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We propose a novel lifetime model by extending the new exponential-gamma 
distribution to the exponentiated new exponential-gamma distribution. This 
extension allows for the derivation of a more flexible density function that 
combines the characteristics of the exponential and gamma distributions. We 
present various statistical properties of the newly proposed method, 
including the cumulative function, probability density function, moment-
generating function, and moments. Additionally, we discuss the estimation of 
parameters using maximum likelihood. To compare the performance of our 
newly developed model with existing probability distributions (gamma, 
exponential, Lindley, generalized gamma, generalization of the generalized 
gamma, and new exponential-gamma distribution), we employ model 
selection criteria such as the Akaike Information Criterion (AIC), the 
corrected Akaike Information Criterion (AICC), and the Bayesian Information 
Criterion (BIC). The application of these criteria to different models 
demonstrates that our proposed model outperforms the other six models 
across various datasets. For instance, in the first dataset, the AIC, AICC, and 
BIC values for our model are 366.975, 373.805, and 373.805, respectively, 
whereas the values for the other six models (exponential, Lindley, 
generalized gamma, generalization of the generalized gamma) range from 
503.012 to 834.327. We conduct simulation studies to assess the efficiency of 
our proposed model. Furthermore, we apply the proposed method to three 
real data applications to further examine its effectiveness. It is important to 
note that the quantile function of the proposed model does not have a closed-
form solution, requiring the computation of the quantile function through the 
Newton-Raphson iterative approach. 
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1. Introduction 

*The gamma distribution (α, β) was developed by 
Thom (1958), it is encountered as a lifetime 
distribution and has been employed extensively ever 
since. Its theories are widely studied, applied to 
different fields of knowledge, and have been 
developed for a number of distributions. The 
survival function of gamma distribution has no 
closed-form expression which is the negative aspect 
of this acknowledged distribution, moreover, it has a 
decreasing failure rate (Dahiya and Gurland, 1972). 
It was extended and generalized by Stacy (1962), to 
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define the probability density function (pdf), which 
received special attention, 
 

𝑓𝐺(𝑥; α, θ) =
1

Γ(α)
θα𝑥α−1𝑒−θ𝑥;    𝑥 > 0,  α > 0,  θ > 0        (1) 

 

The gamma distribution is conventionally 
selected in lifetime data analysis due to monotone 
risk functions which are favored by this type of data. 
The pitfall has no closed-form risk function, and 
sometimes the computation of the numerical 
integration is necessary. The exponential 
distribution is a reduced form of gamma distribution 
when the shape parameter 𝛽 =  1, and its survival 
and hazard functions are straightforward which 
makes exponential distribution a bit acknowledged 
compared to a gamma distribution and can be used 
quite efficaciously to analyze lifetime data in 
exchange for gamma to overcome such difficulties, 
which has extended to a number of exponential 
distributions such as Gupta and Kundu (2001), 
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Nadarajah and Haghighi (2011), Khan et al. (2017), 
and Eghwerido et al. (2022) among others. This led 
to a generalizing gamma distribution (Ghitany, 
1998), a generalization of the generalized gamma 
(Rama and Kamlesh, 2019), and a proposed mixture 
of gamma density with various density functions 
such as Abdullahi and Phaphan (2022), Susanto et al. 
(2022), and Yakubu et al. (2022). 

To obtain further flexible density function of the 
gamma distribution, the exponentiated gamma 
distribution has been proposed and studied in some 
of its aspects and statistical properties by Gupta et al. 
(1998), to defeat the features that render gamma 
distribution a bit less effective. This development of 
the model made it a workable model that 
accommodates both monotonic and non-monotonic 
failure rates, with (pdf) defined as: 
 

𝑓𝐸𝐺(𝑥; α, θ) = αθ
2𝑥𝑒−θ𝑥[1 − 𝑒−θ𝑥(θ𝑥 + 1)]

α−1
;    𝑥 >

0,  α > 0,  θ > 0                                                                              (2) 
 

with cumulative density function (cdf), defined as: 
 

𝐹𝐸𝐺(𝑥; α, θ) = [1 − 𝑒
−θ𝑥(θ𝑥 + 1)]

α
;    𝑥 > 0,  α > 0,  θ > 0   

                                                                                                            (3) 
 

Umar and Yahya (2021) extended the 
exponentiated gamma distribution defining a new 
distribution called the new exponential-gamma 
distribution with pdf as: 
 

𝑓𝑁𝐸𝐺(𝑥; 𝛼, 𝜃) =
𝜃

𝜃+Γ(𝛼)
(𝜃 + 𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥;    𝑥 > 0,  𝛼 >

0,  𝜃 > 0                                                                                           (4) 
 

with cdf, defined as: 
 

𝐹𝑁𝐸𝐺(𝑥; α, θ) =
θ

θ+Γ(α)
 ((1 − 𝑒−θ𝑥) + 𝜃𝛼−1 ∫ 𝑡𝛼−1𝑒−𝜃𝑡𝑑𝑡

𝑥

0
)   

                                                                                                            (5) 
 

The new exponential-gamma distribution showed 
its superiority over some distributions; namely 
exponential, gamma, Lindley, exponentiated gamma, 
generalization of the gamma distribution, and a 

generalization of generalized gamma distribution 
(Umar and Yahya, 2021). The motivation of this 
paper is that the pursuit of proposing more efficient 
and flexible probability distribution continues to 
exist in the field of probability theory and statistics. 
This paper focuses on generalizing new exponential-
gamma distribution (Umar and Yahya, 2021) to 
achieve more efficiency. The remaining sections of 
this article are structured as follows. Section 2 
presents the cdf and the corresponding pdf of the 
exponentiated new exponential-gamma distribution 
(EEG). Some statistical properties of the new 
proposed model are presented in Section 3. The 
simulation studies are conducted to assess the 
efficiency of the proposed model in Section 4. Section 
5 presents applications studies using real data and 
Section 6 presents the important conclusions from 
this study. 

