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This study aims to compare the stochastic process model designed as a 
nonhomogeneous Poisson process and α-series process, to obtain a better 
process for using monotonous trend data. The α-series process is a stochastic 
process with a monotone trend, while the NHPP is a general process of the 
ordinary Poisson process and it is used as a model for a series of events that 
occur randomly over a variable period of time. Data on the daily fault time of 
machines in Bahrri Thermal Station in Sudan was analyzed during the 
interval from first January 2021, to July 31, 2021, to acquire the best 
stochastic process model used to analyze monotone trend data. The results 
revealed that the NHPP model could be the most suitable process model for 
the description of the daily fault time of machines in Bahrri Thermal Station 
according to lowest MSE, RMSE, Bias, MPE, and highest. The current study 
concluded that through the NHPP, the fault time of machines and repair rate 
occur in an inconsistent way. The further value of this study is that it 
compared NHPP and α-series to obtain a better process for using monotone 
trend data and prediction. Meanwhile, the other studies in this field focused 
on comparing methods of estimation parameters of the NHPP and the α-
series process. The distinctive scientific addition of this study stems from 
displaying the precision of the NHPP better than the α-series process in the 
case of monotone trend data. 
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1. Introduction 

*Electrical energy is the basis of contemporary 
development in its various economic and 
development aspects as it is the most important 
infrastructure and it affects the instability of the 
country due to the frequent faults of electricity 
generation machines, and this has an impact on 
economic development and human life (Butt et al., 
2021). It is important to have a stochastic process 
model to study the fault time of machines for 
thermal electricity generation (Borges, 2012). 
Thermal electricity generation is considered one of 
the most important sectors of electricity generation 
in Sudan, which supplies the national electricity grid 
in Sudan and helps the competent authorities to 
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develop their plans for the stability of the electric 
current. Generally, there are five stochastic process 
models to study the fault time of machines when it 
represents a monotonous trend (Louit et al., 2009); 
(i) renewal process model (ii) geometric process 
model (iii) α-series process model (iv) homogeneous 
Poisson process (HPP) (v) nonhomogeneous Poisson 
process (NHPP). The use of the α-series process with 
the NHPP is considered one of the important issues, 
especially in the field of service provision, which 
includes health, finance, telecommunications, and 
electricity sectors. The series can be used when 
successive fault times are a monotonous trend due to 
the influence of time and the cumulative form of the 
process. The NHPP can be described as a process of 
the fault rate that occurs in a variable manner and 
represents a monotonous trend due to the change of 
time. 

The researchers have sought an understanding of 
the fault time of machines, and many of them have 
undertaken stochastic process models to build 
models. So the first research in this field was Non-
homogeneous Poisson and linear regression models 
as approaches to studying time series with change 
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points (de Oliveira et al., 2022). Another work 
studied Statistical Inference for Alpha-Series Process 
with the Generalized Rayleigh Distribution (Biçer, 
2019). Some of the researchers studied Time-
between-events monitoring using an NHPP with 
power law intensity (Ali, 2021). Another study had 
also a parameter estimation in the α-series process 
with lognormal distribution (Chumnaul, 2019). 
While the Previous studies have compared the α-
series process and its related processes such as the 
geometric process, renewal process, and the Weibull 
process, this study makes the scientific addition of 
displaying the importance of the NHPP as well as α-
series process to study fault time of machines. The 
objective of this study is to find the best stochastic 
process model that represents the fault time of 
electricity-generation machines for the period from 
first January 2021 to July 31, 2021. 

Bahrri Thermal Plant is considered one of the 
largest thermal stations of the Sudanese Thermal 
Generation Company as it supplies the national 
electricity grid with a high percentage of electricity 
about 380 MW, as it compensates for the shortage in 
water generation when the water level drops during 
the summer.  

