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An iterative technique based on the use of parametric functions is proposed 
in this paper to obtain the best preferred optimal solution of a multi-
objective linear fractional programming problem (MOLFPP). Each fractional 
objective is transformed into a non-fractional parametric function using 
certain initial values of parameters. The parametric values are iteratively 
calculated and the intuitionistic fuzzy optimization method is used to solve a 
multi-objective linear programming problem. Also, some basic properties 
and operations of an intuitionistic fuzzy set are considered. The development 
of the proposed algorithm is based on the principle of optimal decision set 
achieved by the intersection of various intuitionistic fuzzy decision sets 
which are obtained corresponding to each objective function. Additionally, as 
the intuitionistic fuzzy optimization method utilizes the degree of belonging 
and degree of non-belonging, we used the linear membership function for 
belonging and non-belonging to see its impact on optimization and to get 
insight into such an optimization process. The proposed approaches have 
been illustrated with numerical examples. 
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1. Introduction 

*A fractional programming problem (FPP) is 
concerned with the optimization problem of one or 
many ratios of functions subject to some constraints. 
These ratios are quantities that measure the 
efficiency of the system, such as cost/time, 
cost/profit, output/worker, and cost/volume, while 
many ratios of functions are measured on different 
scales at the existence of some conflicts. The optimal 
solution for an objective function may not be an 
optimal solution for any other objective function. So, 
one needs to find the notion of the best compromise 
solution, also known as a non-dominant solution (Lai 
and Hwang, 1994; Stancu-Minasian and Pop, 2003). 

By Hungarian mathematician Martos (1964), the 
linear fractional programming problem (LFPP) was 
developed in the 1960s and has a wide range of 
applications in several important fields such as 
science, engineering, economics, finance, 
management, business, information theory, marine 
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transportation, water resources, health care, 
corporate planning and so forth. Multi-objective 
Fractional Programming Problem has attracted 
considerable research interest in recent few years 
and numerous methods have been suggested in this 
context for the determination of the optimal 
solutions. 

In the literature, for various kinds of fractional 
programming, there are several different sorts of 
studies; some of them deal with theory (Jo and Lee, 
1998; Liu and Yokoyama, 1999; Tigan and Stancu-
Minasian, 2000; Patel, 2005), and some of them are 
concerned with solution methods (Stancu-Minasian 
and Pop, 2003; Dinkelbach, 1967; Arévalo et al., 
1997; Calvete and Galé, 1999; Yadav and Mukherjee, 
1990; Sakawa et al., 2000; Sakawa and Nishizaki, 
2001; Gupta and Bhatia, 2001; Saad, 2005; Mohan 
and Nguyen, 2001; Güzel, 2013) and applications 
(Leber et al., 2005). Dinkelbach (1967) suggested the 
algorithm based on a theorem by Jagannathan 
(1966) concerning the relationship between 
fractions and parametric programming and restated 
and demonstrated this theorem in a somewhat 
simpler way. Leber et al. (2005) suggested using a 
fractional programming algorithm (Dinkelbach’s 
(1967) algorithm) to calculate the melting 
temperature of pairings of two single DNA strands in 
biology. 
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Regarding the parametric approach, Wolf (1986) 
used parametric linear programming to solve non-
linear FPP. Pal. Costa (2007) suggested an approach 
to solve MOLFPP which goes on dividing the non-
dominated region to search for the maximum value 
of the weighted sum of the objectives. Valipour et al. 
(2014) presented an algorithm to solve MOLFPP 
which is an extension of Dinkelbach’s (1967) 
parametric approach to solving the Linear Fractional 
Programming Problem. Borza et al. (2013) used a 
parametric method to solve a single objective LFPP 
with interval coefficients in the objective function. 
Almogy and Levin (1971) used a parametric 
approach to solve a problem with the objective 
defined as the sum of fractional functions. Miettinen 
(2012) showed numerous approaches to solving 
multi-objective optimization problems. Zhong and 
You (2014) suggested a parametric approach to 
solving mixed integer linear and non-linear 
fractional programming problems by converting 
them into the equivalent parametric formulation. 

Modeling of most real-world problems, including 
optimization process turns out to be a multi-
objective programming problem in a natural way. 
Such multi-objective programming problems might 
in general comprise conflicting objectives. To 
illustrate that, if we consider a problem of 
agricultural production planning, the optimal model 
should have the objectives of maximizing profit and 
minimizing the inputs and costs of agriculture. 
Therefore, these objectives are conflicting in nature 
and hence the solution to such problems is in general 
compromise solutions which satisfy each objective 
function to a degree of satisfaction and a concept of 
belonging and non-belonging arises in such 
situations. It was Zimmermann (1978, 1983) who 
first used the fuzzy set presented by Zadeh (1965) 
for solving the fuzzy multi-objective linear 
programming problem. Optimization in the fuzzy 
environment was further studied and was applied in 
many areas by several researchers (Tanaka and Asai, 
1984; Luhandjula, 1989; Sakawa and Yano, 1989). A 
brief review of studies of several research workers 
on optimization under uncertainty can be found in 
the work of Sahinidis (2004). 