2. The exponentiated new exponential-gamma 
distribution  

The pdf of the proposed model is defined as: 
 

𝑓𝑁𝐸𝐺(𝑥; 𝛼, 𝜃) = 𝑏 [
𝜃

𝜃+Γ(𝛼)
]
𝑏
(𝜃 + 𝜃𝛼−1𝑥𝛼−1)𝑒−𝜃𝑥  ((1 −

𝑒−𝜃𝑥) +
1

𝜃
𝛾(𝛼, 𝜃𝑥))

𝑏−1

                                                                (6) 

 

where, 𝑥 >  0, 𝛼 >  0, 𝜃 >  0. 𝜃 and 𝛼 are the scale 
and shape parameters, respectively, and 𝑏 is an 
additional shape parameter. 𝛾(𝛼, 𝜃𝑥) is the lower 
incomplete gamma function (DiDonato and Morris, 
1986). Fig. 1 exhibits a number of the possible 
shapes of the (pdf) of EEG distribution for various 
values of the parameters 𝛼, 𝜃 and 𝑏. The 
corresponding cdf for this generalization is given as: 
 

𝐹(𝑡; α, θ) = [
θ

θ+Γ(α)
((1 − 𝑒−θ𝑥) + 𝜃𝛼−1𝜻)]

𝑏
                         (7) 

 

where, 𝜁 = ∫ 𝑡𝛼−1𝑒− 𝜃𝑡𝑑𝑡
x

0
. When 𝑏 =  1, this model 

reduces to the NEG model (Umar and Yahya, 2021).  

 

 
Fig. 1: EEG density function for various values of α, θ, and b 

 

3. Statistical properties 

In this section, some statistical properties of the 
new proposed model are studied, such as moment 

generating function, 𝑟𝑡ℎ  moment, hazard rate 
function, the mean residual life function, and 
maximum likelihood estimation. 
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3.1. Moment generating function 

The moment generating function (mgf) of the 
random variable 𝑋, is defined as follows: 
 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥

∞

−∞
  

 

Therefore, the mgf of the random variable 𝑋, with 
the pdf of the proposed distribution defined by Eq. 6: 
 

𝑀𝑋(𝑡) = 𝑏 [
θ

θ+Γ(α)
]
𝑏

∫ 𝑒𝑡𝑥
∞

0
(θ + θα−1𝑥α−1)𝑒−θ𝑥{(1 −

𝑒−θ𝑥) + θα−1ζ}𝑏−1𝑑𝑥                                                                   (8) 

 

where, 𝜁 = ∫ 𝑡𝛼−1𝑒− 𝜃𝑡𝑑𝑡
∞

0
. Using the generalized 

expansion: 
 

(𝑥 + 𝑦)𝑠 = ∑ (
𝑠
𝑘
) 𝑥𝑘𝑦𝑠−𝑘;       𝑖𝑓      |𝑥| <∞

𝑘=0

|𝑦|      𝑎𝑛𝑑     𝑥, 𝑦, 𝑠 ∈ ℝ                                                                (9) 
 

yields, 
 
𝑀𝑋(𝑡) =

𝑏 [
𝜃

𝜃+Γ(𝛼)
]
𝑏
∑ (

𝑏 − 1
𝑘
)𝜃{(𝑟−𝑘)(𝛼−1)}   ∞

𝑘=0 ∫ 𝑒−(θ−𝑡)𝑥
∞

0
(θ +

θα−1𝑥α−1)(1 − 𝑒−θ𝑥)
𝑘
ζ𝑏−𝑘−1𝑑𝑥                                            (10) 

 

Using the expansion, 

 

 (1 − 𝑒− 𝜃𝑥)𝑘 =  ∑ (−1)𝑗∞
𝑗=0 (

𝑘
𝑗
) (𝑒− 𝜃𝑥)𝑗                             (11) 

 

implies, 
 

𝑀𝑋(𝑡) = 𝐶1 ∫ 𝑒−(θ−𝑡)𝑥−θ𝑗𝑥
∞

0
(θ + θα−1𝑥α−1)ζ𝑏−𝑘−1𝑑𝑥    (12) 

 
where, 
 
𝐶1

= 𝑏 [
𝜃

𝜃 + Γ(𝛼)
]
𝑏

∑∑(−1)𝑗
∞

𝑗=0

(
𝑏 − 1
𝑘
) (
𝑘
𝑗
) 𝜃(𝑏−𝑘−1)(𝛼−1)  

∞

𝑘=0

 

 

Theorem 1: The moment generating function (MGF) 
of the EEG when α=1 can be obtained as: 
 

𝑀𝑋(𝑡) =
𝐶2

𝑚θ + (θ(1 + 𝑗) − 𝑡)
 

