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Every transform has unique attributes and traits that are crucial to reducing 
computing costs and offering simple solutions. Many different frequency 
domain transformations, for instance, have properties that can be used in a 
variety of signal processing applications and analyses. Some of the Complex 
Hadamard Transform's variants' sequencies can be compared to those of the 
Discrete Fourier Transforms. It is proven the characteristics of the Conjugate 
Symmetric Sequency-Ordered Complex Hadamard Transform symmetry. 
These qualities are crucial for signal analysis and image processing. Due to 
duplicate spectra across the origin, it reduces computational complexity, 
makes an analytical analysis for symmetric signals simpler, and needs less 
storage. Its analysis shows that the Discrete Fourier Transform and this 
Complex Hadamard Transform version exhibit similar symmetry tendencies. 
By using elementary signals in the time domain to connect the positive and 
negative sequencies with their associated phasor conceptions, sequency 
domain spectra are used to highlight these properties. As a result of image 
representation, relative spectra are represented in related domains. 
Transform can be used to extract and analyze various aspects from a wide 
range of medical images. 
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1. Introduction 

*Applications for signal processing frequently use 
discrete orthogonal transforms (DOTs) (Mahmmod 
et al., 2018; Asli and Flusser, 2017; Bahrami and 
Naderi, 2014; Tian et al., 2018; Shukla and Sharma, 
2018; Usman et al., 2020). Researchers have become 
interested in the Complex Hadamard Transform 
(CHT) DOT, to investigate the various field of study 
by applying the applications of signal and image 
processing. CHT is the generalized version of the 
Walsh Hadamard Transform due to its simplicity of 
use and ability to generate the transformation matrix 
(WHT). There are numerous CHT variations have 
been generated in Rahardja and Falkowski (1999) 
and Aung (2009). Before any CHT variants can 
replace the Discrete Fourier Transform (DFT) in 
signal processing applications, need to validate the 
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designed features by applying various (Dur-e-Jabeen 
et al., 2016; Dur-e-Jabeen and Monir, 2016; Aung et 
al., 2009). CHT matrix values lie on the unit circle 
(Aung et al., 2009; Aung, 2009). Similar to the DFT in 
a frequency domain, it operates in the Sequency 
Domain (SD). 

Proakis (2007) expressed and illustrates the 
Fourier series as a set of discrete and periodic 
functions, which is the sum of sine and cosine 
functions at various frequency coefficients. If the 
signal is aperiodic, it can be represented 
mathematically using the Fourier Transform (FT) as 
the sum of sinusoidal functions. In real-world 
situations, FT is preferable to the Fourier series. This 
paper is focused on the Conjugate symmetric 
Sequency Ordered Complex Hadamard Transform 
(CS-SCHT) (Aung et al., 2009), whose transformation 
matrix is unitary, orthogonal, and possesses 
conjugate symmetric in nature as DFT, is the subject 
of this study. It has symmetry elements or properties 
in SD that are comparable to the symmetry elements 
in the frequency domain (FD) found in DFT (Rehman 
and Mehmood, 2018). In order to approximate 
square waveforms with low and high values for the 
DFT, CS-SCHT (Aung et al., 2009) calculated sine and 
cosine waveforms. As a result, the CS-SCHT 
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formulation offers the sum of square basis functions 
multiplied by their coefficients at various sequencies. 
According to Fig. 1a, the CS-SCHT offers an 
important property that allows for the 
reconstruction of spectra using its inverse transform 
without losing any data. In order to work in the FD 
and restore the signal to its original form, CS-SCHT is 
therefore permitted (domain). The real basis of the 
various sequencies depicted in Fig. 1a is summarized 
in Fig. 1b. It has been proven through research that it 
has been used for spectrum estimations signal 
processing (Wu et al., 2012; Dur-e-Jabeen et al., 
2017; Pei et al., 2014; Kyochi and Tanaka, 2014) and 

spectrum estimations (Aung et al., 2009). Fast N-
point CS-SCHT is less efficient than the N-point DFT 
technique in terms of computational cost (Aung et 
al., 2009; 2008). This essay is divided into five 
pieces; section 2 discusses SD interpretation of 
phasor rotations. This paper is organized as section 
1 is based on the introduction. Signal interpretation 
in SD is discussed in section 2. Section 3 derives the 
symmetry characteristics in SD with its effect. 
Section 4 explains and discusses the simulation 
results. Section 5 provides a synopsis of all 
conclusions. 