When the information available is imprecise, 
imprecise, or uncertain, several extensions of fuzzy 
sets immerged there is the insight of growing use of 
a fuzzy set of modeling of problems under situations. 
In such extensions, Atanassov (2016, 1999) 
presented the intuitionistic fuzzy sets as a powerful 
extension of fuzzy sets. Atanassov (2016, 1999) in 
his studies, emphasized that in view of handling 
imprecision, vagueness, or uncertainty in 
information both the degree of belonging and degree 
of non-belonging should be considered as two 
independent properties as these are not 
complements of each other. Angelov (1997) 
considered the idea of membership and non-
membership in optimization problems and gave an 
intuitionistic fuzzy approach to solve optimization 
problems. The multi-objective intuitionistic fuzzy 
linear programming problem applied to 

transportation problems was studied by Jana and 
Roy (2007). The inclusion degree of intuitionistic 
fuzzy set to multi-criteria decision-making, problem 
was applied by Luo and Yu (2008). Further, several 
researchers such as Mahapatra et al. (2010), 
Nachammai and Thangaraj (2012), and Nagoorgani 
and Ponnalagu (2012) have also considered the 
linear programming problem under an intuitionistic 
fuzzy environment. Linear programming problem in 
an intuitionistic fuzzy environment using 
intuitionistic fuzzy number and interval uncertainty 
in fuzzy numbers was studied by Dubey and Mehra 
(2011) and Dubey et al. (2012). Sharma et al. (2022) 
developed the concept of mediative fuzzy relation 
and meditative fuzzy projection in the context of 
fuzzy relation and fuzzy projection. They extended 
the basic operations of fuzzy projection into 
intuitionistic fuzzy projection and then into 
mediative fuzzy projection. They have shown the 
credibility and impact of the meditative index factor 
involving the mediative fuzzy projection in the 
context of prediction work in relation to their 
proposed model. After that, they applied the 
mediative fuzzy projection in the medical diagnosis 
of post-COVID-19 patients. 

Proposed approaches to solve a MOLFPP using 
the concept of parametric functions and under 
intuitionistic fuzzy optimization together are 
considered in this paper. It converts the Linear 
Fractional Programming Problem to a suitable non-
fractional problem using certain parameters to find a 
set of non-inferior solutions through iterative 
computations. Termination conditions are imposed 
on all the objectives by the Decision Maker to 
determine the best preferred optimal solution at 
which a certain level of satisfying optimality is 
attained by all the objective functions. 

The organization of the paper is as follows: in 
Section. 2 regarding parametric approach 
transformation to MOLFPP. In section 3 some 
definitions of multi-objective linear programming 
problems. In Section. 4 intuitionistic Fuzzy 
optimization method to solve multi-objective linear 
programming problems. In Section. 5 computational 
algorithm and procedures of solution. In Section. 6 
numerical examples for illustrating the solution of 
proposed approaches. Finally, concluding remarks 
are given in section 7.  

2. Parametric approach 

Consider the following single objective fractional 
programming and parametric, non-fractional 
programming problems respectively (Nayak and 
Ojha, 2019). 
 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 −  𝐼 ∶  𝑀𝑖𝑛
𝑥∈𝑆

 
𝑁(𝑥)

𝐷(𝑥)
                                                           (1) 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 −  𝐼𝐼 ∶  𝑀𝑖𝑛
𝑥∈𝑆 

 {𝑁(𝑥) − 𝛾𝐷(𝑥)},                                 (2) 

 

where, 𝛾 is a parameter and 𝑆 is the non-empty 
compact feasible region in which both 𝑁 and 𝐷 are 
continuous functions with 𝐷(𝑥) >  0, ∀ 𝑥 ∈  𝑆.  
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Theorem 2.1: 𝑥∗ is an optimal solution to Problem-I 
if and only if 𝑀𝑖𝑛

𝑥∈𝑆 
 {𝑁(𝑥) − 𝛾𝐷(𝑥)} = 0 where 𝛾∗ =

 
𝑁(𝑥∗ )

𝐷(𝑥∗ )
 . 

 
Consider the following multi-objective linear 

fractional programming and parametric linear 
programming problems respectively. 
 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 −  𝐼𝐼𝐼 ∶  𝑀𝑖𝑛
𝑥∈𝑆

 
𝑁𝑖(𝑥)

𝐷𝑖(𝑥)
    𝑖 = 1, 2,… , 𝑘                          (3) 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 −  𝐼𝑉 ∶  𝑀𝑖𝑛
𝑥∈𝑆 

 {𝑁𝑖(𝑥) − 𝛾
∗𝐷𝑖(𝑥)}     𝑖 = 1, 2,… , 𝑘  

                 (4) 
 

Assume that 𝐷(𝑥) >  0, ∀ 𝑥 ∈  𝑆 and 𝛾𝑖
∗ =

 
𝑁𝑖(𝑥

∗ )

𝐷𝑖(𝑥
∗ )
  𝑤ℎ𝑒𝑟𝑒 𝑥∗  ∈  𝑆 . 

 
Remark 2.1: 𝑥∗ is Pareto optimal solution of 
Problem-IV if for each 𝑥 ∈  𝑆, 𝑁𝑖(𝑥) − 𝛾

∗𝐷𝑖(𝑥)  =
0 ∀ 𝑖 𝑜𝑟 𝑁𝑗(𝑥) − 𝛾

∗𝐷𝑗(𝑥)  > 0 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗 ∈

 {1, 2, … , 𝑘} . 
 

Using the above Remark 2.1 and Theorem 2.1 due 
to Dinkelbach (1967), the following results are 
achieved. 
 
Theorem 2.2: 𝑥∗ is Pareto's optimal solution to 
Problem-III if and only if 𝑥∗ is Pareto's optimal 
solution to Problem-IV. The Proof of this theorem is 
in Nayak and Ojha (2019). 
Theorem 2.3: The Pareto optimal solutions of 
Problem-IV are also Pareto optimal of Problem-III if  
𝑥∗ is Pareto optimal of Problem-IV. The Proof of this 
theorem is in Nayak and Ojha (2019). 

