general form  
 
𝑓′(𝑢𝑡)(𝑢𝑡𝑡 + 𝑎𝑢𝑥𝑡) = 𝐵(𝑥, 𝑡) + 𝐴(𝑢)(𝑢𝑡 + 𝑎𝑢𝑥).              (16) 
 

Let 𝑓(𝑢𝑡) of the form 𝐻(𝑡) + 𝐾(𝑢), then  
 

𝑑

𝑑𝑡
(𝑓(𝑢𝑡)) = 𝐻′(𝑡) + 𝐾′(𝑢)(𝑢𝑡 + 𝑎𝑢𝑥)  

𝑓′(𝑢𝑡)(𝑢𝑡𝑡 + 𝑎𝑢𝑥𝑡) = 𝐻′(𝑡) + 𝐾′(𝑢)(𝑢𝑡 + 𝑎𝑢𝑥).                (17) 

 
Therefore, the following statement holds.  
 

Proposition 4: The general solution of the non 
linear second order differential Eq. 16 is obtained by 
solving Eq. 17 where the functions H and K are the 
general solutions of 𝐻′(𝑡) = 𝐵(𝑥(𝑡), 𝑡) and 𝐾′(𝑢) =
𝐴(𝑢).  
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9. Partial differential equations of the form 𝒖𝒕𝒕 +

𝒂𝒖𝒙𝒕 + 𝒃(𝒖)𝒖𝒕(𝒖𝒕 + 𝒂𝒖𝒙) = 𝜶(𝒙, 𝒕)𝒆− ∫ 𝒃(𝒖)𝒅𝒖 +
𝑮(𝒖)(𝒖𝒕 + 𝒂𝒖𝒙)  

Consider the non linear second order partial 
differential equation of the general form  
 

𝑢𝑡𝑡 + 𝑎𝑢𝑥𝑡 + 𝑏(𝑢)𝑢𝑡(𝑢𝑡 + 𝑎𝑢𝑥) = 𝛼(𝑥, 𝑡)𝑒− ∫ 𝑏(𝑢)𝑑𝑢 +
𝐺(𝑢)(𝑢𝑡 + 𝑎𝑢𝑥).                    (18) 
 

In Hounkonnou and Sielenou (2009), the author 
investigated special cases of Eq. 18 when u and α are 
functions of one variable. Multiplying both sides of 

Eq. 18 by 𝑒∫ 𝑏(𝑢)𝑑𝑢 , we get  
 

(𝑢𝑡𝑡 + 𝑎𝑢𝑥𝑡)𝑒∫ 𝑏(𝑢)𝑑𝑢 + 𝑏(𝑢)𝑢𝑡(𝑢𝑡 + 𝑎𝑢𝑥)𝑒∫ 𝑏(𝑢)𝑑𝑢 =

𝛼(𝑥, 𝑡) + 𝐺(𝑢)(𝑢𝑡 + 𝑎𝑢𝑥)𝑒∫ 𝑏(𝑢)𝑑𝑢  
 

then 
 
𝑑

𝑑𝑡
[𝑢𝑡(𝑥(𝑡), 𝑡)𝑒∫ 𝑏(𝑢)𝑑𝑢] = 𝛼(𝑥, 𝑡) + 𝐺(𝑢)(𝑢𝑡 +

𝑎𝑢𝑥)𝑒∫ 𝑏(𝑢)𝑑𝑢  
 

hence, the nonlinear second order differential Eq. 18 
is easily solved if we suppose that  

 
𝑢𝑡 = (𝐻(𝑡) + 𝐾(𝑢))𝑒− ∫ 𝑏(𝑢)𝑑𝑢                 (19) 

 
then,  

 
𝐻′(𝑡) + 𝐾′(𝑡)(𝑢𝑡 + 𝑎𝑢𝑥) = 𝛼(𝑥, 𝑡) + 𝐺(𝑢)(𝑢𝑡 +

𝑎𝑢𝑥)𝑒∫ 𝑏(𝑢)𝑑𝑢  

 
where, the functions 𝐻 and 𝐾 are solutions of  
 
𝐻′(𝑡) = 𝛼(𝑥(𝑡), 𝑡) 

𝐾′(𝑢) = 𝐺(𝑢)𝑒∫ 𝑏(𝑢)𝑑𝑢. 

 
We obtain the following result. 
 

Proposition 5: The solution of the nonlinear second 
order differential Eq. 18 is obtained by solving Eq. 19 
where the functions H and K are the general 
solutions of 𝐻′(𝑡) = 𝛼(𝑥(𝑡), 𝑡) and 𝐾′(𝑢) =

𝐺(𝑢)𝑒∫ 𝑏(𝑢)𝑑𝑢 
 

Example 9: Let us consider the nonlinear second 
order differential Eq. 18 with  
 

𝑏(𝑢) = −
1

𝑢
, 𝐺(𝑢) = 2𝑢2,  𝛼 = 𝑥 + 𝑡 and  𝑎 = 𝑥,  

 
then  
 

{

𝑢𝑡𝑡 + 𝑥𝑢𝑥𝑡 −
𝑢𝑡

𝑢
(𝑢𝑡 + 𝑥𝑢𝑥) = (𝑥 + 𝑡)𝑢 + 2𝑢2(𝑢𝑡 + 𝑥𝑢𝑥)

𝑢(𝑥, 0) = 𝑥

𝑢𝑡(𝑥, 0) = 𝑥2 + 𝑥3

. 

               (20) 

 
First, let 𝑥(𝑡) be the solution of  
 

 {
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥

𝑥(0) = 𝑥0.
  