 

where, 
 
𝐶2

= 𝑏∑∑∑(−1)𝑚+𝑗
∞

𝑚=0

∞

𝑗=0

(
𝑏 − 1
𝑘
) (
𝑏 − 𝑘 − 1

𝑚
)(
𝑘
𝑗
) 𝜃(2−𝑏−𝑘)  

∞

𝑘=0

 

 

Proof: Substituting α=1 in 12, we get: 

  
 

𝑀𝑋(𝑡) = 𝑏θ∑ ∑ (−1)𝑗∞
𝑗=0 (

𝑏 − 1
𝑘
)(
𝑘
𝑗
) ∫ 𝑒−𝑥[𝜃(1+𝑗)−𝑡]

∞

0
[∫ 𝑒−𝜃𝑡 𝑑𝑡
𝑥

0
]
𝑏−𝑘−1

𝑑𝑥
  

∞
𝑘=0   

= 𝑏∑ ∑ (−1)𝑗∞
𝑗=0 (

𝑏 − 1
𝑘
) (
𝑘
𝑗
) 𝜃(2−𝑏+𝑘)  ∫ 𝑒−𝑥[𝜃(1+𝑗)−𝑡]

∞

0
[1 − 𝑒−𝜃𝑡 𝑑𝑡]

𝑏−𝑘−1
⏟            

𝐴

𝑑𝑥

  

∞
𝑘=0   

  

By expanding the quantity A in a power series as 

𝐴 = 𝑏∑ (
𝑏 − 𝑘 − 1

𝑚
)𝜃−𝑚 𝜃𝑥  ∞

𝑚=0 , the MGF of the EEG 

can be written as follows: 
 

𝑀𝑋(𝑡)  = 𝐶2 ∫ 𝑒−[𝑚𝜃+(𝜃(1+𝑗)−𝑙)]𝑥
∞

0

𝑑𝑥

  
 

=
𝐶2

𝑚θ+ (θ(1 + 𝑗) − 𝑡)
 

3.2. Moments 

The 𝑟𝑡ℎ  moment about the origin,  𝐸(𝑋𝑟)  is 
defined as: 
 

𝐸(𝑋𝑟) =   ∫ 𝑋𝑟𝑓(𝑥)  𝑑𝑥
∞

−∞ 

 

 
The 𝑟𝑡ℎ   moment of the EEG model follows from 

Eq. 6 and can be obtained as: 
 

𝐸(𝑋𝑟) =   𝑏 [
θ

θ+Γ(α)
]
𝑏

∫ 𝑥𝑟
∞

0
(θ + θα−1𝑥α−1)𝑒−θ𝑥{(1 −

𝑒−θ𝑥) + θα−1ζ}𝑏−1𝑑𝑥                                                                (13) 

 
Using the generalized expansion (9), yielded: 

 
𝐸(𝑋𝑟) =

  𝑏 [
θ

θ+Γ(α)
]
𝑏
∑ (

𝑏 − 1
𝑘
)∞

𝑘=0 𝜃(𝛼−1)(𝑏−𝑘−1) ∫ 𝑥𝑟𝑒−θ𝑥
∞

0
(θ +

θα−1𝑥α−1)(1 − 𝑒−θ𝑥)
𝑘
ζ𝑏−𝑘−1𝑑𝑥                                            (14) 

 
Using the expansion (11) implies: 

  
 

𝐸(𝑋𝑟) =   𝑏 [
θ

θ+Γ(α)
]
𝑏
∑ ∑ (−1)𝑗∞

𝑗=0 (
𝑏 − 1
𝑘
) (
𝑘
𝑗
)∞

𝑘=0 𝜃(𝛼−1)(𝑏−𝑘−1) ∫ 𝑥𝑟𝑒−θ𝑥−𝜃𝑗𝑥
∞

0
(θ + θα−1𝑥α−1)ζ𝑏−𝑘−1𝑑𝑥                                  (15) 

  

Using the expansion 𝑒−𝑥 = ∑ (−1)𝑚  ∞
𝑚=0

𝑥𝑚

𝑚!
 

Implies: 
 

𝐸(𝑋𝑟) =   𝐶3 ∫ 𝑥𝑟+𝑚
∞

0
(θ + θα−1𝑥α−1)ζ𝑏−𝑘−1𝑑𝑥               (16) 

 

where, 
 
𝐶3 =

  𝑏 [
θ

θ+Γ(α)
]
𝑏
∑ ∑ ∑   ∞

𝑚=0
(−1)𝑗+𝑚

𝑚!

∞
𝑗=0 (

𝑏 − 1
𝑘
) (
𝑘
𝑗
)∞

𝑘=0 𝜃(𝛼−1)(𝑏−𝑘−1)𝜃𝑚(1 +

𝑗)𝑚  
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Theorem 2: The rth  moment about the origin is 
defined as follows: 
 

i. 𝐼𝑓  𝛼 = 1;  𝐸(𝑋𝑟) = 𝐶4∑ (−1)𝑙∞
𝑙=0 (

𝑏 − 𝑘 − 1
𝑙

)
Γ(𝑟+𝑚+1)

𝜃𝑙(𝑟+𝑚+1)
 

ii. 𝐼𝑓  𝛼 = 1 𝑎𝑛𝑑 𝑟 = 2;  𝐸(𝑋) =

𝐶4∑ (−1)𝑙∞
𝑙=0 (

𝑏 − 𝑘 − 1
𝑙

)
Γ(𝑚+2)

𝜃𝑙(𝑚+2)
 

iii. 𝐼𝑓  𝛼 = 1 𝑎𝑛𝑑 𝑟 = 2;  𝐸(𝑋2) =

𝐶4∑ (−1)𝑙∞
𝑙=0 (

𝑏 − 𝑘 − 1
𝑙

)
Γ(𝑚+3)

𝜃𝑙(𝑚+3)
 

 

where, 𝐶4 =  𝜃
𝑘−𝑏+2𝐶3. 