3. Multi-objective linear programming problem 

Many objective functions are optimized 
simultaneously with respect to a common set of 
constraints in the multi-objective optimization 
problem. Frequently there doesn´t exist a single 
optimal solution that optimizes all the objectives 
together with their respective best satisfactory level. 
In such cases, a set of Pareto optimal solutions are 
generated using an appropriate method available in 
the literature, and the best preferred (compromise) 
optimal solution that satisfies all the objectives with 
the best possibility, is determined by the decision 
maker comparing the objective values in accordance 
to own desire on a priority basis or the requirement 
of the system. A multi-objective optimization 
problem (Ehrgott, 2005; Miettinen, 2012) can be 
mathematically stated as: 
 

Min 𝑧(𝑥) = (𝑧1(𝑥), 𝑧2(𝑥),… , 𝑧𝑘(𝑥))  

                         s.t         𝑥 ∈ 𝑆                                                           (5) 
 

where, 𝑥 ∈ ℝ𝑛 and 𝑧𝑖 ∶  ℝ
𝑛 → ℝ      𝑖 = 1, 2, … , 𝑘; 𝑆 is 

the set of constraints, considered as a non-empty 
compact feasible region. A multi-objective linear 
programming problem is otherwise called a multi-
criterion optimization or vector optimization 
problem, where as a Pareto optimal solution is 

otherwise called a non-inferior or non-dominated, or 
efficient solution. 
 
Definition 3.1: x∗ ∈  S is a Pareto optimal solution of 
the multi-objective linear programming (Eq. 5) if 
there does not exist another feasible solution 𝑥̅ ∈  𝑆 
such that 𝑧𝑖(̄𝑥̅) ≤ 𝑧𝑖(𝑥

∗) ∀ 𝑖 𝑎𝑛𝑑 𝑧𝑗(̄𝑥̅) < 𝑧𝑗(𝑥
∗) for at 

least one 𝑗.  
Definition 3.2: x∗ ∈  S is a weak Pareto optimal 
solution of the multi-objective linear programming 
(Eq. 5) if there does not exist another feasible 
solution 𝑥̅ ∈  𝑆 such that 𝑧𝑖(̄𝑥̅) < 𝑧𝑖(𝑥

∗) ∀ 𝑖. 
Definition 3.3: Trade-off or Pareto front is a part of 
the objective feasible region which consists of the 
objective values evaluated at the Pareto optimal 
solutions of the multi-objective linear programming.  
Definition 3.4: Ideal objective vector has the 
coordinates which are obtained by evaluating the 
values of the objectives at their respective individual 
minimal points. 
Definition 3.5: Nadir's objective vector has the 
coordinates which are the respective worst objective 
values when the set of solutions is restricted to the 
trade-off. 

4. Intuitionistic fuzzy optimization  

4.1. Intuitionistic fuzzy set (IFS)  

Let X be a non-empty set and I=[0, 1], then an IFS 
𝐴̃ is defined as a set 𝐴̃ =  {< 𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)  >: 𝑥 ∈
𝑋} where: 𝜇𝐴: 𝑋 → 𝐼 and 𝑣𝐴: 𝑋 → 𝐼 denotes the 
degree of belonging and the degree of non-belonging 
with 0 ≤ 𝜇𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋. 

Additional, every fuzzy set A on a non-empty set X 
with a membership function 𝜇𝐴 is obviously AX if 
with  𝑣𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) and so IFS is a 
generalization of a fuzzy set. 

Here union and intersection of two intuitionistic 
fuzzy sets are defined as: 
 

𝐴̃⋂𝐵̃ = {[𝑥,Min(𝜇𝐴(𝑥), 𝜇𝐵̃(𝑥)),Max(𝑣𝐴(𝑥), 𝑣𝐵̃(𝑥))] | 𝑥 ∈ 𝑋}  

𝐴̃ ∪ 𝐵̃ =

{[𝑥,Max(𝜇𝐴(𝑥), 𝜇𝐵̃(𝑥)),Min(𝑣𝐴(𝑥), 𝑣𝐵̃(𝑥))] | 𝑥 ∈ 𝑋}.  

 

Fuzzy Optimization Technique Max-min approach 
Zimmermann (1978, 1983) first used the max-min 
operator given by Bellman and Zadeh (1970) to 
solve multi-objective linear programming (MOLP) 
problems and considered the problem in Eq. 5 as: 

 
Find X  
s.t   𝑍𝑘(𝑥) ≥̃ 𝑔𝑘  ,    𝑘 = 1, 2,… , 𝑝                       v                      (6) 
𝑔𝑗(𝑥) ≤ 0  , 𝑖 = 1, 2,… , 𝑞  

𝑥 ≥ 0  
 

where, 𝑔𝑘 ∀ 𝑥 denote goals and all objective 
functions are assumed to be maximized. Here 
objective functions are considered fuzzy constraints. 
To find membership functions of objective functions, 
we could first obtain the table of positive ideal 
solutions (PIS). Under the concept of a min-operator, 
the feasible solution set is defined by the interaction 
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of the fuzzy objective set. This feasible solution set is 
then characterized by its membership 𝜇𝐷(𝑥) which 
is: 
 
𝜇𝐷(𝑥) = Min(𝜇1(𝑥), … , 𝜇𝑘(𝑥))  
 

Additionally, a decision maker makes a decision 
with a maximum 𝜇𝐷 Value in the feasible decision 
sets. The decision solution can be obtained by 
solving the problem of maximizing 𝜇𝐷(𝑥) subject to 
the given constraints i.e., 
 
Max  [Min 𝜇𝑘(𝑥)]  
s.t  
𝑔𝑗(𝑥) ≤ 0  , 𝑖 = 1, 2,… , 𝑞                                                             (7) 