 

 
 

a b 
Fig. 1: a) Real part of row vectors with different sequency of CS-SCHT transform; b) Sum of four functions given in a 

 

2. Perception and representation of complex 
input signals in sequency domain 

The CS-SCHT transform along with its inverse CS-
SCHT, is defined as in Aung et al. (2009), 
 

℘(𝜅) = ∑ ℵ(𝑛)𝑁−1
𝑛=0 (−1)∑ 𝑢𝑙−1

𝑛𝑟−0 (−𝑗)∑ 𝑣𝑙−1
𝑛𝑟=0                              (1) 

ℵ(𝑛) =
1

𝑁
∑ ℘(𝜅)𝑁−1

𝑘=0 (−1)∑ 𝑢𝑙−1
𝑛𝑟−0 (𝑗)∑ 𝑣𝑙−1

𝑛𝑟=0                              (2) 

 

where, 𝑛 = 0,1,2, … , 𝑁 − 1,   ℘(𝑘) is the sequency 
domain spectrum, the time domain symmetric signal 
is presented as ℵ(𝑛) =

[ℵ (−
𝑀

2
) , … , ℵ(−1), ℵ(0), … , ℵ(

𝑁

2
− 1)]

𝑡

, 𝑘𝑔𝑛 = 𝑢 and 

𝑘𝑓𝑛 = 𝑣 are binary numbers. 𝐻𝑁  is the Nth order of 

the CS-SCHT matrix and is represented below (Aung 
et al., 2009): 
 

𝐻𝑁 = (−1)∑ 𝑢𝑙−1
𝑛𝑟=0 (−𝑗)∑ 𝑣𝑙−1

𝑛𝑟=0                                                       (3) 
 

Let  (−1) = 𝑒−𝑗𝜋   
 

and (−𝑗) = 𝑒−𝑗𝜋/2 for easy 
analysis, therefore, suppose 𝛼 =  ∑ 𝑢𝑙−1

𝑛𝑟=0   & 𝛽 =

 ∑ 𝑣𝑙−1
𝑛𝑟=0 , therefore Eq. 3 becomes: 

 

𝐻𝑁 = 𝑒−𝑗𝜋𝛼𝑒−𝑗(
𝜋

2
)𝛽                                                                         (4) 

 

Transformed spectrum for any time domain 
signal such as, ℘(𝑘) = ℑ{ℵ(𝑛)}, where; ℑ represents 
the transform and its time reversal is ℘(−𝑘) =
ℑ{ℵ(−𝑛)}. Therefore, for ℵ(𝑛) ⟺ ℘(𝑘), ℵ(𝑛) and 
ℵ(−𝑛) are positive and negative sides of the time 

domain signal at the origin. ℘(𝑘) and ℘(−𝑘) are 
respective sequency domain spectra. These spectra 
have positive and negative sequencies with real and 
imaginary coefficients. Such complex value pairs are 
℘(𝑘) = (𝑅𝑒(𝑘) + 𝑗𝐼𝑚(𝑘))   and ℘(−𝑘) =
(𝑅𝑒(−𝑘) + 𝑗𝐼𝑚(−𝑘)). Each component is considered 
to define a rotation, positive for ℘(𝑘) counter-
clockwise and negative ℘(−𝑘) for clockwise 
direction. In a fundamental sequency (𝑘 = −1), the 
positive value completes one cycle around the origin 
with data points from 𝑛 = 0,1,2, … , 𝑁 − 1 and 
starting position given by 𝜑+ = 𝑡𝑎𝑛−1(𝐼𝑚(𝑘)/
𝑅𝑒(𝑘)) and similarly for the (𝑘 = −1) phasor 
direction is clockwise with 𝜑− = 𝑡𝑎𝑛−1(𝐼𝑚(−𝑘)/
𝑅𝑒(−𝑘)). The magnitude of each vector can be 

defined as 𝑚+ = √𝑅𝑒{𝑘}2 + 𝐼𝑚{𝑘}2 and 𝑚− =

√𝑅𝑒{𝑘−}2 + 𝐼𝑚{−𝑘}2. The vector sum of both 

quantities is for the discrete increment in 𝜑+ and 𝜑− 
results in the final path around the origin. 