 
Proof: Substituting α=1 in 16, gives: 
 

𝐸(𝑋𝑟) = 𝐶3  ∫ 𝜃𝑥𝑟+𝑚𝜁𝑏−𝑘−1
∞

0
𝑑𝑥  

= 𝐶3  ∫ 𝜃𝑥𝑟+𝑚(∫ 𝑒−𝜃𝑙
𝑥

0
)
𝑏−𝑘−1∞

0
𝑑𝑥  

= 𝐶4  ∫ 𝜃𝑥𝑟+𝑚(1 − 𝑒−𝜃𝑥)
𝑏−𝑘−1∞

0
𝑑𝑥  

 

where, 𝐶4 = 𝜃
𝑘−𝑏+2𝐶3. Expanding the quantity 

(1 − 𝑒−𝜃𝑥)
𝑏−𝑘−1

 in a power series as: 
 

(1 − 𝑒−𝜃𝑥)
𝑏−𝑘−1

= ∑ (−1)𝑙∞
𝑙=0 (

𝑏 − 𝑘 − 1
𝑙

) 𝑒𝜃𝑙𝑥   

 

The 𝑟𝑡ℎ moment about the origin when α=1 is 
written as follows: 
 

𝐸(𝑋𝑟)  = 𝐶4  ∫ 𝑥𝑟+𝑚 ∑ (−1)𝑙∞
𝑙=0 (

𝑏 − 𝑘 − 1
𝑙

) 𝑒𝜃𝑙𝑥
∞

0
𝑑𝑥  

= 𝐶4∑ (−1)𝑙∞
𝑙=0 (

𝑏 − 𝑘 − 1
𝑙

)
Γ(𝑟+𝑚+1)

𝜃𝑙(𝑟+𝑚+1)
  

 

(𝑖𝑖) and (𝑖𝑖𝑖) are straightforward, by substituting 
𝑟 =  1 in (𝑖). 

3.3. Hazard rate function 

The hazard rate function is defined as: 
 

 ℎ(𝑥) =
𝑓(𝑥𝑖;  𝛼, 𝜃, 𝑏)

1 − 𝐹(𝑥𝑖;  𝛼, 𝜃, 𝑏)
  

 

where, f(x) and F(x) are the pdf defined by Eq. 6 and 
the cdf defined by Eq. 7, respectively, hence, the 
hazard function for the EEG model can be derived as 
follows: 
 

ℎ(𝑥) =
𝑏[

θ

θ+Γ(α)
]
𝑏
(θ+θα−1𝑥α−1)𝑒−θ𝑥{(1−𝑒−θ𝑥)+θα−1ζ}𝑏−1

1−[(θ+Γ(α))
𝑏
−θ𝑏{(1−𝑒−θ𝑥)+θα−1ζ}]𝑏 

  

=
𝑏[

θ

θ+Γ(α)
]
𝑏
(θ+θα−1𝑥α−1)𝑒−θ𝑥{(1−𝑒−θ𝑥)+θα−1ζ}𝑏−1

(θ+Γ(α))
𝑏
−θ𝑏{(1−𝑒−θ𝑥)+θα−1ζ}𝑏

(θ+Γ(α))
𝑏

                      (17) 

=
𝑏θ𝑏(θ+θα−1𝑥α−1)𝑒−θ𝑥{(1−𝑒−θ𝑥)+θα−1ζ}𝑏−1

(θ+Γ(α))
𝑏
−θ𝑏{(1−𝑒−θ𝑥)+θα−1ζ}𝑏

  

 

Fig. 2 shows some possible shapes of hazard rate 
function of EEG distribution for various values of the 
parameters 𝛼, 𝜃 and 𝑏. 

 

 
Fig. 2: EEG hazard rate function for various values of α, θ, and b 

 

3.4. The mean residual life function 

The mean residual life function is defined as: 
 

𝑚(𝑥) =
1

1−𝐹(𝑥𝑖;𝛼,𝜃,𝑏)
∫ [1 − 𝐹(𝑥𝑖; 𝛼, 𝜃, 𝑏)]𝑑𝑡
∞

𝑥
  

 

The mean residual life function of the EEG model 
follows from Eq. 7 and can be obtained as: 
 

𝑚(𝑥) =
1

1−[
𝜃

𝜃+𝛤(𝛼)
{(1−𝑒−𝜃𝑥)+𝜃𝛼−1𝜉}]