2. Methodology 

2.1. α-series process model 

The α-series process is the first possible process 
of stochastic process models when successive fault 
times represent a monotonous trend due to the 
influence of time and the accumulative form of the 
process (Biçer, 2019). If we assume that the 
cumulative distribution function is  𝐹𝑡(𝑥), it has a 
positive mean 𝜇 and a specific variance  𝜎2, and 𝛼 , 𝜇 
and 𝜎2  then the main parameters of the α-series 
process A because it determines the mean and 
variance of 𝜎2, then if the dataset [𝑥𝑡 , 𝑡 = 1,2, … ] 
represents the times of occurrence for the α-series 
process, so that: 
 

𝑥𝑡 =
𝑦𝑡

𝑡∝                                                                                              (1) 

 

and 
 
𝑦𝑡 = 𝑡∝𝑥𝑡                                                                                         (2) 
 

where, 𝑦𝑡  represents a series of identical 
independent variables. Taking the natural logarithm 
of both sides of Eq. 2, we get: 
 
   𝑦𝑡 =∝ 𝑙𝑛𝑡 + 𝑙𝑛𝑥𝑡                                                                        (3) 
 

The expectation of 𝑥𝑡  that it can be found in the 
following formula: 
 

𝐸(𝑥𝑡) =
𝐸(𝑦𝑡)

𝑡𝛼
=

𝜇

𝑡𝛼
                                                                         (4) 

 

Also, the variance of 𝑥𝑡  can be calculated by the 
following formula: 
 

𝑉(𝑥𝑡) =
𝑉(𝑦𝑡)

(𝑡∝)2
=

𝜎2

𝑡2𝛼
                                                                        (5) 

2.1.1. Least squares method 

The least squares method is one of the important 
nonparametric methods for estimating, as it has 
been noted that the time rate of occurrence in the α-
series is fit with this method (Suleiman, 2013), that 
the principle of this method depends on the error 
squares to get the best estimator for the parameters 
of the α-series. If the stochastic process [𝑥𝑡 , 𝑡 =
1,2, … ] represents the inter-occurrence times of an 
alpha-series process, then the sum of the squares of 
the error in logarithmic scale is: 
 
∑ 𝑒2

𝑡
𝑛
𝑡=1 = ∑ [𝑙𝑛𝑦𝑡 − 𝐸(𝑙𝑛𝑦𝑡)]2𝑛

𝑡=1                                            (6) 
 

Substituting into Eq. 5, we get: 
 
∑ 𝑒2

𝑡
𝑛
𝑡=1 = ∑ [𝑙𝑛𝑥𝑡−∝ 𝑙𝑛𝑡 − 𝛽]2𝑛

𝑡=1                                          (7) 
 

where, 𝐸(𝑙𝑛𝑦𝑡) = 𝛽  

In order to reduce the sum of squares of the error 
to the least possible, the partial differential of Eq. 8 
with respect to the two parameters α and 𝛽 was 
taken, and setting the result to zero. 
 
𝜕 ∑ 𝑒2

𝑡
𝑛
𝑡=1

𝜕𝛽
= −2 ∑ [𝑙𝑛𝑥𝑡−∝ 𝑙𝑛𝑡 − 𝛽]2𝑛

𝑡=1 = 0                           (8) 

𝜕 ∑ 𝑒2
𝑡

𝑛
𝑡=1

𝜕∝
= −2 ∑ [𝑙𝑛𝑥𝑡−∝ 𝑙𝑛𝑡 − 𝛽]2𝑛

𝑡=1 𝑙𝑛𝑡 = 0                     (9) 

 
From Eq. 10 it is obtained: 
 
−2 ∑ 𝑙𝑛𝑛

𝑡=1 𝑥𝑡−∝ ∑ 𝑙𝑛𝑡 − 𝑛𝛽 = 0𝑛
𝑡=1                                      (10) 

 

Therefore,  
 

𝛽 =
1

𝑛
[∑ 𝑙𝑛𝑥𝑡 − 𝛼 ∑ 𝑙𝑛𝑡𝑛

𝑡=1
𝑛
𝑡=1 ] = 0                                       (11) 

 

From Eq. 10 it is obtained: 
 
∑ 𝑙𝑛𝑡𝑙𝑛𝑥𝑡+∝ ∑ (𝑙𝑛𝑡)2𝑛

𝑡=1
𝑛
𝑡=1 − 𝛽 ∑ 𝑙𝑛𝑡𝑛

𝑡=1                             (12)  
 