Then 𝑥(𝑡) = 𝑥0𝑒𝑡 . Taking  
 

𝐻′(𝑡) = 𝛼(𝑥(𝑡), 𝑡) = 𝑥0𝑒𝑡 + 𝑡, 

  
and  
 

𝐾′(𝑢) = 2𝑢2(
1

𝑢
) = 2𝑢  

 
we get  
 

𝐻(𝑡) = 𝑥0𝑒𝑡 +
𝑡2

2
  

 
and  
 
𝐾(𝑢) = 𝑢2. 

 
We obtain  

 

𝑢𝑡 = (𝑥 +
𝑡2

2
+ 𝑢2 + 𝑐)𝑢,  

 
which can be reduced to the usual canonical form of 
Abel's equation of the first kind  
 
𝑤′𝑡(𝑥, 𝑡) = 𝑤3(𝑥, 𝑡) + 𝑘(𝑥, 𝑡).                 (21) 

 
The latter is integrable by various methods 

known in the literature. See Zwillinger (1998), 
Murphy (1960), and Kamke (1977) for a good 
compilation of techniques developed to solve Eq. 21 
for particular expressions of 𝑘(𝑥, 𝑡).  

If we take the initial condition 𝑢(𝑥, 0) = 𝑥 and  
 
𝑢𝑡(𝑥, 0) = 𝑥2 + 𝑥3,   
 

then  
 

𝑢𝑡(𝑥, 𝑡) = (𝑥 +
𝑡2

2
+ 𝑢2)𝑢.  

 
Fig. 7 shows the solution of Eq. 20 with 𝑢(𝑥, 0) = 𝑥 
and 𝑢𝑡(𝑥, 0) = 𝑥2 + 𝑥3. 

 

 
Fig. 7: Solution of Eq. 20 with 𝑢(𝑥, 0) = 𝑥 and 𝑢𝑡(𝑥, 0) =

𝑥2 + 𝑥3 

 

In Eq. 18, we take 𝑏(𝑢) = −
1

𝑢
 then  
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𝑢𝑡𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥𝑡 −
𝑢𝑡

𝑢
(𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥) = 𝛼(𝑥, 𝑡)𝑢 +

𝐺(𝑢)(𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥).   

 
If 𝐺 = 𝑢𝑛,  

 
𝑢𝑡𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥𝑡 −

𝑢𝑡

𝑢
(𝑢𝑡 + 𝑎(𝑥, 𝑡)𝑢𝑥) = 𝛼(𝑥, 𝑡)𝑢 + 𝑢𝑛(𝑢𝑡 +

𝑎(𝑥, 𝑡)𝑢𝑥).                    (22) 

 
Therefore, we state the following result. 
 

Proposition 6: The exact solution of the non linear 
second order partial differential Eq. 22 is  
 

𝑢 = [−𝑒−𝑛 ∫ 𝐻(𝑡)𝑑𝑡 ∫ 𝑒𝑛 ∫ 𝐻(𝑡)𝑑𝑡𝑑𝑡]−
1

𝑛.  

 
where, the function 𝐻 is the general solution of 
𝐻′(𝑡) = 𝛼(𝑥(𝑡), 𝑡).  

 
Proof: Eq. 19 can be rewritten as  

 
𝑢𝑡 = (𝐻(𝑡) + 𝐾(𝑢))𝑢.                  (23) 

  
where, 𝐻′(𝑡) = 𝛼(𝑥(𝑡), 𝑡) and 𝐾′(𝑢) =

𝑢𝑛−1. Substituting 𝐾(𝑢) =
𝑢𝑛

𝑛
 to Eq. 23, we get  

 

𝑢𝑡 = 𝐻(𝑡)𝑢 +
𝑢𝑛+1

𝑛
  

 
which is Bernoulli differential Equation where 𝐻(𝑡) 
is the general solution of 𝐻′(𝑡) = 𝛼(𝑥(𝑡), 𝑡). Then we 
get  

 

𝑢𝑡 − 𝐻(𝑡)𝑢 =
𝑢𝑛+1

𝑛
.                   (24)  

  

Let 𝑣 = 𝑢−𝑛 then 𝑢 = 𝑣−
1

𝑛 and  
 

𝑢𝑡 = −
1

𝑛
𝑣𝑡𝑣−

1

𝑛
−1.  

 

Eq. 24 takes the form  
 

−
1

𝑛
𝑣𝑡𝑣−

1

𝑛
−1 − 𝐻(𝑡)𝑣−

1

𝑛 =
1

𝑛
𝑣−

𝑛+1

𝑛 ,  

 

which leads to the simpler form  
 
𝑣𝑡 + 𝑛𝐻(𝑡)𝑣 = −1,  
 

we obtain the solution  
 

𝑣 = −𝑒−𝑛 ∫ 𝐻(𝑡)𝑑𝑡 ∫ 𝑒∫ 𝑛𝐻(𝑡)𝑑𝑡𝑑𝑡.  
 

Finally, the exact solution of the nonlinear second 
order partial differential Eq. 22 is determined by  
 

𝑢 = [−𝑒−𝑛 ∫ 𝐻(𝑡)𝑑𝑡 ∫ 𝑒𝑛 ∫ 𝐻(𝑡)𝑑𝑡𝑑𝑡]−
1
𝑛. 

10. Conclusion 

We investigated a wide range of partial 
differential equations reduced to first order by the 
variation of parameters method and other 
techniques, such as the method of characteristics, in 

this paper. Usually, these first-order differential 
equations can be transformed into well-known 
solvable classical differential equations. It has been 
demonstrated that the techniques developed in this 
research may be extended to various classes of 
nonlinear second order partial differential equations. 
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