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This research paper investigates the influence of different initial design 
techniques on the area, timing, and power aspects of technology-mapped 
designs. As a practical case study, we undertake the design and analysis of a 
32-bit arithmetic logic unit (ALU) utilizing two distinct adder approaches. 
The ALU, a fundamental component of all processors, comprises three major 
units: the Adder responsible for signed and unsigned number addition and 
subtraction, the Logic unit which handles bitwise logical operations, and the 
Shifter unit facilitates arithmetic and logical shift operations. The two adder 
designs are based on the ripple carry method (ALU_RCA) and the Sklansky 
method (ALU_SKL), respectively. The design and analysis process involved 
utilizing established toolsets from Cadence, including NCSIM for simulation 
and verification, RTL Compiler for logic synthesis, static timing analysis and 
power estimation, and SOC encounter tool for floorplanning and layout. 
Through this investigation, we aim to shed light on the varying performance 
implications of different initial design approaches in technology-mapped 
designs. 
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1. Introduction 

*The fundamental objective of this scholarly work 
is to deliberate upon the ramifications of initial 
design choices on the dimensions of area, timing, and 
power consumption in the context of Application-
Specific Integrated Circuit (ASIC) designs. 
Furthermore, this exposition aims to provide a 
comprehensive overview of the ASIC design 
workflow, spanning from its inception with Register-
Transfer Level (RTL) design to the conclusive phases 
of floorplanning and layout synthesis. Of paramount 
significance in the realm of processor architecture, 
the Arithmetic Logic Unit (ALU) assumes a pivotal 
role. In this study, meticulous attention has been 
devoted to the development and VHDL coding of a 
32-bit ALU. The research endeavor was inaugurated 
with the conceptualization and realization of the 32-
bit ALU, tailored for integration within a processor 
architecture, as illustrated in Figs. 1 and 2 (Alshortan 
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et al., 2021; Alrashdi and Khan, 2022; Durrani et al., 
2016; Dossis, 2015). 

Fig. 2 presents an intricate exposition 
encompassing both the detailed specification and the 
design schematic of a 32-bit ALU, which has been 
developed in accordance with the provided 
specifications. The design encapsulated within Fig. 2 
is composed of three discrete functional blocks: 
firstly, an adder/subtractor module; secondly, a 
bitwise operations module; and lastly, a shifter 
module. The adder module itself incorporates two 
distinct implementations, namely the Ripple carry 
and Sklansky configurations. This ALU design 
conforms to the conventional architecture requisite 
for integration within a 32-bit processor. It 
encompasses two 32-bit input data signals, denoted 
as 'a' and 'b,' an additional 32-bit output data signal 
('out'), a 4-bit operation code ('op') signal, as well as 
the imperative reset and clock signals governing 
dynamic timing. It is essential to underscore that the 
ALU inputs and outputs adhere strictly to positive 
edge-triggered flip-flop behavior. The ALU, as 
envisioned, comprises four primary functional 
blocks: arithmetic, logic, shift, and multiplexer. The 
transition of data through these functional stages 
occurs on each positive edge of the clock signal 
(CLK). The operands 'A' and 'B,' together with the 
operation code, initially populate the input flip-flop 
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unit before proceeding to engage with the three 
functional blocks. It merits mention that the ALU 
design incorporates a deliberate two-clock cycle 
delay to optimize its functionality. To validate the 
VHDL code's adherence to the anticipated behavior 
of the 32-bit ALU, rigorous simulations and 
verification procedures were conducted employing 
the Cadence simulation tool, specifically NCSIM (Gan 
et al., 2015; Huang et al., 2018; Han, 2013; Iannacci, 
2021; Jha et al., 2014; Khan, 2023; Khan et al., 2021). 

2. Synthesis 

The essence of the synthesis process lies in the 
transformation of VHDL code into an RTL netlist, 
which assumes the format of standard cells. It is 
imperative to note that all the simulations 
showcased within this scholarly work were executed 
using the Cadence platform, employing the 130nm 
process design kit as the foundation. In the context 
of our 32-bit ALU design, the initial code was 

expressed in VHDL. However, it is noteworthy that 
Cadence predominantly operates with Verilog. 
Consequently, the primary step executed by the RTL 
compiler entailed the translation of the VHDL code 
into a Verilog netlist. Concurrently, Cadence 
undertook a critical verification process to ascertain 
the synthesizability of the code. This verification step 
holds paramount importance, as only synthesizable 
code can be effectively mapped onto the designated 
process technology. Subsequent to this pivotal phase, 
a static timing analysis (STA) was conducted to 
assess the temporal performance characteristics of 
the design. It is crucial to underscore that static 
timing analysis delves into the timing performance 
of the design without necessitating simulation, 
providing invaluable insights into the design's 
temporal behavior (Khan and Lin, 2014a; 2014b; 
Khan et al., 2018a; Li et al., 2023; Marculescu et al., 
1998). 