𝑏 ∫ 1 − [
𝜃

𝜃+𝛤(𝛼)
{(1 −

∞

𝑥

𝑒−𝜃𝑥) + 𝜃𝛼−1𝜉}]
𝑏
𝑑𝑡  

=
1

(𝜃+𝛤(𝛼))𝑏−𝜃𝑏{(1−𝑒−𝜃𝑥)+𝜃𝛼−1𝜉}
𝑏 ∫ (𝜃 + 𝛤(𝛼))𝑏 −

∞

𝑥

𝜃𝑏{(1 − 𝑒−𝜃𝑥) + 𝜃𝛼−1𝜉}
𝑏
𝑑𝑡                                                    (18) 

3.5. Maximum likelihood estimation 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample from EEG 
distribution, then the log-likelihood function 
𝑙(𝑥; 𝛼, 𝜃, 𝑏) is defined by, 
 
𝐿(𝑥; 𝛼, 𝜃, 𝑏) = ∏  𝑓(𝑥𝑖 ; 𝛼, 𝜃, 𝑏)

𝑛
𝑖=1   

= ∏ 𝑏 [
𝜃

𝜃+𝛤(𝛼)
]
𝑏

𝑛
𝑖=1 (𝜃 + 𝜃𝛼−1𝑥𝑖

𝛼−1)𝑒−𝜃𝑥𝑖[(1 − 𝑒−𝜃𝑥𝑖) +

𝜃𝛼−1𝜉]
𝒃−𝟏

   

= 𝒃𝒏 [
𝜃

𝜃+𝛤(𝛼)
]
𝑛𝑏
𝑒−𝜃∑ 𝑥𝑖

𝑛
𝑖=1 ∏ (𝜃 + 𝜃𝛼−1𝑥𝑖

𝛼−1)𝑛
𝑖=1 [(1 −

𝑒−𝜃𝑥𝑖) + 𝜃𝛼−1𝜉]
𝒃−𝟏

  

= 𝒃𝒏𝜃𝑛𝛼 [
𝜃

𝜃+𝛤(𝛼)
]
𝑛𝑏
𝑒−𝜃∑ 𝑥𝑖

𝑛
𝑖=1 ∏ (𝜃1−𝛼 + 𝜃−1𝑥𝑖

𝛼−1)𝑛
𝑖=1 [(1 −

𝑒−𝜃𝑥𝑖) + 𝜃𝛼−1𝜉]
𝒃−𝟏

                                                                    (19) 
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yielding the log-likelihood, 
 
𝑙(𝑥; 𝛼, 𝜃, 𝑏) = 𝑛𝑙𝑜𝑔(𝑏) + 𝑛𝛼 log(𝜃) + 𝑛𝑏𝑙𝑜𝑔(𝜃) −
𝑛𝑏𝑙𝑜𝑔(𝜃 + 𝛤(𝛼))- 𝜃𝑛𝑥̅ 

+∑ log (𝜃 + 𝜃𝛼−1𝑥𝑖
𝛼−1)𝑛

𝑖=1 + (𝑏 − 1)∑ log ((1 −𝑛
𝑖=1

𝑒−𝜃𝑥𝑖) + 𝜃𝛼−1𝜉)                                                                          (20) 

 

To solve the MLEs for each parameter, derive the 
derivatives of 𝑙(𝑥; 𝛼, 𝜃, 𝑏) with respect to (w.r.t) 𝛼, 𝜃, 
and 𝑏, set the partial derivatives equal to zero and 

solve for 𝛼̂, 𝜃̂ and 𝑏̂. The first partial derivative of Eq. 
20 w.r.t 𝛼 is defined as: 
 
𝜕𝑙

𝜕𝛼
= 𝑛𝑙𝑜𝑔(𝜃) −

𝑛𝑏𝛤(𝛼)𝛤′(𝛼)

𝜃+𝛤(𝛼)
+

∑
(𝜃𝛼−1 log(𝜃)𝑥𝑖

𝛼−1+𝜃𝛼−1(𝑥𝛼−1log (𝑥𝑖))

𝜃+𝜃𝛼−1𝑥𝑖
𝛼−1

𝑛
𝑖=1 + (𝑏 −

1)∑
𝜃𝛼−1log (𝜃)𝜉

(1−𝑒−𝜃𝑥𝑖)+𝜃𝛼−1𝜉

𝑛
𝑖=1                                                                (21) 

 

The first partial derivative of Eq. 20 w.r.t 𝜃 
follows as: 
 
𝜕𝑙

𝜕𝜃
=
𝑛𝛼

𝜃
+
𝑛𝑏

𝜃
−

𝑛𝑏

𝜃+𝛤(𝛼)
− 𝑛𝑥̅ + ∑

1+𝜃𝛼−2(𝛼−1)𝑥𝑖
𝛼−1

𝜃+𝜃𝛼−1𝑥𝑖
𝛼−1

𝑛
𝑖=1 + (𝑏 −

1)∑
𝑥𝑖𝑒

−𝜃𝑥𝑖+𝜃𝛼−2(𝛼−1)𝜉

(1−𝑒−𝜃𝑥𝑖)+𝜃𝛼−1𝜉

𝑛
𝑖=1                                                           (22) 

 

The first partial derivative of 20 w.r.t 𝑏 follows as: 
 
𝜕𝑙

𝜕𝑏
=
𝑛

𝑏
+ 𝑛𝑙𝑜𝑔(𝜃) − 𝑛𝑙𝑜𝑔(𝜃 + 𝛤(𝛼)) + ∑ log ((1 −𝑛

𝑖=1

𝑒−𝜃𝑥𝑖) + 𝜃𝛼−1𝜉)                                                                          (23) 