Substituting Eq. 13 into Eq. 14, we get: 
 
n ∑ lntlnxt + ∑ lnt ∑ xt + α[n ∑ (lnt)2 −n

t=1
n
t=1

n
t=1

n
t=1

(∑ lntn
t=1 )2] = 0                                                                           (13) 

             

Therefore, the estimator of least squares for the 
parameter α is: 
 

𝛼̂ =
∑ 𝑙𝑛𝑡𝑙𝑛𝑥𝑡−𝑛 ∑ 𝑙𝑛𝑡 ∑ 𝑥𝑡

𝑛
𝑡=1

𝑛
𝑡=1

𝑛
𝑡=1

𝑛 ∑ (𝑙𝑛𝑡)2−(∑ 𝑙𝑛𝑡𝑛
𝑡=1 )2𝑛

𝑡=1
                                                 (14) 

 

To find the least squares estimator for parameter 
𝛽, we substitute the estimator for parameter t into 
Eq. 13 as it comes: 
 

𝛽̂ =
∑ 𝑙𝑛𝑡 ∑ 𝑙𝑛𝑥𝑡𝑙𝑛𝑡𝑛

𝑡=1 −𝑛 ∑ 𝑙𝑛(𝑙𝑛𝑡) ∑ 𝑙𝑛𝑥𝑡
𝑛
𝑡=1

𝑛
𝑡=1

𝑛
𝑡=1

∑ (𝑙𝑛𝑡)2−𝑛(∑ 𝑙𝑛𝑡𝑛
𝑡=1 )2𝑛

𝑡=1
                           (15) 

 

As for the estimation of the parameters 𝛽, 𝜎2, the 
variance of the error is first estimated by likening to 
Eq. 17, with a simple regression model. 
 



Safar M. A. Alghamdi, Mohammedelameen E. Qurashi/International Journal of Advanced and Applied Sciences, 10(5) 2023, Pages: 12-19 

14 
 

𝑦𝑡 = 𝑎 + 𝑏𝑥𝑡 + 𝑒𝑡                                                                       (16) 
𝑙𝑛𝑥𝑡 = 𝛽 − 𝛼𝑙𝑛𝑡 + 𝑒𝑡           𝑡 = 1,2, … , 𝑛                              (17)                        

 

As: 
 
𝑦𝑡=𝑙𝑛𝑥𝑡  ,  𝑎 = 𝛽 , 𝑏 = −∝ ,  𝑥𝑡 = 𝑙𝑛𝑡 
 

Since the variance of the regression line is: 
 

𝜎𝑒
2 =

∑ 𝑦2
𝑡−𝑎 ∑ 𝑦𝑡−𝑏 ∑ 𝑥𝑡𝑦𝑡

𝑛
𝑡=1

𝑛
𝑡=1

𝑛
𝑡=1

𝑛−2
                                               (18) 

𝜎2 =
∑ (𝑙𝑛𝑥𝑡)2−𝛽̂ ∑ 𝑙𝑛𝑥𝑡+𝛼̂ ∑ 𝑙𝑛𝑥𝑡𝑙𝑛𝑦𝑡

𝑛
𝑡=1

𝑛
𝑡=1

𝑛
𝑡=1

𝑛−2
                               (19) 

   

By substituting t into Eq. 17, and by making 
simplifications on the above expression, the amount 
of error variance of the regression line equation was 
obtained. 
 

𝜎𝑒
2 =

[∑ (𝑙𝑛𝑥𝑡)2𝑛
𝑡=1 −

1

𝑛
(∑ 𝑙𝑛𝑥𝑡

𝑛
𝑡=1 )2]−𝛼̂[∑ (𝑙𝑛𝑡)2−

1

𝑛
(∑ 𝑙𝑛𝑡𝑛

𝑡=1 )2𝑛
𝑡=1 ]

𝑛−2
        (20) 

 

From Eq. 20 it is possible to find the value of 
parameter m for an α-series process as follows: 
 

𝑦𝑡 = 𝑒(𝛽+𝑒𝑡)   𝑡 = 1,2, … , 𝑛                                                       (21) 
 

Taking the expectation from both sides: 
 

𝐸(𝑦𝑡) = [𝑒𝛽+𝑒] = 𝑒𝛽𝐸(𝑒𝑒𝑡)                                                     (22) 