 

 
Fig. 1: A simple block-level diagram of 32-bit ALU 

 

 
Fig. 2: Arithmetic logic unit (ALU) specifications and simple architecture 
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entity ALU is
port(
Clk : in std_logic;
Reset : in std_logic;
A : in std_logic_vector(31 downto 0);
B : in std_logic_vector(31 downto 0);
Op : in std_logic_vector(3 downto 0);
Outs : out std_logic_vector(31 downto 0));
end ALU;
* 0000: add A+B (signed)
* 0001: add A+B (unsigned)
* 0010: sub A-B (signed)
* 0011: sub A-B (unsigned)
* 0100: bitwise AND
* 0101: bitwise OR
* 0110: bitwise NOR
* 0111: bitwise XOR
* 1000: shift left
* 1001: shift right (logical)
* 1010: shift right (arithmetical, signed)
* for all other Op codes a zero output vector should be given
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3. Ripple-ALU 

The first design was ripple carry adder ALU_RCA. 
We synthesized our design without any timing 
constraints with low effort. Table 1 shows the worst-
case delay and estimated area results with different 
synthesis timing constraints. 

From Table 1, we observe that the ripple-adder 
meets the timing constraints in the case of 2681ps 
but it failed in the case of 1250ps. Fig. 3 shows the 
worst-case path of ALU_RCA. 

By checking the worst-case path shown in Fig. 3, 
it is observed that the worst-case path of ALU_RCA is 

composed of all stages of the ripple-adder 
component, regardless of the timing constraint. 

 
Table 1: ALU implementation with ripple carry adder 

Timing constraint 
(ps) 

Worst case delay 
(ps) 

Estimated area 
(µm²) 

Unconstraint 4464 22909 
1250 1250 15540 

4. Sklansky-ALU  

Table 2 shows the worst-case delay and 
estimated area results with different synthesis 
timing constraints using the Sklansky adder. 

 

 
Fig. 3: The worst-case path of ALU_RCA 

 
Table 2: ALU implementation with Sklansky adder 

Timing constraint 
(ps) 

Worst case delay 
(ps) 

Estimated area 
µm² 

Unconstraint 5223 21721 
2683 2681 14521 
1250 2096 15203 

 

Table 3 shows the results of power analysis using 
ripple carry adder and the Table 4 represents the 
results of power analysis using Sklansky adder. All 
these results were obtained using a Cadence 130nm 
process technology design kit. Fig. 4 shows the 

worst-case path of the Sklansky adder. We observed 
that the shifter path has taken the place of the adder 
path to constitute the worst-case path, i.e. the adder 
cell has changed to a non-dominant factor in terms of 
circuit delay, which can be demonstrated by the 
10_critical_path report we acquired during the 
simulation. The entire first three critical paths 
belong to the shifter block, and then the arithmetic 
block and the shifter block (Khan et al., 2018b; 2017; 
Merkel, 2018; Markov et al., 2015; Nouaiti et al., 
2019; O'Dare and Arslan, 1994). 

 
Table 3: ALU_RCA power report 

Worst delay 
[ps] 

Leakage power 
(0.02) (µw) 

Dynamic power 
(0.02) (µw) 

Total power (0.02) 
(µw) 

Leakage power 
(0.1) (µw) 

Dynamic power 
(0.1) (µw) 

Total power 
(0.1) (µw) 

2200 416568 2215903 2632472 416329 5004717 5421046 
2400 371298 1958989 2330288 371509 4582199 4953708 
2600 360711 1823009 2183721 360611 4447638 4808250 

 
Table 4: ALU_SKL power report 

Worst delay 
[ps] 

Leakage power 
(0.02) (µw) 

Dynamic power 
(0.02) (µw) 

Total power (0.02) 
(µw) 

Leakage power 
(0.1) (µw) 

Dynamic power 
(0.1) (µw) 

Total power 
(0.1) (µw) 