 

Now, if suppose 𝛼 = 𝑚𝑖𝑛𝑘 𝜇𝑘(𝑥) be the overall 
satisfaction level of compromise, then we obtain the 
following equivalent model: 
 
Max𝛼             
s.t      𝜇𝑘(𝑥) ≥ 𝛼 , ∀ 𝑘   
𝑔𝑗(𝑥) ≤ 0  , 𝑖 = 1, 2,… , 𝑞                                     (8) 

𝑥 ≥ 0  

4.2. Intuitionistic fuzzy method (IFM) 

Consider the intuitionistic fuzzy optimization 
problem as a generalization of the above problem 
undertaken by Angelov (1997). 
 
min 𝑓𝑖(𝑥), 𝑖 = 1, 2,… , 𝑝  
𝑔𝑗(𝑥) ≤ 0  , 𝑖 = 1, 2,… , 𝑞                                                        (9) 

 

where, x is the decision variable, 𝑓𝑖(𝑥) denotes 
objective functions, 𝑔𝑗(𝑥) denotes the constraint 

functions, p and q denote the number of objective 
functions and constraints respectively. 

The optimal solution to this problem must satisfy 
all constraints exacting. Thus an analogous fuzzy 
optimization model of the problem the degree of 
acceptance of objectives and constraints is 
maximized as: 
 
miñ 𝑓𝑖(𝑥), 𝑖 = 1, 2,… , 𝑝  
𝑔𝑗(𝑥) ≲ 0  , 𝑖 = 1, 2,… , 𝑞                                                   (10) 

 

where, 𝑚𝑖𝑛̃ Denotes fuzzy minimization 
and≲denotes fuzzy inequality. 

For the solution of this system (Eq. 10), Bellman 
and Zadeh (1970) used fuzzy set maximize for the 
degree of membership of the objectives and 
constraints as: 
 
Max  𝜇𝑘(𝑥) , 𝑥 ∈ 𝑋  ,   𝑘 = 1, 2,… , 𝑝 + 𝑞     0 ≤ 𝜇𝑘(𝑥) ≤
1                                                                                                       (11) 

 
where, 𝜇𝑘(𝑥) Denotes the degree of satisfaction to 
respective fuzzy sets. 

It is important to understand that in a fuzzy set 
the degree of non-membership complements 
membership, hence maximization of membership 
function will automatically minimize the non-
membership. But in the intuitionistic fuzzy set 

degree of rejection is defined simultaneously by the 
degree of acceptance and both these degrees are not 
complementing each other, hence IFS may give a 
more general tool for describing this uncertainty-
based optimization model. 

Thus, the intuitionistic fuzzy optimization (IFO) 
model for the problem in Eq. 8 is given as: 
 
Max
𝑥
{𝜇𝑘(𝑥)} , 𝑥 ∈ 𝑋 , 𝑘 = 1, 2,… , 𝑝 + 𝑞  

Min
𝑥
{𝑣𝑘(𝑥)} ,    𝑘 = 1, 2,… , 𝑝 + 𝑞  

s.t   
𝑣𝑘(𝑥) ≥ 0 ,   𝑘 = 1, 2, … , 𝑝 + 𝑞  
𝜇𝑘(𝑥) ≥ 𝑣𝑘(𝑥),   𝑘 = 1, 2, … , 𝑝 + 𝑞  
          𝜇𝑘(𝑥) + 𝑣𝑘(𝑥) ≤ 1,   𝑘 = 1, 2,… , 𝑝 + 𝑞                      (12) 
 

where, 𝜇𝑘(𝑥) denotes the degree of acceptance of x 
to the 𝑘𝑡ℎ IFS and 𝑣𝑘(𝑥) Denotes the degree of 
rejection of x from the 𝑘𝑡ℎ IFS. These IFS include 
intuitionistic fuzzy objectives and constraints. 

Now the decision set 𝐷̃ the conjunction of 
intuitionistic fuzzy objectives and constraints is 
defined as: 
 
𝐹̃ ∩ 𝐶̃ =
{[𝑥,Min ( 𝜇𝐹̃(𝑥), 𝜇𝐶(𝑥)),Max ( 𝑣𝐹̃(𝑥), 𝑣𝐶̃(𝑥))], | 𝑥 ∈ 𝑋}   (13) 
 

where, 𝐹̃ is integrated intuitionistic fuzzy objective 
and 𝐶̃ denotes integrated intuitionistic fuzzy 
constraints and is defined as: 
 
𝐹̃ =  {𝑥, 𝜇𝐹̃(𝑥), 𝑣𝐹̃(𝑥)] | 𝑥 ∈ 𝑋} = ⋂ 𝐹̃(𝑖)

𝑝
𝑖=1 =

 {𝑥,𝑚𝑖𝑛𝑖=1
𝑝
 𝜇𝑖
𝑓(𝑥),𝑚𝑎𝑥𝑖=1

𝑝
 𝑣𝑖
𝑓(𝑥) |𝑥 ∈ 𝑋}                             (14) 

𝐶̃ =  {𝑥, 𝜇𝐶(𝑥), 𝑣𝐶(𝑥)] | 𝑥 ∈ 𝑋} = ⋂ 𝐶̃(𝑗)
𝑞
𝑗=1 =

 {𝑥,𝑚𝑖𝑛𝑗=1
𝑞
 𝜇𝑗
𝑔(𝑥),𝑚𝑎𝑥𝑗=1

𝑞
 𝑣𝑗
𝑔(𝑥) |𝑥 ∈ 𝑋}                            (15) 

 

Further, the intuitionistic fuzzy decision set 
(IFDS) denoted as 𝐷̃: 
 