The phase of the sequency component 
determines the starting angle around the origin and 
the sum of the sequency components provides the 
magnitude for each vector. For increasing the 
sequency values (𝑘 = 2,3,4, . . ), the number of cycles 
is increased around the origin. For N-points data, 0th 
and (N/2)th positions are arbitrary values (Aung et 
al., 2009). The other position values should be 
symmetric with respect to the suggested symmetry 
property. The relationship between time and 
transform domain is defined by phasor rotations 
with clockwise and counterclockwise directions that 
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make a circle, elliptical, or simple straight line 
motions in a complex plane for SD (McCabe et al., 
2000; Dur-e-Jabeen and Monir, 2016). Fig. 2 shows 
that at different symmetries, the combination of 
positive and negative magnitudes and phasors, 
works along the complex plane. Many applications 

are investigated in the data analysis field employing 
symmetrical base (Rosell-Tarragó and Díaz-Guilera, 
2021; Li et al., 2020; Qiao et al., 2022; Sreedharan et 
al., 2020), and these can be analyzed in the sequence 
domain utilizing transform domain. 

 

  
a b 

Fig. 2: a) Circular motion with complex values; b) Elliptical motion along the complex plane 
 

3. Effects of symmetries 

It's necessary to develop an understanding of 
how negative sequencies and complex numbers 
affect CHT's usual real-valued input. Consider one-
dimensional CS-SCHT; as a result, the following is a 
representation of Eq. 1: 
 

℘(𝑘) = ∑ (ℵ(𝑛) + 𝑗ℵ(𝑛))𝑒−𝑗𝜋𝛼𝑒−𝑗(𝜋
2⁄ )𝛽𝑁/2−1

𝑛=𝑁/2                      (5) 

 

By placing Euler identities, 𝑒−𝑗𝜋𝛼 = 𝑐𝑜𝑠(𝜋𝛼) −

𝑗𝑠𝑖𝑛(𝜋𝛼) and 𝑒−𝑗(𝜋
2⁄ )𝛽 = 𝑐𝑜𝑠((𝜋

2⁄ )𝛽) −

𝑗𝑠𝑖𝑛((𝜋
2⁄ )𝛽) in Eq. 4, it becomes, 

 

𝐻𝑁 =
𝑐𝑜𝑠(𝜋𝛼)𝑐𝑜𝑠((𝜋

2⁄ )𝛽) − 𝑗𝑐𝑜𝑠(𝜋𝛼) 𝑠𝑖𝑛((𝜋
2⁄ )𝛽)

−𝑗𝑠𝑖𝑛(𝜋𝛼)𝑐𝑜𝑠 ((𝜋
2⁄ )𝛽) + 𝑠𝑖𝑛(𝜋𝛼) 𝑠𝑖𝑛((𝜋

2⁄ )𝛽)
    (6) 

 

Eq. 6 is represented with trigonometric functions 
as below, 

  
 

𝐻𝑁 =

1

2
{𝑐𝑜𝑠(𝜋𝛼 + (𝜋

2⁄ )𝛽) + 𝑐𝑜𝑠(𝜋𝛼 − (𝜋
2⁄ )𝛽)} −

𝑗

2
{𝑠𝑖𝑛(𝜋𝛼 + (𝜋

2⁄ )𝛽) − 𝑠𝑖𝑛(𝜋𝛼 − (𝜋
2⁄ )𝛽)}

−
𝑗

2
{𝑠𝑖𝑛(𝜋𝛼 + (𝜋

2⁄ )𝛽) + 𝑠𝑖𝑛(𝜋𝛼 − (𝜋
2⁄ )𝛽)} +

1

2
{𝑐𝑜𝑠(𝜋𝛼 − (𝜋

2⁄ )𝛽) − 𝑐𝑜𝑠(𝜋𝛼 + (𝜋
2⁄ )𝛽)}

                                                   (7) 

  
 

After simplification, 𝐻𝑁  is given by, 
 

𝐻𝑁 = 𝑐𝑜𝑠(𝜋𝛼 − (𝜋
2⁄ )𝛽) − 𝑗𝑠𝑖𝑛(𝜋𝛼 + (𝜋

2⁄ )𝛽)                   (8) 

 

Now Eq. 5 becomes, 
 

℘(𝑘) = ∑ (ℵ𝑟(𝑛) + 𝑗ℵ𝑖(𝑛)){𝑐𝑜𝑠(𝜋𝛼 − (𝜋
2⁄ )𝛽) −

𝑁/2−1
𝑛=𝑁/2

𝑗𝑠𝑖𝑛(𝜋𝛼 + (𝜋
2⁄ )𝛽)}                                                       (9) 