 

The estimator can be found using the Taylor 
series on the following: 
 

𝑒𝑡 = 1 + 𝑒𝑖 +
𝑒2

𝑖

2
+ ⋯                                                                 (23) 

As: 𝐸(𝑒𝑖) = 0, 𝐸(𝑒𝑖) = 𝜎2
𝑒 

 

Therefore, the estimator of the parameter 𝜇 for 
an α-series process is: 
 

𝜇̂ =𝐸[𝑦𝑡] = 𝑒𝛽̂  𝐸 [1 + 𝑒𝑖 +
𝑒2

𝑖

2
+ ⋯ ] ≈  𝑒𝛽̂  (1 +

𝜎̂2

2
)         (24) 

 

The estimator of the process 𝜎2 for an α-series 
process is. 
 

𝑉(𝑦𝑡) = 𝑉(𝑒(𝛽+𝑒𝑡)) = 𝑒2𝛽𝑉(𝑒𝑒𝑡) = 𝑒2𝛽𝑉(𝑒𝑡)                    (25) 

𝜎̂2 = 𝜎̂𝑒𝑒2𝛽                                                                                                                       

2.2. Homogeneous Poisson process (HPP) 

It is the counting process [𝑁(𝑡); 𝑡 ≥ 0], it is called 
the Poisson process with rate 𝜆 when it contains the 
following conditions (Qurashi and Hamdi, 2016): 
 
1. The number of events at time zero is zero, 𝑁(𝑡) =

0.  
2. The process [𝑁(𝑡); 𝑡 ≥ 0] has independent 

increments. 
3.  The number of events in any interval of length 𝑡 is 

distributed as a Poisson distribution with 
parameter λt. 

 

𝑃[𝑁(𝑡) = 𝑛] =
(𝜆𝑡)𝑛𝑒−𝜆𝑡

𝑛!
                  n=0,1,2,…                        (26) 

 

The number of events in the period [𝑡 + 𝑠, 𝑠] is 
also a random variable that follows a Poisson 
distribution with a mean 𝜆(𝑡 + 𝑠, 𝑠). 
 

𝑃[𝑁(𝑡 + 𝑠) − 𝑁(𝑠) = 𝑛] =
(𝜆(𝑡+𝑠−𝑠)𝑛𝑒−𝜆(𝑡+𝑠−𝑠)

𝑛!
     n=0,1,2,… 

                                                                                                         (27) 

2.3. Nonhomogeneous Poisson process (NHPP) 

NHPP is a general process of the ordinary Poisson 
process which is one of the advanced stochastic 
processes used in reliability engineering, and it has 
been used successfully in the study of reliability and 
machine failure problems. The number of events that 
occur randomly in time t with rate 𝜆 for events for 
every unit of time t. It is suitable for modeling a 
series of events that occur randomly for a variable 
length of time (Ali, 2021). 

 
Definition: The counting processes [𝑁(𝑡); 𝑡 ≥ 0] are 
said to be an NHPP with of Intensity function λt, 𝑡 ≥
0, if the following conditions are available: 
 
1. The counting processes [𝑁(𝑡); 𝑡 ≥ 0], i.e. the 

number of events in time t, has independent 
increments but is unstable. 

2. The probability of more than one event occurring 
in a period of time h is close to zero. 

 
𝑃[𝑁(𝑡 + ℎ) − 𝑁(𝑡) ≥ 2] = 0ℎ                                                (28) 
 

3. The probability of one event occurring during 
time. 

 
𝑃[𝑁(𝑡 + 𝑤) − 𝑁(𝑡) ≥ 1] = 𝜆(𝑡)𝑤 + 𝑈(𝑤)                         (29) 
 

Since the term 𝑈(𝑤) denotes any quantity that 
leads to zero, when approaching zero. Thus, the 
Poisson process [𝑁(𝑡); 𝑡 ≥ 0]  follows the Poisson 
distribution with a probability mass function: 
 

𝑃[𝑁(𝑡 − 𝑠) − 𝑁(𝑡) = 𝑛] =
(𝜆(𝑡))𝑛𝑒−𝜆𝑡

𝑛!
    n=0,1,2,…             (30) 

 

where, m represents the process parameter is the 
cumulative rate of occurrence of failure (ROCOF). If 
λt is a constant quantity for all values of t i.e. λt linear 
in time t, then the process [𝑁(𝑡); 𝑡 ≥ 0] is a HPP with 
event rate λt, if λt is variable and it changes with 
time the process [𝑁(𝑡); 𝑡 ≥ 0] is an NHPP, and the 
scientist Feller is the first scientist who gave a 
definition of the Poisson process and put its most 
important characteristics (de Oliveira et al., 2022). 