𝐷̃ = 𝐹̃ ∩ 𝐶̃ = {𝑥, 𝜇𝐷̃(𝑥), 𝑣𝐷̃(𝑥)] | 𝑥 ∈ 𝑋}                               (16) 

𝜇𝐷̃(𝑥) = 𝑀𝑖𝑛 [𝜇𝐹̃(𝑥), 𝜇𝐶̃(𝑥)] = 𝑚𝑖𝑛𝑘=1
𝑝+𝑞

𝜇𝑘(𝑥)                    (17) 

𝑣𝐷̃(𝑥) = 𝑀𝑎𝑥 [𝑣𝐹̃(𝑥), 𝑣𝐶̃(𝑥)] = 𝑚𝑎𝑥𝑘=1
𝑝+𝑞

𝑣𝑘(𝑥)                  (18) 

 

where, 𝜇𝐷̃(𝑥) Denotes the degree of acceptance of 
IFDS and 𝑣𝐷̃(𝑥) Denotes the degree of rejection of 
IFDS. 

Now for the feasible solution, the degree of 
acceptance of IFDS is always less than or equal to the 
degree of acceptance of any objective and constraint 
and the degree of rejection of IFDS is always more 
than or equal to the degree of rejection of any 
objective and constraint, i.e., 
 
𝜇𝐷̃(𝑥) ≤ 𝜇𝑘(𝑥) , 𝑣𝐷̃(𝑥) ≥ 𝑣𝑘(𝑥) , ∀   𝑘 = 1,…… . , 𝑝 + 𝑞  
 

Thus the above system can be transformed into 
the following system of inequalities: 
 
𝛼 ≤ 𝜇𝑘(𝑥) , 𝑘 = 1,…… . , 𝑝 + 𝑞  
𝛽 ≥ 𝑣𝑘(𝑥) ,      𝑘 = 1,…… . , 𝑝 + 𝑞                                      (19) 
𝛼 + 𝛽 ≤ 1  
𝛼 − 𝛽 ≥ 0  
𝛽 ≥ 0 ,      𝑥 ∈ 𝑋  
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where, 𝛼 denotes the minimum acceptable degree of 
objective(s) and constraints, and 𝛽 denotes the 
maximum degree of rejection of objective(s) and 
constraints. 

Now using the Intuitionistic fuzzy optimization 
problem, Eq. 8 is transformed into the linear 
programming problem given as: 
 
Max  (𝛼 − 𝛽)  
s.t 
𝛼 ≤ 𝜇𝑘(𝑥) , 𝑘 = 1,…… . , 𝑝 + 𝑞  
𝛽 ≥ 𝑣𝑘(𝑥) ,      𝑘 = 1,…… . , 𝑝 + 𝑞                                           (20) 

𝛼 + 𝛽 ≤ 1  
𝛼 − 𝛽 ≥ 0  
𝛽 ≥ 0      
   𝑥 ∈ 𝑋  
 

Now this linear programming problem can be 
easily solved by a simplex method to give a solution 
to the multi-objective linear programming problem 
(Eq. 8) by an intuitionistic fuzzy optimization 
approach. Fig. 1 illustrates the linear membership 
and linear non-membership functions. 

 
 

 

 
Fig. 1: The linear membership and the linear non-membership functions 

 

5. Computational algorithm 

The algorithm of intuitionistic fuzzy optimization 
with linear membership function is as follows:  

 
After transforming each fractional objective to a 

non-fractional parametric function using certain 
initial values of parameters. The steps for solving the 
multi-objective linear programming problem will be: 

 
 Step 1: Pick the first objective function and solve it 

as a single objective subject to the constraints. 
Continue the process k-times for k different 
objective functions. Find the value of objective 
functions and decision variables. 

 Step 2: To build membership functions, goals, and 
tolerances should be determined first. 

 
Using the ideal solutions, obtained in Step 1 we 

find the values of all the objective functions at each 
ideal solution and construct a payoff table as Table 1. 

 
Table 1: Payoff table 

Z 𝑍1 𝑍2 … 𝑍𝐾 
𝑍1 𝑍1

∗ 𝑍12 … 𝑍1𝐾 
𝑍2 𝑍21 𝑍2

∗ … 𝑍2𝐾 
. 
. 
. 

. 

. 

. 

. 

. 

. 
… 

. 

. 

. 
𝑍𝐾 𝑍𝐾1 𝑍𝐾2 … 𝑍𝐾

∗  

 

where, 𝑧∗ 𝑎𝑛𝑑 𝑧𝐾 are the maximum and the 
minimum values (in max problems and opposite in 
min problems) respectively. 

 Step 3: From Step 2 the upper and lower bounds of 
each objective function are as follows:  

 
𝑈𝑘
𝜇
 =  𝑚𝑎𝑥 {𝑍𝑘(𝑥𝑟

∗)} 𝑎𝑛𝑑 𝐿𝑘
𝜇
 =  𝑚𝑖𝑛 {𝑍𝑘(𝑥𝑟

∗)}          𝑤ℎ𝑒𝑟𝑒 1

≤  𝑟 ≤  𝑘  

 
For membership of objectives. 
 