 

Hence, different combinations of Eq. 9 are 
presented below: 
 
⇒ ℵ𝑅(𝑛)𝑐𝑜𝑠(𝜋𝛼 − (𝜋

2⁄ )𝛽): Real Positive Even 

⇒ 𝑗ℵ𝐼(𝑛)𝑐𝑜𝑠(𝜋𝛼 − (𝜋
2⁄ )𝛽): Imaginary Positive Even 

⇒ −ℵ𝑅(𝑛)𝑗𝑠𝑖𝑛(𝜋𝛼 + (𝜋
2⁄ )𝛽): Real Negative Odd 

⇒ −𝑗ℵ𝐼(𝑛)𝑗𝑠𝑖𝑛(𝜋𝛼 + (𝜋
2⁄ )𝛽): Imaginary Negative Odd 

 
Therefore, by substituting these symmetries 

along with complex input ℵ𝑅(𝑛) + 𝑗ℵ𝐼(𝑛) into Eq. 5, 
then obtain CS-SCHT as below for real and imaginary 
inputs: 

  

℘(𝑘) = ∑ (ℵ𝑅(𝑛)𝑐𝑜𝑠(𝜋𝛼 − (𝜋
2⁄ )𝛽) + ℵ𝐼(𝑛)𝑠𝑖𝑛(𝜋𝛼 + (𝜋

2⁄ )𝛽))𝑁−1
𝑛=0                                                                                                          (10) 

℘(𝑘) = ∑ (ℵ𝑅(𝑛)𝑠𝑖𝑛(𝜋𝛼 − (𝜋
2⁄ )𝛽) − ℵ𝐼(𝑛)𝑐𝑜𝑠(𝜋𝛼 + (𝜋

2⁄ )𝛽))𝑁−1
𝑛=0                                                                                                (11) 

 
Similarly, the inverse of CS-SCHT becomes, 

 

ℵ𝑅(𝑛) =
1

𝑁
∑ (℘𝑅(𝑘)𝑐𝑜𝑠(𝜋𝛼 − (𝜋

2⁄ )𝛽) − ℘𝐼(𝑛)𝑠𝑖𝑛(𝜋𝛼 + (𝜋
2⁄ )𝛽))𝑁−1

𝑘=0                                                                                                   (12) 

ℵ𝐼(𝑛) =
1

𝑁
∑ (℘𝑅(𝑛)𝑠𝑖𝑛(𝜋𝛼 − (𝜋

2⁄ )𝛽) + ℘𝐼(𝑛)𝑐𝑜𝑠(𝜋𝛼 + (𝜋
2⁄ )𝛽))𝑁−1

𝑘=0                                                                                                    (13) 
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Following are symmetries derived along with the 
respective signal structure. 
 
A) Real value signal with even symmetry: If input 

ℵ(𝑛) is real and even symmetric; as ℵ𝑟𝑒(𝑛), that 
is, 

 
ℵ(𝑛) = {ℵ(𝑁 − 𝑛)  };    0 ≤ 𝑛 ≤ (𝑁 − 1)                              (14) 
 

Then Eq. 10 yields ℘𝐼(𝑘) = 0. Hence CS-SCHT 
reduces to,  
 

℘𝑟𝑒(𝑘) = ∑ (ℵ𝑟𝑒(𝑛)𝑐𝑜𝑠(𝜋𝛼 − (𝜋
2⁄ )𝛽))𝑁−1

𝑛=0 ;    0 ≤ 𝑘 ≤

(𝑁 − 1)                                                   (15) 
 

Which is itself a real value and even symmetric. 
Moreover, ICS-SCHT reduces to, 
 

ℵ𝑟𝑒(𝑛) =
1

𝑁
∑ (℘𝑟𝑒(𝑘)𝑐𝑜𝑠(𝜋𝛼 + (𝜋

2⁄ )𝛽))𝑁−1
𝑘=0 ;    0 ≤ 𝑛 ≤

(𝑁 − 1)                                                               (16) 
 

B) Real value signal with odd symmetry: If input 
ℵ(𝑛) is real and odd symmetric; similar to ℵ𝑟𝑜(𝑛), 
that is, 