2.3.1. Properties of NHPP 

1. Independent Of The Number: If we have an NHPP 
within the period (0, 𝑡) The number of events 
during the same period is 𝑁(𝑡) = 𝑛, So the 
moment we get n events are independently 
distributed within the period(0, 𝑡) with intensity 
function 𝜆(𝑡) Λ(𝑡)⁄ . 
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2. Superposition: Compound of two or more NHPP 
with intensity functions 𝜆1(𝑡), 𝜆2(𝑡) It is also an 
NHPP that means: 𝜆(𝑡) = 𝜆1(𝑡) + 𝜆2(𝑡) + ⋯  

3. Random Selection: If we have an NHPP with an 
intensity function 𝜆(𝑡), our selection of any event 
is random and independent of the other events 
and with a probability 𝑃(𝑡), which depends on 
time and therefore has an intensity function 
𝑃(𝑡) = 𝜆(𝑡). 

4. Random Split: If an NHPP with an intensity 
function 𝜆(𝑡) is randomly split into two partial 
processes with probabilities  𝑃1(𝑡), 𝑃2(𝑡), if 
 𝑃1(𝑡) + 𝑃2(𝑡) = 1, Therefore, the results of partial 
processes are NHPP with intensity functions 
𝜆1(𝑡)𝑃1(𝑡), 𝜆2(𝑡)𝑃2(𝑡). 

 
The probability distribution of the intervals 

between the occurrences of events in the NHPP 
follows the Exponential distribution with probability 

distribution: (𝑡) = 𝜆(𝑡)𝑒− ∫ 𝜆(𝑢)𝑑𝑢
∞

0 , 𝑡 > 0 
 

𝑓(𝑡) = 𝜆(𝑡)𝑒− ∫ 𝜆(𝑢)𝑑𝑢
∞

0 ,   𝑡 > 0,                                              (31) 

2.3.2. Power law model 

Duane (1964) proposed a model called the power 
law as a function of the time rate of an event with 
two parameters 𝜆, 𝛽 
 

𝑢(𝑡) = 𝜆𝛽𝑡𝛽−1                                                                             (32) 
 

The cumulative intensity function of the power 
law is:  
 

𝜑(𝑡) = 𝜆𝑡𝛽                                                                                    (33) 
 

where, 𝑁(𝑡) is Number of observed failures in (0, t); 
𝑢(𝑡) is Failure intensity (sometimes called the 
“instantaneous failure rate”); 𝜆, 𝛽 is Model 
parameters (𝜆 > 0, 𝛽 > 0). 

If the parameter 𝛽 in the power law function of 
the time rate of occurrence in Eq. 33, if: 
 
1. 𝛽 > 1: Indicates that NHPP is an increase with 

time. 
2. 𝛽 < 1: Indicates that NHPP is a decrease with time. 
3. 𝛽 = 1: Indicates that the time rate of occurrence in 

the process under study is a constant quantity 
with time. Therefore, the power law function turns 
into an exponential distribution function 
(Chumnaul, 2019). 

2.3.3. Maximum likelihood method 

Estimating the time rate is an estimate of the 
parameters in the function model that was chosen to 
represent the time rate function of the occurrence of 
events in the NHPP and one of the most used 
methods is the maximum likelihood (Chumnaul, 
2019). 
 