 Step 4: the upper and lower bounds for non-

membership of objectives as follows: 
 
𝑈𝑘
𝑣 = 𝑈𝑘

𝜇
  

𝐿𝑘
𝑣 = 𝐿𝑘

𝜇
+ 𝜏 (𝑈𝑘

𝜇
− 𝐿𝑘

𝜇
)                0 ≤ 𝜏 ≤ 1  

 

 Step 5: Use the following linear membership 
function 𝜇𝑘(𝑧𝑘(𝑥)) and non-membership function 
𝑣𝑘(𝑧𝑘(𝑥))  for each objective function: 

 

𝜇𝑘(𝑧𝑘(𝑥)) =

{
 
 

 
 0,                                 𝑧𝑘(𝑥) ≤ 𝐿𝑘

𝜇

𝑧𝑘(𝑥)−𝐿𝑘
𝜇

𝑈𝑘
𝜇
−𝐿𝑘

𝜇             𝐿𝑘
𝜇
≤ 𝑧𝑘(𝑥) ≤ 𝑈𝑘

𝜇

1,                                 𝑧𝑘(𝑥) ≥ 𝑈𝑘
𝜇
  

                (21) 

 

and 
 

𝑣𝑘(𝑧𝑘(𝑥)) =

{
 
 

 
 0,                                 𝑧𝑘(𝑥) ≥ 𝑈𝑘

𝜇

𝑈𝑘
𝜇
−𝑧𝑘(𝑥)

𝑈𝑘
𝜇
−𝐿𝑘

𝜇             𝐿𝑘
𝜇
≤ 𝑧𝑘(𝑥) ≤ 𝑈𝑘

𝜇

1,                                𝑧𝑘(𝑥) ≤ 𝐿𝑘
𝜇
  

                (22) 

 

 Step 6: Now the intuitionistic fuzzy optimization 
model for multi-objective linear programming 
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problems gives an equivalent linear programming 
problem as: 

 
max  (𝛼 − 𝛽)  
s.t  

𝑧𝑘(𝑥) − 𝛼(𝑈𝑘
𝜇
− 𝐿𝑘

𝜇
) ≤ 𝐿𝑘

𝜇
  

𝑧𝑘(𝑥) + 𝛽(𝑈𝑘
𝜇
− 𝐿𝑘

𝜇
) ≤ 𝑈𝑘

𝜇
                                             (23) 

𝛼 + 𝛽 ≤ 1  
𝛼 − 𝛽 ≥ 0  
𝛽 ≥ 0  
𝑔𝑗 ≤ 𝑏𝑖   
𝑥 ≥ 0  
 
 Step 7: The above linear programming in problem 

of Eq. 23 can be easily solved by the simplex 
method in any program like LINDO, WinQSP, and 
TORA. 

6. Numerical examples 

Example 1 (Nayak and Ojha, 2019):  
 

Min 𝑧1(𝑥) =
−𝑥1+3𝑥2+2

𝑥1+2𝑥2+1
  

Min 𝑧2(𝑥) =
5𝑥1+2𝑥2+2

2𝑥1+3𝑥2+1
  

s.t 
2𝑥1 + 𝑥2 ≤ 4  
3𝑥1 − 2𝑥2 ≤ 5                                                              (24) 
𝑥1 + 2𝑥2 ≤ 3  
𝑥1 + 3𝑥2 ≥ 2  
𝑥1, 𝑥2 ≥ 0  
 

 Step 1: Solution due to proposed method Using 
(Charnes and Cooper, 1962) variable 
transformation technique, it is obtained that 𝑋1  =
 (1.7272, 0.0910) 𝑎𝑛𝑑 𝑋2  =  (0, 1.5) are the 
individual optimal solutions of the objectives 
𝑧1(𝑥) 𝑎𝑛𝑑 𝑧2(𝑥) respectively.  

 Step 2: The range of best and worst values of the 
objectives is determined using payoff Table 1 as: 

 
0.1875 ≤ 𝑧1(𝑥)  ≤ 1.6250  
0.9091 ≤ 𝑧2(𝑥) ≤ 2.2884  

 

Assigning equal weights, i.e., 𝑤1  =  𝑤2  =  0.5, the 
initial solution of the proposed iterative method is 
obtained as 𝑋(0)  =  𝑤1𝑋1  +  𝑤2𝑋2  =
 (0.8636, 0.7955). So the initial vector of parameters 
is obtained as: 

 

𝛾(1) = (𝛾1
(1)
, 𝛾2
(1)
) = (𝑧1(𝑋

(0)), 𝑧2(𝑋
(0))) =

(1.0198, 1.5466)  
 

The fractional objectives can be parametrically 
linearized as: 
 

𝑍1(𝛾
(1)) = (−𝑥1 + 3𝑥2 + 2) − 𝛾1

(1)(𝑥1 + 2𝑥2 + 1)  

𝑍2(𝛾
(1)) = (5𝑥1 + 2𝑥2 + 2) − 𝛾1

(1)(2𝑥1 + 3𝑥2 + 1)  

 

Then the new objectives (non-fractional) will be 
like this: 
 

𝑍1(𝛾
(1)) = −2.0198𝑥1 + 0.9604𝑥2 + 0.9802  

𝑍2(𝛾
(1)) = 1.9068𝑥1 − 2.6398𝑥2 + 0.4534  

 Step 3: 𝑈1
𝜇
 = 1.6250  𝑎𝑛𝑑 𝐿1

𝜇
 = 0.1875     𝑈2

𝜇
 =

2.2884  𝑎𝑛𝑑 𝐿2
𝜇
 = 0.9091  

 Step 4: 𝑈1
𝑣  = 1.6250  𝑎𝑛𝑑 𝐿1

𝑣  = 1.4375     𝑈2
𝑣  =

2.2884  𝑎𝑛𝑑 𝐿2
𝑣  = 1.3793 

 Steps 5, 6:  
 
max  (𝛼 − 𝛽)  
s.t  
2.0198𝑥1 − 0.9604𝑥2 − 1.4375𝛼 ≥ 0.7927  
−2.0198𝑥1 + 0.9604𝑥2 + 1.4375𝛽 ≤ 0.6448  
1.9068𝑥1 − 2.6398𝑥2 − 1.3793𝛼 ≤ 0.4548  
1.9068𝑥1 − 2.6398𝑥2 + 1.3793𝛽 ≤ 1.8350              
𝛼 + 𝛽 ≤ 1                                        (25) 
𝛼 − 𝛽 ≥ 0  
2𝑥1 + 𝑥2 ≤ 4  
3𝑥1 − 2𝑥2 ≤ 5  
𝑥1 + 2𝑥2 ≤ 3  
𝑥1 + 3𝑥2 ≥ 2  
𝑥1, 𝑥2, 𝛼, 𝛽 ≥ 0  
 