 
ℵ(𝑛) = {−ℵ(𝑁 − 𝑛)  };    0 ≤ 𝑛 ≤ (𝑁 − 1)                          (17) 
 

then Eq. 11 yields ℘𝑅(𝑘) = 0. Hence CS-SCHT 
reduces to, 
 

℘𝑖𝑒(𝑘) = −𝑗 ∑ (ℵ𝑟𝑜(𝑛)𝑠𝑖𝑛(𝜋𝛼 + (𝜋
2⁄ )𝛽))𝑁−1

𝑛=0 ;    0 ≤ 𝑘 ≤

(𝑁 − 1)                                                                                          (18) 
 

It provides purely imaginary and odd symmetric, 
furthermore, ℘𝑅(𝑘) = 0, so ICS-SCHT reduces to: 
 

ℵ𝑟𝑜(𝑛) =
𝑗

𝑁
∑ (℘𝑖𝑒(𝑘)𝑠𝑖𝑛(𝜋𝛼 − (𝜋

2⁄ )𝛽))𝑁−1
𝑘=0 ;    0 ≤ 𝑛 ≤

(𝑁 − 1)                                                                                          (19) 
 

C) Imaginary value signal with even symmetry: If 
input 𝑗ℵ(𝑛) is imaginary and even symmetric; as 
ℵ𝑖𝑒(𝑛), then Eq. 5 yields ℘𝑅(𝑘) = 0. Hence CS-
SCHT reduces to, 

 

℘𝑖𝑒(𝑘) = ∑ (ℵ𝑖𝑒(𝑛)𝑐𝑜𝑠(𝜋𝛼 − (𝜋
2⁄ )𝛽))𝑁−1

𝑛=0 ;    0 ≤ 𝑘 ≤

(𝑁 − 1)                                                                                          (20) 
 

It is observed that the spectrum has imaginary 
value and even symmetric  ℘𝑖𝑒(𝑘), so ICS-SCHT 
becomes, 
 

ℵ𝑖𝑒(𝑛) =
1

𝑁
∑ (℘𝑖𝑒(𝑘)𝑐𝑜𝑠(𝜋𝛼 − (𝜋

2⁄ )𝛽))𝑁−1
𝑘=0 ;    0 ≤ 𝑛 ≤

(𝑁 − 1)                                                                                          (21) 
 

D) Imaginary value signal with odd symmetry: If 
input 𝑗ℵ(𝑛) is imaginary and odd symmetric; as 
ℵ𝑖𝑜(𝑛), then Eq. 5 yields ℘𝑅(𝑘) = 0. Hence CS-
SCHT reduces to, 

 

℘𝑟𝑜(𝑘) = −𝑗 ∑ (ℵ𝑖𝑜(𝑛)𝑠𝑖𝑛(𝜋𝛼 − (𝜋
2⁄ )𝛽))𝑁−1

𝑛=0 ;    0 ≤ 𝑘 ≤

(𝑁 − 1)                                                                                          (22) 
 

It is observed that the spectrum has imaginary 
value and even symmetric ℘𝑖𝑒(𝑘), and ICS-SCHT 
reduces to, 
 

ℵ𝑖𝑜(𝑛) =
𝑗

𝑁
∑ (℘𝑟𝑜(𝑘)𝑠𝑖𝑛(𝜋𝛼 − (𝜋

2⁄ )𝛽))𝑁−1
𝑘=0 ;    0 ≤ 𝑛 ≤

(𝑁 − 1)                                                                                          (23) 
 

E) Complex value signal with even symmetry: If 
input ℵ(𝑛) + 𝑗ℵ(𝑛) is complex and even 
symmetric; as ℵ𝑐𝑒(𝑛), then Eq. 5 yields ℘𝐼(𝑘) = 0. 
Hence CS-SCHT reduces to, 

 

℘𝑐𝑒(𝑘) = ∑ (ℵ𝑐𝑒(𝑛)𝑐𝑜𝑠(𝜋𝛼 − (𝜋
2⁄ )𝛽))𝑁−1

𝑛=0 ;    0 ≤ 𝑘 ≤

(𝑁 − 1)                                                      (24) 

ℵ𝑐𝑒(𝑛) =
1

𝑁
∑ (℘𝑐𝑒(𝑘)𝑐𝑜𝑠(𝜋𝛼 − (𝜋

2⁄ )𝛽))𝑁−1
𝑘=0 ;    0 ≤ 𝑛 ≤

(𝑁 − 1)                    (25) 
 