 

It is clear that the partial derivatives of 
𝑙(𝑥; 𝛼, 𝜃, 𝑏) w.r.t the parameters 𝛼, 𝜃, and 𝑏 (21-23) 
have no explicit analytical solutions. Therefore, it can 
be solved numerically using the Newton-Raphson 
iterative method which is an effective method for 
solving nonlinear system equations. A Newton-
Raphson iterative method is implemented in this 
paper using the function "optim" in the R package 
(Team, 2020). Thus, the second derivatives w.r.t 𝛼, 𝜃, 
and 𝑏 are needed at given as follows. The second 
partial derivative of 20 w.r.t 𝛼 is defined as: 
 
𝜕2𝑙

𝜕𝛼2
= ∑

𝜃𝛼−1log (𝜃)𝜉

(1−𝑒−𝜃𝑥𝑖)+𝜃𝛼−1𝜉
−
𝑛𝛤(𝛼)𝛤′(𝛼)

(𝜃+𝛤(𝛼))

𝑛
𝑖=1                                  (24) 

𝜕2𝑙

𝜕𝜃2
=
𝑛

𝜃
−

𝑛

𝜃+𝛤(𝛼)
+ ∑

𝑥𝑖𝑒
−𝜃𝑥𝑖+𝜃𝛼−2(𝛼−1)𝜉

(1−𝑒−𝜃𝑥𝑖)+𝜃𝛼−1𝜉

𝑛
𝑖=1                            (25) 

𝜕2𝑙

𝜕𝑏2
= −

𝑛

𝑏2
                                                                                      (26) 

3.6. Quantile function 

The 𝑝𝑡ℎ quantile function (0 <  𝑝 <  1) is 
obtained by inverting the cdf (7), is given by the 
following relation, 
 

𝑒𝜃𝑥 + 𝛾(𝛼, 𝜃𝑥) = √𝑝
𝑏 (𝜃 + 𝛤(𝛼))                                           (27) 

4. Simulation studies 

In this section, we conduct some simulation 
studies, in order to examine the performance of the 
parameters 𝛼, 𝜃, and 𝑏 of MLE (19). Random samples 

from EEG distribution are generated for various 
sample sizes 𝑛. Consider the random variable 𝑋 
given by the relation, 
 

𝑒𝜃𝑥𝑖 + 𝛾(𝛼, 𝜃𝑥𝑖) = √𝑝
𝑏 (𝜃 + 𝛤(𝛼))                                         (28) 

 

For this setting, we consider two cases as follows: 
 
 Case 1: Assume the true parameters are 𝛼 = 5, 𝜃 =
0.7, and 𝑏 = 1 for sample sizes 𝑛 =
 100, 1000, 50,000, and 100,000. 

 Case 2: Assume the true parameters are 𝛼 = 6, 𝜃 =
0.6, and 𝑏 = 0.1 for sample sizes 𝑛 =
 100, 1000, 50,000, and 100,000. 

 

In both cases, the MLE 𝛼̂, 𝜃̂ and 𝑏̂ are denoted 
generally by  η̂ for all parameters. The accuracy of  η̂ 
are measured for 𝛼, 𝜃, and 𝑏 by bias and root mean 
square error (RMSE), defined as: 
 
𝑏𝑖𝑎𝑠( η̂) = 𝐸( η̂) –  η                                                                  (29) 

𝑅𝑀𝑆𝐸( η̂) = √𝐸( η̂ − η)2                                                         (30) 
 

The simulation results of case 1 and case 2 are 
exhibited in Tables 1 and 2, which show the 

estimates of each parameter (𝛼̂, 𝜃̂, 𝑏̂). It is observed 
that the values of both measures (Bias and RMSE) 
decrease as the sample size increases. 

5. Real data applications 

This section demonstrates the effectiveness of the 
EEG distribution through three different real data 
sets for further examining the new model in 
compression to some related distributions; namely 
gamma, exponential, Lindley, generalized gamma 
(GG) (Stacy, 1962), the generalization of the 
generalized gamma (GGG) (Rama and Kamlesh, 
2019), and the new exponential-gamma distribution 
(NEG) (Umar and Yahya, 2021). 

More specifically, the MLE parameters values of 
EEG distribution are computed using R language, 
then compared to those values coming from the 
distributions mentioned previously. The Akaike 
Information Criterion (AIC) (Akaike, 1974), the 
Akaike Information Criterion corrected (AICC) 
(Hurvich and Tsai, 1993), and Bayesian Information 
Criterion (BIC) (Schwarz, 1978) are applied in order 
to choose the best model among these various 
models. The model with minimum values of these 
criteria is determined to be the best model. 

5.1. The exceedances of the Wheaton River flood 
dataset 

This real-life dataset was discussed in Umar and 
Yahya (2021), which concerns the exceedances of 
Wheaton River flood peaks (in m3/s) of the Wheaton 
River near Carcross in Yukon Territory, Canada, for 
the years 1958-1984. It is analyzed in this paper for 
the purpose of illustrating the effectiveness of EEG 
distribution compared to other related distributions 
mentioned previously. The observations of this 
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dataset are reported in many papers such as 
Ekhosuehi and Opone (2018), Urama et al. (2021), 

and Ikechukwu and Eghwerido (2022), and 
represented in Table 3. 