𝑓𝑛(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏ 𝜆(𝑡𝑖)𝐸𝑥𝑝[− ∫ 𝜆(𝑢)𝑑𝑢
∞

0
]𝑛

𝑖=1                       (34) 
 

When substituting the two Eqs. 32 and 33, they 
yield: 

 
𝑦 = 𝑙𝑛[𝑢(𝑡)] , 𝑎 = 𝑙𝑛𝜆 , 𝑏 = 𝛽 , 𝑥 = 𝑙𝑛𝑡                               (35) 

𝐿 = 𝜆𝑛𝛽𝑛 ∏ 𝑡𝑖
𝛽−1𝐸𝑥𝑝[−𝜆(𝑡𝑛)𝛽]𝑛

𝑖=1                                            (36) 

𝑙𝑛𝐿 = 𝑛𝑙𝑛𝜆 + 𝑛𝑙𝑛𝛽 + (𝛽 − 1) ∑ 𝑙𝑛𝑡𝑖
𝑛
𝑖=1 − 𝜆𝑡𝑛

𝛽
                   (37) 

𝑎̂ =
∑ 𝑦

𝑛
− 𝑏̂

∑ x

n
                                                                              (38) 

𝜆̂ =
𝑛

𝑡𝑛
𝛽                                                                                             (39) 

 
Substituting the values of x, y, a, and b with their 

corresponding values from Eq. 37, we get the 
following: 
 
𝜕𝑙𝑛𝐿

𝜕𝛽
=

𝑛

𝛽
+ ∑ 𝑡𝑖−

𝑛
𝑖=1 𝜆𝑡𝑛

𝛽
𝑙𝑛𝑡𝑛 =

𝑛+𝛽 ∑ 𝑙𝑛𝑡𝑖−𝜆𝛽𝑛
𝑖=1 𝑡𝑛

𝛽
𝑙𝑛𝑡𝑛

𝛽
           (40) 

 

Equating Eq. 40 to zero: 
 
𝜕𝑙𝑛𝐿

𝜕𝛽
=

𝑛+𝛽 ∑ 𝑙𝑛𝑡𝑖−𝜆𝛽𝑛
𝑖=1 𝑡𝑛

𝛽
𝑙𝑛𝑡𝑛

𝛽
= 0                                               (41) 

𝛽̂ =
𝑛

𝜆𝛽𝑡𝑛
𝛽

𝑙𝑛𝑡𝑛−∑ 𝑙𝑛𝑡𝑖
𝑛
𝑖=1

                                                                   (42) 

 

Thus, the model of the estimated power law 
function is: 
 

𝜆(𝑡) = 𝜆̂𝛽̂(𝑡)𝛽̂−1                                                                          (43) 

2.4. Trend analysis of process 

The trend analysis of the stochastic processes of 
the α-series, Geometric process, renewal process, 
and NHPP is important in determining the general 
form of the process, when applied to actual data, 
several basic problems were faced, the most 
important of which is matching the study data with 
the process. To test this, Yeh (1992) suggested a 
number of tests on the process, which helps us know 
whether the data follows the stochastic process or 
not. The trend analysis test in the process is a trend 
analysis monotone test. There are some simple 
methods to test the general trend of the stochastic 
process: (1) Technical graphic (2) The Mann test (3) 
the Laplace test (Kara et al., 2019). In this study, the 
general trend analysis test was used: 
 
H0: γ = 0 Faults rate is constant HPP 
H1: γ ≠ 0 Faults rate is not Constant NHPP 
 

The statistical test for the above hypothesis is as 
follows: 
 

𝑍 =
∑ 𝑡𝑖−

1

𝑛
𝑛𝑡𝑛

𝑛
𝑖=1

√𝑛𝑡2
𝑛

2

    𝑍~𝑁(0,1)                                                      (44) 

 

where, 𝑡𝑖  is Times of occurrence of events (hours, 
minutes,...) for the time period (𝑡𝑛, 0); 𝑛 is The 
number of events that occur in the time period 
(𝑡𝑛, 0); 𝑍 is the Test value. When a value of Z in the 

range (−𝑍𝛼

2
< 𝑍 < 𝑍𝛼

2
) accept 𝐻0, (𝑍 < 𝑍𝛼

2
)or 

(𝑍 < −𝑍𝛼

2
) reject 𝐻0. statistically significant at a 5% 

level. 
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2.5. Model selection criteria 