F) Complex value signal with odd symmetry: If input 
ℵ(𝑛) + 𝑗ℵ(𝑛) is complex and odd symmetric; as 
ℵ𝑐𝑜(𝑛), then Eq. 5 yields ℘𝑅(𝑘) = 0. Hence CS-
SCHT reduces to: 

 

℘𝑐𝑜(𝑘) = ∑ (ℵ𝑐𝑜(𝑛)𝑐𝑜𝑠(𝜋𝛼 + (𝜋
2⁄ )𝛽))𝑁−1

𝑛=0 ;    0 ≤ 𝑘 ≤

(𝑁 − 1)                                     (26) 
 

which is complex and odd-symmetric. Moreover, ICS-
SCHT reduces to: 
 

ℵ𝑐𝑜(𝑛) =
1

𝑁
∑ (℘𝑐𝑜(𝑘)𝑠𝑖𝑛(𝜋𝛼 − (𝜋

2⁄ )𝛽))𝑁−1
𝑘=0 ;    0 ≤ 𝑛 ≤

(𝑁 − 1)                                     (27) 
 

The generalization of real input CS-SCHT is the 
interpretation of the sequence domain 
representation of complex input CS-SCHT. The 
spectrum contains both "even symmetric real output 
components" and "odd symmetric imaginary output 
components" because the real inputs with no 
symmetry lead to Hermitian symmetry. 

4. Results and discussion 

Symmetry properties, such as ℵ𝑟𝑒(𝑛), which 
provides ℘𝑟𝑒(𝑘), which is the sum of the final result 
on the complex plane, determined in the previous 
section. Table 1 shows the symmetry characteristics 
of the sequency domain. Table 1 displays the signal's 
characteristics in the time domain as well as the 
frequency and sequency domain. 

It demonstrates that an even spectrum is seen for 
input signals that are complex, fictitious, and real 
alike. However, when the input signal lacks 
symmetry for real or imaginary signals, respectively, 
the Hermitian and anti-Hermitian spectra are 
obtained. 

4.1. 1D signal processing application 

An actual signal with even symmetry is shown in 
Fig. 3a, along with a CS-SCHT representation of its 
sequency. There are only symmetrical real 
components in the spectrum. The spectrum's phasor 
representation is shown in Fig. 3b. Adding these 
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phasors causes the real axis to move in a straight 
line. A peculiarly symmetric real signal and its 
sequency spectrum are shown in Fig. 4a. Only odd 
symmetric imaginary values are present in the 
spectrum. The spectrum's phasor representation is 
shown in Fig. 4b, where it is clear that the addition of 
a phasor will cause it to move in a straight line along 
the imaginary axis. An actual signal without 
symmetry and its sequency spectrum are shown in 
Fig. 5a. Even symmetric real and odd symmetric 
imaginary components make up the spectrum. In Fig. 
5b, the phasor representation of the sequency 
spectrum, it is clear that adding the phasor would 
cause a straight-line motion down the real axis. 

An imaginary signal with equal symmetry and its 
sequency spectrum are shown in Fig. 6a. The 
components of the spectrum are imaginary, even-
symmetrical parts. In Fig. 6b, the sequency spectrum 
is shown as a phasor, and it is obvious that adding 
the phasor would cause a straight-line motion along 
the imaginary axis. Fig. 7a shows an imaginary signal 

with an odd symmetry and its sequency spectrum. 
Odd symmetric real components make up the 
spectrum. Fig. 7b shows how the sequency spectrum 
is represented as a phasor. It should be clear that the 
addition of a phasor would cause a motion in a 
straight line along the real axis. 

A hypothetical or imaginary signal without 
symmetry and its sequency spectrum are shown in 
Fig. 8a. Odd symmetric real and even symmetric 
imaginary components make up the spectrum. Fig. 
8b shows the sequency spectrum's phasor 
representation. Fig. 8b makes it clear that the 
addition of the phasor would cause a straight-line 
motion along the hypothetical axis. It is simple to 
demonstrate that all fictitious components will 
cancel out due to hermitian symmetry, leaving just 
real coefficients with no symmetry. The hermitian 
signal has only real components and no symmetric 
imaginary components in its sequency spectrum, and 
even symmetric real values Likewise, anti-hermitian 
is the opposite. 