 
Table 1: Case 1: The true parameters are 𝛼 =  5, 𝜃 = .7 and 𝑏 = 1 for sample sizes 𝑛 =  100, 1000, 50,000 and 100,000 

Sample size Parameter MLE Bias RMSE 

n = 100 
𝛼 
𝜃 
𝑏 

5.1076002 
0.3185989 
1.5677371 

0.1076002 
-0.3814011 
0.5677371 

0.01076002 
0.03814011 
0.05677371 

n = 1000 
𝛼 
𝜃 
𝑏 

5.0460404 
0.2279778 

1.64447597 

0.04604045 
-0.47202217 
0.64447588 

0.001455927 
0.014926652 
0.020380117 

n = 50, 000 
𝛼 
𝜃 
𝑏 

5.0512606 
0.2449188 
1.6332835 

0.05126065 
-0.45508123 
0.63328351 

0.0002292446 
0.0020351851 
0.0028321299 

n = 100, 000 
𝛼 
𝜃 
𝑏 

5.048409 
0.237933 
1.636762 

0.04840879 
-0.46206705 
0.63676167 

0.000153082 
0.001461184 
0.002013617 

 
Table 2: Case 2: The true parameters are 𝛼 =  6, 𝜃 =  0.6 and 𝑏 =  0.1 for sample sizes 𝑛 =  100, 1000, 50,000 and 100,000 

Sample size Parameter MLE Bias RMSE 

n = 100 
𝛼 
𝜃 
𝑏 

6.2153842 
0.6324872 
0.2057230 

0.21538415 
0.03248721 
0.10572304 

0.021538415 
0.003248721 
0.010572304 

n = 1000 
𝛼 
𝜃 
𝑏 

6.232313 
1.017915 
0.205408 

0.2323128 
0.4179152 
0.1054080 

0.0073463757 
0.013215639 
0.003333295 

n = 50, 000 
𝛼 
𝜃 
𝑏 

6.2278300 
0.9289968 
0.2054345 

0.2278300 
0.3289968 
0.1054345 

0.0010188866 
0.0014713185 
0.000471517 

n = 100, 000 
𝛼 
𝜃 
𝑏 

6.2260943 
0.9234960 
0.2054497 

0.2260943 
0.3234960 
0.1054497 

0.00071497302 
0.0010229841 
0.0003334613 

 

The parameter estimates are reported in Table 4 
for the new proposed distribution and some related 
distributions. The Akaike information criterion 
(AIC), the Akaike Information Criterion corrected 
(AICC), and Bayesian Information Criterion (BIC) are 

used to assess the best model. The results are 
reported in Table 5. According to the values of AIC, 
AICC, and BIC, EGG performs well and exceeded the 
other models. 

 
Table 3: The exceedances of Wheaton River flood data 

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 
12.0 9.3 1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 
2.5 14.4 1.7 37.6 0.6 2.2 39.0 0.3 15.0 11.0 
7.3 22.9 1.7 0.1 1.1 0.6 9.07 1.7 7.0 20.1 
0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6 5.6 30.8 

13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0 
1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 
2.5 27.0         

This dataset can be read from left to right 

 

Table 4: Parameters estimation of the EEG and the six other existing distributions for the exceedances of Wheaton River 
flood data 

Distribution α̂ θ̂ β̂ γ̂ 𝑏̂ 
EXP. . . . 0.0819 . . . . . . . . . 

GAMMA 0.8383 0.0687 . . . . . . . . . 
GG 0.4768 0.0085 1.4921 . . . . . . 

GGG 0.4768 0.0250 1.4919 0.4859 . . . 
LINDLEY . . . 0.0819 . . . . . . . . . 

NEG 1.4616 0.0755 . . . . . . . . . 
EEG 1.3289 0.01119 . . . . . . 0.1727 

 

Table 5: Goodness-of-Fit test results of the EEG and the six other existing distributions for the exceedances of Wheaton River 
flood data 

Distribution -2logLik AIC AICC BIC 
EXP. 

GAMMA 
GG 

GGG 
LINDLEY 

NEG 
EEG 

504.256 
502.689 
502.131 
502.131 
830.051 
499.012 
360.975 

506.256 
506.689 
508.131 
510.131 
832.051 
503.012 
366.975 

506.313 
506.863 
508.479 
510.711 
832.108 
503.186 
367.328 

508.533 
506.965 
506.408 
506.408 
834.327 
503.289 
373.805 

 

5.2. The remission time of the bladder cancer 
patients dataset 

This dataset was collected from bladder cancer 
patients and reported by Lee and Wang (2003). It 

has been studied in detail by Ieren et al. (2019), Ijaz 
et al. (2020), and Kayid (2022). The real-life data 
contains a set of remission times (in months) from 
128 bladder cancer patients which is represented in 
Table 6. It is used here to examine the new proposed 
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model in comparison to some related models. The 
parameter estimates are reported in Table 7 for our 
distribution and the other related distributions. The 
results of the goodness of fit test are based on the 

AIC, AICC, and BIC Criteria as illustrated in Table 8. It 
is clear that EEG distribution with minimum results 
of all three criteria in compression to the six 
distributions. 