2097 355049 1881255 2236304 355291 4233334 4588626 
2381 338584 1789888 2128472 338780 4185260 4524040 
2580 337865 1692527 2030392 338331 4045702 4384033 
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Fig. 4: The worst-case path of ALU_SKL 

 



Alshortan et al/International Journal of Advanced and Applied Sciences, 10(9) 2023, Pages: 68-74 

71 
 

Fig. 5 presents a visual juxtaposition of the 
implementation area when employing both the 
ripple carry adder and the Sklansky adder under 
varying timing constraints. In a complementary 

manner, Fig. 6 provides an analytical examination of 
power consumption, elucidating a comparative 
assessment between the ripple carry and Sklansky 
ALU across different timing constraints.  

 

 
Fig. 5: Area of implementation of ALU-RCA and ALU-SKL 

 

It is interesting to compare how the area scales 
with stricter timing constraints between the 
ALU_RCA and ALU_SKL. According to the results 
obtained, both ALU_RCA and ALU_SKL sacrifice the 
area utilization to shorten the worst-case delay. 

Meanwhile, under the same timing constraints, the 
area of the former is larger than the latter and the 
ratio of them tends to decrease with the timing 
constraint rising from 2200ps to 2800ps.  

 

 
Fig. 6: Power analysis comparison of ALU_RCA and ALU_SKL 

 

5. Power analysis  

In the ensuing analysis, we embark upon a 
comparative evaluation between ALU_RCA and 
ALU_SKL with respect to power consumption, 
subject to varying timing constraints. Specifically, we 
have set the input probability for the high logic state 
at a fixed value of 0.5, while delineating the toggling 
probability at two distinct levels, namely 0.02 and 
0.1. Tables 5 and 6, upon initial examination, reveal 
two salient observations. Firstly, regardless of the 
chosen ALU architecture, there exists a positive 
correlation between the stringency of the imposed 
timing constraints and the magnitude of power 
dissipation. In other words, stricter timing 

constraints result in greater power dissipation. 
Secondly, when operating under identical timing 
constraints, it becomes evident that the ALU 
associated with an input signal exhibiting a toggling 
probability of 0.1 dissipates nearly twice as much 
power as its counterpart group. This discrepancy can 
be attributed to the fundamental principle that the 
toggling probability bears a direct proportionality to 
dynamic power, which, in turn, constitutes the 
predominant component of the overall power 
consumption (Khan et al., 2014a; 2014b; Pedroni, 
2020; Buzdar et al., 2017a; 2017b). From Fig. 6, it is 
obvious that the power dissipation of ALU_RCA is 
larger than that of ALU_SKL in case of the same 
values of timing constraint and the toggling 
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probability. Furthermore, the ratio of them tends to 
get more and closer to one, i.e. the ALU_SKL 
gradually takes less advantage over the ALU_RCA in 
terms of power efficiency. In order to get more 
insight into this trend, more simulations and 
analyses have been done to generate Tables 5 and 6. 
Table 6 shows that ALU_SKL dissipates more power 
than the other structure under the condition of 
relaxed timing constraints. However, it is usually 
meaningless to operate ALU_SKL with much-relaxed 
timing constraints, and hence in most cases, 
ALU_RCA does not compete with the ALU_SKL in 
terms of power. Figs. 7 and 8 show the power 
dissipation of ALU_RCA and ALU_SKL using different 
timing constraints. Fig. 9. shows the Power 
comparison between ALU_RCA and ALU_SKL on 
different timing constraints (Salman et al., 2009; 

Stojanovic and Oklobdzija, 1999; Scheffer et al., 
2006). 

From Table 6 It can be illustrated that the power 
dissipation of the random vectors is much larger 
than the other types of test vectors because the 
dynamic power of the random vector is the largest of 
all, which can be attributed to its high toggling rate. 
After we got verified and synthesized netlists, the 
designs would be taken into place and route. 
Cadence Soc Encounter was used to implement in 
this stage and an already finished netlist was used. 
The general place and route flow and optimization in 
each step as well as the CAD tool was reviewed 
(Simicic et al., 2018; Shoukat and Khan 2018a; 
2018b; Thomas, 2023; Tang and Yao, 2007; Choi and 
Swartzlander, 2008).  