After solving the problem in Eq. 25, the solution 
is: 
 

𝑋(1) = (1.28884, 0.237054)  

(𝑧1(𝑋
(1)), 𝑧2(𝑋

(1))) = (0.5147, 2.07942)  

 

The new vector of parameters is computed as: 
 

𝛾(2) = (𝛾1
(2)
, 𝛾2
(2)
) = (𝑧1(𝑋

(1)), 𝑧2(𝑋
(1))) =

(0.5147, 2.07942)  
 

After repeating all steps with a new model, the 
solution will be: 
 

𝑋(2) = (0.54055, 0.486483)  

(𝑧1(𝑋
(2)), 𝑧2(𝑋

(2))) = (1.16128, 1.6030)  

 

Then the optimal solution will be 𝑋(1) According 
to remark 1 in section 2.  

In Table 2, It is observed that the optimal 
objective values 𝑧1(𝑥), 𝑧2(𝑥) obtained due to the 
proposed method are considerably closer and 
comparable to that of 𝜀-constraint method in Nayak 

and Ojha (2019) where as (𝑓1(𝑥), 𝑓2(𝑥)) =
(0.9561, 1.5378).  

 
Example 2 (Güzel, 2013):  
 

Max 𝑧1(𝑥) =
−3𝑥1+2𝑥2

𝑥1+𝑥2+3
  

Max 𝑧2(𝑥) =
7𝑥1+𝑥2

5𝑥1+2𝑥2+1
  

s.t  
𝑥1 − 𝑥2 ≥ 1  
2𝑥1 + 3𝑥2 ≤ 15                                                           (26) 
𝑥1 ≥ 3  
𝑥1, 𝑥2 ≥ 0  
 

 Step 1: Solution due to proposed method Using 
(Charnes and Cooper, 1962) variable 
transformation technique, it is obtained that 𝑋1  =
 (3.597, 2.603) 𝑎𝑛𝑑 𝑋2  =  (0.7500,0) are the 
individual optimal solutions of the objectives 
𝑧1(𝑥) 𝑎𝑛𝑑 𝑧2(𝑥)  respectively.  
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 Step 2: The range of best and worst values of the 
objectives is determined using payoff Table 1 as: 

 
−2.1428 ≤ 𝑧1(𝑥) ≤ −0.6086   
1.1487 ≤ 𝑧2(𝑥) ≤ 1.3636   
 

Assigning equal weights, i.e., 𝑤1  =  𝑤2  =  0.5, the 
initial solution of the proposed iterative method is 
obtained as 𝑋(0)  =  𝑤1𝑋1  +  𝑤2𝑋2  =
 (2.1735, 1.3015). So the initial vector of parameters 
is obtained as: 
 

𝛾(1) = (𝛾1
(1)
, 𝛾2
(1)
) = (𝑧1(𝑋

(0)), 𝑧2(𝑋
(0))) =

(−0.6050, 1.1413)  
 

The fractional objectives can be parametrically 
linearized as: 
 

𝑍1(𝛾
(1)) = (−3𝑥1 + 2𝑥2) − 𝛾1

(1)(𝑥1 + 𝑥2 + 3)  

𝑍2(𝛾
(1)) = (7𝑥1 + 𝑥2) − 𝛾1

(1)(5𝑥1 + 2𝑥2 + 1)  

 

Then the new objectives (non-fractional) will be 
like this: 
 

𝑍1(𝛾
(1)) = −2.395𝑥1 + 2.605𝑥2 + 1.815  

𝑍2(𝛾
(1)) = 1.2935𝑥1 − 1.2826𝑥2 − 1.1413  

 

 Step 3: 𝑈1
𝜇
 = −0.6086  𝑎𝑛𝑑 𝐿1

𝜇
 = −2.1428    𝑈2

𝜇
 =

1.3636  𝑎𝑛𝑑 𝐿2
𝜇
 = 1.1487  

 Step 4: 𝑈1
𝑣  = −0.6086  𝑎𝑛𝑑 𝐿1

𝑣  = −1.9893     𝑈2
𝑣  =

1.3636  𝑎𝑛𝑑 𝐿2
𝑣  = 1.17019 

 Steps 5, 6:  
 
Max  (𝛼 − 𝛽)  
s.t  

2.395𝑥1 + 2.605𝑥2 + 1.5342𝛼 ≥ 0.3278  
2.395𝑥1 − 2.605𝑥2 − 1.3807𝛽 ≥ 2.4236  
1.2935𝑥1 − 1.2826𝑥2 − 0.2149𝛼 ≤ 2.29  
1.2935𝑥1 − 1.2826𝑥2 + 0.1934𝛽 ≤ 25049             
𝛼 + 𝛽 ≤ 1                                                                             (27) 
𝛼 − 𝛽 ≥ 0  
𝑥1 − 𝑥2 ≥ 1  
2𝑥1 + 3𝑥2 ≤ 15  
𝑥1 ≥ 3  
𝑥1, 𝑥2, 𝛼, 𝛽 ≥ 0.  
 