 

Table 6: The remission times (in months) from 128 bladder cancer patients' data 
0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 
3.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 
9.22 3.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24 

25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 
2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 
7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 

15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 
1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.2 2.83 4.33 
5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 

17.36 1.40 3.02 4.34 5.71 7.93 1.46 18.10 11.79 4.40 
5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 
2.02 13.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 12.07 
6.76 21.73 2.07 3.36 6.93 8.65 12.63 22.69.   

This dataset can be read from left to right 
 

Table 7: Parameters estimation of the EEG and the six other existing distributions for the bladder cancer data 
Distribution 𝛼̂ 𝜃 𝛽̂ 𝛾̂ 𝑏̂ 

EXP. . . . 0.1068 . . . . . . . . . 
GAMMA 1.1723 7.9914 . . . . . . . . . 

GG 3.7101 1.2952 0.5211 . . . . . . 
GGG 4.9913 2.9708 0.4451 0.4402 . . . 

LINDLEY . . . 0.1960 . . . . . . . . . 
NEG 1.1929 0.1247 . . . . . . . . . 
EEG 1.3201 0.0223 . . . . . . 0.2144 

 

Table 8: Goodness-of-fit test results of the EEG and the six other existing distributions for the bladder cancer data 
Distribution -2logLik AIC AICC BIC 

EXP. 828.680 830.680 830.728 833.532 
GAMMA 826.700 830.700 830.796 836.404 

GG 821.720 827.720 827.914 836.276 
GGG 821.860 829.860 830.185 841.268 

LINDLEY 838.940 840.940 840.9717 843.792 
NEG 826.800 830.800 830.896 836.504 
EEG 622.060 628.060 628.254 636.616 

 

5.3. The COVID-19 dataset 

This dataset is about COVID-19 data from 15 
April to 30 June 2020 in The United Kingdom for 76 
days. These numbers indicate the death rate due to 
drought and have been used by Mubarak and 
Almetwally (2021). The data are represented in 

Table 9. Table 10 shows the estimates of the 
parameters of the EEG distribution and the other 
related distributions. By looking at Table 11, it is 
observed that the EEG distribution performs better 
since it has minimum AIC, BIC, and AICC compared 
to the other distributions. 

 

Table 9: COVID-19 data from 15 April to 30 June 2020 in The United Kingdom of 76 days 
0.0587 0.0863 0.1165 0.1247 0.1277 0.1303 0.1652 
0.2079 0.2395 0.2751 0.2845 0.2992 0.3188 0.3317 
0.3446 0.3553 0.3622 0.3926 0.3926 0.4110 0.4633 
0.4690 0.4954 0.5139 0.5696 0.5837 0.6197 0.6365 
0.7096 0.7193 0.7444 0.85907 1.0438 1.0602 1.1305 
1.1468 1.1533 1.2260 1.2707 1.3423 1.4149 1.5709 
1.6017 1.6083 1.6324 1.6998 1.8164 1.8392 1.8721 
1.9844 2.1360 2.3987 2.4153 2.5225 2.7087 2.7946 
3.3609 3.3715 3.7840 3.9042 4.1969 4.3451 4.4627 
4.6477 5.3664 5.4500 5.7522 6.4241 7.0657 7.4456 
8.2307 9.6315 10.1870 11.1429 11.2019 11.4584.  

This dataset can be read from left to right 
 

Table 10: Parameters estimation of the EEG and the six other existing distributions for the COVID-19 data 
Distribution 𝛼̂ 𝜃 𝛽̂ 𝛾̂ 𝑏̂ 

EXP. . . . 0.4103 . . . . . . . . . 
GAMMA 0.8016 3.0393 . . . . . . . . . 

GG 6.0458 5.3023 0.3169 . . . . . . 
GGG 5.6524 2.7935 0.3289 5.5294 . . . 

LINDLEY . . . 0.6578 . . . . . . . . . 
NEG 0.7844 0.3402 . . . . . . . . . 
EEG 0.6433 0.2156 . . . . . . 0.6409 

      

6. Conclusion 

This paper introduces and establishes a new 
distribution called the exponentiated new 

exponential-gamma distribution, which serves as a 
generalization of the new exponential-gamma 
distribution. We provide expansions for several 
statistical properties of this newly proposed 
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distribution, including the moment generating 
function, rth moment, hazard rate function, and mean 
residual life function. To estimate the numerical 

values of the parameters of the EEG distribution, we 
employ the maximum likelihood estimation method.

 
Table 11: Goodness-of-fit test results of the EEG and the six other existing distributions for the COVID-19 data 

Distribution -2logLik AIC AICC BIC 
EXP. 287.400 289.409 289.454 291.731 

GAMMA 284.820 288.820 288.986 293.482 
GG 279.640 285.635 285.968 292.632 

GGG 279.680 287.680 288.243 297.003 
LINDLEY 301.898 303.898 303.979 306.229 

NEG 285.100 289.092 289.256 293.761 
EEG 272.380 278.380 278.713 285.372 

 

To evaluate the performance of the new model, 
we conduct simulation studies with various sample 
sizes. Additionally, we apply the EEG distribution to 
real-life datasets. The results of these applications 
demonstrate that the EEG distribution yields 
superior fits compared to the exponential, gamma, 
Lindley, generalization of the generalized gamma 
distribution, and new exponential-gamma 
distribution. This superiority of the EEG distribution 
over the other six distributions confirms its 
effectiveness and robustness. 
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