 
Table 5: Power analysis on the relaxed timing constraint 

Worst delay [ps] Ripple (0.02) (µw) Skl (0.02) (µw) Ripple (0.1) (µw) Skl (0.1) (µw) 
4300 1582673 1630714 3868661 3998876 
3800 1792065 1739224 4450330 4185087 

 
Table 6: The comparison of the power dissipation between the test vectors with different characters 
Worst delay [ps] Leakage power (µw) Dynamic power (µw) Total power (µw) 

Random 582896 462392 1045289 
Regular 550044 171421 721466 

Realtrace 551901 201363 753264 

 

 
Fig. 7: Power dissipation of ALU_RCA using different 

timing constraints 
 

 
Fig. 8: Power dissipation of ALU_SKL using different 

timing constraints 
 

 
Fig. 9: Power comparison between ALU_RCA and ALU_SKL 

6. Place and route 

Following the successful verification and 
synthesis of netlists, we transitioned to the "place 
and route" phase, facilitated by the Cadence SOC 
Encounter tool. SOC Encounter served as the 
platform for executing floor planning, standard cell 
placement, and routing tasks. Notably, floor planning 
entails the strategic determination of the spatial 
arrangement of various design blocks on the chip, 
with a profound emphasis on achieving a well-
optimized partitioning of the design. In our initial 
endeavor, as delineated in Table 7, we adhered to the 
floor plan illustrated in Fig. 10. Subsequent to the 
floor planning stage, we proceeded with the 
requisite ancillary tasks, encompassing pin 
placement, power grid routing, standard cell 
placement, clock tree synthesis, and routing. 
Regrettably, our initial attempt failed to conform to 
the stringent timing constraint of 3.2 ns, evidenced 
by the presence of negative timing slack, signifying 
non-compliance with the stipulated temporal 
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requirements. Within this initial attempt, four 
violations surfaced, primarily attributable to 
geometric infringements, specifically the existence of 
minimum cuts. These infractions were diligently 
addressed, while no process-related violations were 
detected. In our second endeavor, as detailed in 
Table 8, we adopted a distinct approach by 
relocating all components beyond the confines of the 
designated box. This approach obviated the need for 

explicit partitioning and manual pin placement, 
delegating these tasks to the tool's automated 
decision-making process concerning the placement 
of standard cells. Remarkably, this second approach 
yielded significantly improved results, with timing 
slack registering at just -0.270 ns, denoting a notable 
enhancement compared to our initial attempt (Table 
7). 

 
Table 7: First attempt at optimization 

 Pre CTS optimization Post CTS optimization Routing Post routing Final timing 

Required time (ns) 3.138 3.141 3.416 3.138 3.138 

Arrival time (ns) 4.084 4.361 4.314 4.084 4.084 

Time slack (ns) -0.945 -0.947 -0.947 -0.945 -0.945 

 
Table 8: Second attempt at optimization 

 Pre CTS optimization CTS Post CTS optimization Routing Post routing Final timing 
Required time (ns) 3.135 3.455 3.447 3.464 3.467 3.467 

Arrival time (ns) 3.948 4.119 3.770 3.766 3.737 3.737 
Time slack (ns) -0.8413 -0.864 -0.323 -0.302 -0.270 -0.270 

 

 
Fig. 10: Logic partitioning during place and route 

7. Conclusion 

This article's research entails the realization of a 
32-bit ALU employing two distinct adder 
architectures: the ripple carry adder and the 
Sklansky adder. Our investigation involves a 
comprehensive comparison of the outcomes 
achieved through these two different adder 
implementations, with particular emphasis on 
diverse timing constraints. The synthesis results 
revealed a discernible disparity in the dynamic 
evolution of the area occupied by the ripple carry 
adder in contrast to the Sklansky adder. This 
discrepancy arises from the inherent necessity of the 
ripple carry adder to expend more resources in 
order to comply with more stringent timing 
constraints, albeit at the cost of increased spatial 
occupancy. Conversely, the ALU founded upon the 
Sklansky adder exhibited commendable 
performance, effortlessly meeting the stringent 
timing constraints without necessitating significant 
expansions in area or augmentations in power 
consumption. Intriguingly, our analysis also 
discerned that the ALU_RCA exhibited a relatively 
smaller footprint and lower power consumption 
when juxtaposed against the ALU_SKL. 
Consequently, it becomes evident that, under 

conditions where timing constraints are not overly 
demanding, the utilization of the ALU_RCA proves to 
be a more efficacious design choice in terms of 
optimizing area and power consumption. 
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