When using several stochastic processes, how do 
we choose the best process that fits the data? There 
are several criteria that can be used to find the best 
process. The most important of these criteria is the 
coefficient of determination (𝑅2) and criteria for the 
quality of the fit: Bias, mean squared error (MSE), 
root mean squared error (RMSE), and mean absolute 
error (MAE). The following numerical indices are 
commonly used in model evaluation  (Song et al., 
2019): 
 

𝑅2 = 1 −
∑ (𝑦𝑡−𝑦̂𝑡)2𝑛

𝑡=1

∑ (𝑦𝑡−𝑦̅)2𝑛
𝑡=1

                                                                  (45) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
𝑆𝑆𝑒

𝑛−𝑃−1
                                                       (46) 

𝐵𝑖𝑎𝑠 =
1

𝑛
∑ 𝑒𝑡

𝑛
𝑡=1                                                                           (47) 

MAE =



n

t

te
n 1

1

                                                                         (48) 

2.6. Reliability function 

The reliability function is defined as the 
probability of success or the probability that the 
machine will perform its intended function under 
specified design limits. Mathematical reliability R(t) 
is the probability that a system will be successful in 
the interval from time 0 to time t (Choudhury et al., 
2021): 
 
𝑅(𝑡) = 𝑃(𝑇 > 𝑡), 𝑡 > 0                                                             (49) 
 

where, t is a random variable denoting the time-to-
failure or failure time. Unreliability F(t), a measure of 

failure, is defined as the probability that the system 
will fail by time t:  
 
𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) for 𝑡 > 0                                                        (50) 

2.7. Hazard function 

Defined as limits of the rate of faults for a period 
of the near-zero equation can be written in the form: 
 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
                                                                                     (51) 

3. Results and discussion 

In this part, the α-series process is compared with 
the NHPP by conducting trend analysis, then 
estimating the α-series process and estimating the 
NHPP parameters, and finally, the comparison 
between the two processes using some statistical 
criteria to obtain the best process that fits the data of 
this study. Fig. 1 shows that the fault time of 
machines in Bahrri Thermal Station increases in 
certain periods, stabilizes, and decreases in other 
periods, which indicates the random occurrence of 
faults in machines during the study period. 

3.1. Trend analysis of process 

The first procedure in the statistical analysis of 
the stochastic process on the fault time of the 
electricity machines at the Bahrri Thermal Station 
during the period from January 1, 2021, to July 31, 
2021, is whether the process has a monotonous 
general trend or not. To do this, the Laplace test was 
used. 

 

 
Fig. 1: The daily faults time of machines in Bahrri station for thermal generation 

 

3.1.1. Laplace test for trend analysis  

Here we test the following hypothesis: 
 
H0: Fault time of machines has no monotonous trend 
(HPP) 

H1: Fault time of machines has monotonous trend 
(NHPP) 
 

Table 1 shows that the p-value of the Laplace test 
(0.000) is less than the significance level of 5%, we 
reject H0 that indicates the fault time of machines 
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has a monotonous trend. That is, the data fit the α-
series process and the NHPP. 

 
Table 1: Laplace test for trend analysis 
 Statistic P-value 

Laplace value 50.670 0.000 

 

Fig. 2 shows that the general form of the process 
is in the trend of increasing, which shows that the 
process is a stochastically increasing and 
monotonous process; this was confirmed by 
Laplace's test in Table 1. 

 
 

 
Fig. 2: The cumulative number of faults vs time 

 

3.2. Estimation of the parameters of the α-series 
process 

To estimate the parameters of the α-series of 
machines' failure time by the least squares method, 
Mathcad 2000 software was used, Table 2 shows 
that: 

 
Table 2: Estimators of the α-series process of machines 

failure time 
Parameters Estimate 

𝛼̂ -0.1289 
𝛾 1.1523 

𝜎̂𝑒
2 1.0131 

𝜇̂ 4.1494 
𝜎̂2 10.1514 

α-series process model: 𝑦̂𝑡 = 1.5323 + 0.1289𝑥𝑡 

3.3. Estimation of the parameters of the NHPP 

To estimate the parameters of the NHPP of 
machines' fault time by the Maximum likelihood 
method, Statgraphics-18 software was used to 
estimate the parameters in Table 3.  