 
Table 1: Comparison of symmetry properties of DFT and CS-SCHT (Dur-e-Jabeen and Monir, 2016) 

Signal time domain property Frequency domain property for DFT Sequency domain property for CS-SCHT 
Real and even Real and even Real and even 

Imaginary and even Imaginary and even Imaginary and even 
Complex and even Complex and even Complex and even 

Real and odd Imaginary and odd Imaginary and odd 
Imaginary and odd Real and odd Real and odd 
Complex and odd Complex and odd Complex and odd 

Real and no symmetry Hermitian Hermitian 
Imaginary and no symmetry Anti-Hermitian Anti-Hermitian 
Complex and no symmetry Complex and no symmetry Complex and no symmetry 

Hermitian Real and no symmetry Real and no symmetry 
Anti-Hermitian Imaginary and no symmetry Imaginary and no symmetry 

 

  
a b 

Fig. 3: a) Even-real valued signal and symmetric spectrum, b) Respective phasor illustration 
 

  
a b 

Fig. 4: a) Odd-real valued signal and odd-symmetric spectrum, b) Respective phasor illustration 
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a b 

Fig. 5: a) Non-symmetric real value signal and non-symmetric spectrum, b) Respective phasor illustration 
 

  
a b 

Fig. 6: a) Even-imaginary valued signal and even symmetric spectrum, b) Phasor illustration 
 

  
a b 

Fig. 7: a) Odd symmetry-imaginary valued signal and spectrum, b) Respective phasor diagram 
 

  
a b 

Fig. 8: a) Imaginary valued signal and non-symmetric spectrum, b) Phasor diagram for imaginary value signal and no 
symmetry 

 



Dur-e-Jabeen et al/International Journal of Advanced and Applied Sciences, 10(5) 2023, Pages: 195-202 

201 
 

4.2. 2D image processing application 

Either the spatial domain or the transform 
domain can be used for digital image processing. 
Symmetry qualities play a significant role in signal 
and image processing. CS-SCHT is applied to the 
binary, gray, and color images to analyze the 
performance of the sequency domain symmetry 
properties. That explains how the combination of 
positive and negative sequency phasors causes 
motion along the real and hypothetical/imaginary 
axis. Specifically, how the magnitude and phasor 

response present its behavior in the sequency 
domain on a complex plane. 

Figs. 9-12, show the symmetrical image with 
different resolutions such as 96x96, 256x256, 
296x296, and 512x512. Magnitude and phase 
response are presented along with the respective 
images, and all image sequency spectra are FFT-
shifted. 

The shape of the relevant image is revealed by the 
magnitude response, while the boundary lines are 
shown by the phase response, allowing us to 
recognize the image in its original spatial context. 

 

  
 

a b c 
Fig. 9: a) Symmetric color image, b) Magnitude spectrum, c) Phase spectrum 

 

  
 

a b c 
Fig. 10: a) Symmetric binary image, b) Magnitude spectrum, c) Phase spectrum 

 

  
 

a b c 
Fig. 11: a) Symmetric color image, b) Magnitude spectrum, c) Phase spectrum 

 

   
a b c 

Fig. 12: a) Anti-symmetric image, b) Magnitude spectrum, c) Phase spectrum 
 

5. Conclusion 

In this study, phasor rotations in the sequency 
domain are also computed along with the symmetry 
features of CS-SCHT. The sequency spectrum of a 
complex input without symmetry is demonstrated in 
this study to be complex without symmetry as well. 
Therefore, there is no correlation between the 
positive and negative sequency coefficients. 
However, the subsequent trajectory that was tracked 
through the complex plane can still be given to us 

using the phasor representation. The magnitude and 
phase values of the two phasors can differ when the 
input is complex and non-symmetric. When the sole 
difference is in the phase value, the resulting path 
will depict a straight-line motion. The combination of 
two component phasors will yield the motion's 
angle. Symmetry properties play and very significant 
role in the number of biomedical, methodical, and 
digital signal processing applications. Because the 
transform domain reduces the computational cost in 
terms of the half spectral coefficients, it can be 
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employed for image analysis with deep learning 
algorithms alongside the sequency domain to get 
similar results as the frequency domain by using 
DFT. Transform can be utilized for the extraction and 
analyze various aspects and characteristics of 
medical images considering the different input 
signals. 
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