 
Table 3: Estimators of NHPP of machines faults time 

Parameters Estimate 

𝜆̂ 0.2492 

𝛽̂ 0.1294 
NHPP model (0.2492)(0.1294) ∗ 𝑡0.8706 

Fault rate (0.2492) ∗ 𝑡0.1294 

3.4. Goodness of fit  

From Table 4, it was observed that the NHPP 
model provided the best fit since the model gives the 
lowest value of MSE 12.1876 which is about 3% less 
than the α-series process model. On the other hand, 

this result reflects that the predicted faults time of 
machines by the NHPP model is very close (in the 
mean) to actual cumulative faults data.  

 
Table 4: Analysis results comparison 

Criteria 
Process Model 

NHPP α-series 
MSE 12.1876 15.4277 

RMSE 3.49108 3.9083 
Bias 0.0129 3.9278 
MPE 1.9767 7.5500 
𝑅2 0.9661 0.9346 

 

We see from the results of Table 5 and Table 2, 
that the NHPP model is more suitable than the α-
series process models to describe the fault time of 
machines in Bahrri Station for thermal generation. 
According to the above results we estimated fault 
rate, mean cumulative number of faults, and mean 
interevent time for selected values of time or 
distance, rate of occurrence of machines occurs at an 
inconstant rate, and the repair rates of machines 
increase with the increase in time and this indicates 
the frequent fault time of machines in Bahrri station 
for thermal generation show in Table 5. 

 
Table 5: Faults rate and mean cumulative number of faults 
Time Rate Mean cum. faults Repair rate 

0 0.249229 0.000 4.0125 
400 0.11482 52.7515 8.7093 
800 0.104973 96.4553 9.5263 

1200 0.0996097 137.29 10.0392 
1600 0.0959711 176.367 11.4198 
2000 0.0932406 214.186 12.7249 

 

From Fig. 3, it is clear that the repair rate of 
machines increases with time and this also confirms 
the frequent faults time of machines during the study 
period. 
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Fig. 4 shows that the reliability of machines 
decreases with the time the machine increase in until 
equal to zero. Fig. 5 shows the hazard function 
increases whenever the time increases too. 

Therefore, the unique finding of this study is that 
it compared between nonhomogeneous Poisson’s 

process and α-series to obtain a better process for 
using in monotone trend data and prediction, 
meanwhile, other researchers compared methods of 
estimation parameters of the α-series process with a 
related process such as Geometric process, Renewal 
process. 

 

 
Fig. 3: The daily fault time of machines in Bahrri station of thermal generation 

 

 
Fig. 4: Reliability function vs time for machine 

 

 
Fig. 5: Cumulative hazard function vs time for machine 

 

  

4

6

8

10

12

14

0 500 1000 1500 2000 2500

R
e

p
a

ir
 r

a
te

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

R
e

li
a

b
il

it
y

 f
u

n
ct

io
n

 

Time

-1

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

 H
a

za
rd

Time



Safar M. A. Alghamdi, Mohammedelameen E. Qurashi/International Journal of Advanced and Applied Sciences, 10(5) 2023, Pages: 12-19 

19 
 

4. Conclusion 

This study concludes that the NHPP model 
proved to be very effective in describing the fault 
time of machines, thus allowing a predicted fault 
time of machines, and that represents the unique 
and scientific addition of this study by showing the 
preference for NHPP model in predicting successive 
faults of machines. The NHPP model gives the best 
results with the lowest MSE 12.1876, RMSE 3.49108, 
Bias 0.0129, and MPE 1.9767, in addition to the 
highest 0.9661 compared with the α-series process 
model. On this basis, the rate fault and repair rate 
increase with time, which confirms that the NHPP is 
the best model for describing the daily fault time of 
machines in Bahrri Thermal Station. The estimated 
reliability function and hazard function proved that 
as operating time increases the performance of the 
machines decreases. This confirms the frequent 
faults of machines in Bahrri Thermal Station. The 
study recommends depending on the applied study 
results in the Bahrri Thermal Station. Therefore, the 
accuracy of the results is conducted. As for future 
studies, the researchers recommend that to conduct 
further research, the results of this study should be 
compared with other processes such as the Point 
process, geometric process, and renewal process, in 
order to find out which processes are more suitable 
for the data. 
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