After solving the problem in Eq. 27, the solution 
is: 
 

𝑋(1) = (3, 1.82779)  

(𝑧1(𝑋
(1)), 𝑧2(𝑋

(1))) = (0.6827, 1.1613)  

 

The new vector of parameters is computed as: 
 

𝛾(2) = (𝛾1
(2)
, 𝛾2
(2)
) = (𝑧1(𝑋

(1)), 𝑧2(𝑋
(1))) =

(−0.6827, 1.1613)  
 

After repeating all steps with a new model, the 
solution will be: 
 

𝑋(2) = (3, 1.60107)  

(𝑧1(𝑋
(2)), 𝑧2(𝑋

(2))) = (−0.7627, 1.1770)  

 

Then the optimal solution will be 𝑋(1) According 
to remark 1 in section 2.  

In Table 2, It is observed that the optimal 
objective values 𝑧1(𝑥), 𝑧2(𝑥) Obtained due to the 
proposed method are considerably closer and 
comparable to that of the method by Güzel (2013) 
where as (𝑧1, 𝑧2) = (−0.625, 1.15). 

 
Table 2: Comparative results 

Obj. Fun. Min𝑧1(𝑥) Min𝑧2(𝑥) Obj. Fun. Max𝑧1(𝑥) Max𝑧2(𝑥) 
Proposed 0.5147 2.07942 Proposed -0.6827 1.1613 

ɛ-constraint 0.9561 1.5378 Güzel (2013) -0.625 1.15 

 
7. Conclusion  

In this paper, a parametric approach is used to 
transform the multi-objective linear fractional 
programming into non-fractional multi-objective 
linear programming by using a vector of parameters. 
The values of the parameters are changed from one 
to another step in order to generate a new set of 
Pareto optimal solutions using an intuitionistic fuzzy 
optimization algorithm for solving MOLPP. The 
purpose of this paper is to give the most effective 
algorithm for an intuitionistic fuzzy optimization 
method for getting optimal solutions after 
transforming the MOLFPP into a multi-objective 
linear programming problem. The value of the 
method lies in the fact that it gives a set of solutions 
with various levels of satisfaction to the decision 
makers. The decision makers may choose a suitable 
optimal solution according to the demand of the 
actual situation. The solution achieved due to the 
proposed approaches is compared with the 𝜀 
constraint method, fuzzy programming, and Güzel 
(2013) proposed method which verifies the 

effectiveness of its performance and considerably 
closer and comparable to them. The computational 
works in the numerical examples are carried out 
using the softwares LINGO and WinQSP. 

Compliance with ethical standards 

Conflict of interest 

The author(s) declared no potential conflicts of 
interest with respect to the research, authorship, 
and/or publication of this article. 

References  

Almogy Y and Levin O (1971). A class of fractional programming 
problems. Operations Research, 19(1): 57-67.  
https://doi.org/10.1287/opre.19.1.57 

Angelov PP (1997). Optimization in an intuitionistic fuzzy 
environment. Fuzzy Sets and Systems, 86(3): 299-306.  
https://doi.org/10.1016/S0165-0114(96)00009-7 

https://doi.org/10.1287/opre.19.1.57
https://doi.org/10.1016/S0165-0114(96)00009-7


Solomon et al/International Journal of Advanced and Applied Sciences, 10(4) 2023, Pages: 44-52 

51 
 

Arévalo MT, Mármol AM, and Zapata A (1997). The tolerance 
approach in multiobjective linear fractional programming. 
Top, 5(2): 241-252. https://doi.org/10.1007/BF02568552 

Atanassov KT (1999). Interval valued intuitionistic fuzzy sets. In: 
Atanassov KT (Ed.), Intuitionistic fuzzy sets: 139-177. Physica, 
Heidelberg, Germany.                          
https://doi.org/10.1007/978-3-7908-1870-3 

Atanassov KT (2016). Intuitionistic fuzzy sets. International 
Journal Bioautomation, 20: 1-6.  
https://doi.org/10.1016/S0165-0114(86)80034-3 

Bellman RE and Zadeh LA (1970). Decision-making in a fuzzy 
environment. Management Science, 17(4): B-141-B-164.  
https://doi.org/10.1287/mnsc.17.4.B141 

Borza M, Rambely AS, and Saraj M (2013). Parametric approach 
for linear fractional programming with interval coefficients in 
the objective function. In the AIP Conference Proceedings, 
American Institute of Physics, 1522(1): 643-647.  
https://doi.org/10.1063/1.4801185 

Calvete HI and Galé C (1999). The bilevel linear/linear fractional 
programming problem. European Journal of Operational 
Research, 114(1): 188-197.                 
https://doi.org/10.1016/S0377-2217(98)00078-2 

Charnes A and Cooper WW (1962). Programming with linear 
fractional functionals. Naval Research Logistics Quarterly, 
9(3‐4): 181-186. https://doi.org/10.1002/nav.3800090303 

Costa JP (2007). Computing non-dominated solutions in MOLFP. 
European Journal of Operational Research, 181(3): 1464-
1475. https://doi.org/10.1016/j.ejor.2005.11.051 

Dinkelbach W (1967). On nonlinear fractional programming. 
Management Science, 13(7): 492-498. 
https://doi.org/10.1287/mnsc.13.7.492 

Dubey D and Mehra A (2011). Linear programming with 
triangular intuitionistic fuzzy number. In the 7th Conference of 
the European Society for Fuzzy Logic and Technology, Atlantis 
Press, Aix-les-Bains, France: 563-569.  
https://doi.org/10.2991/eusflat.2011.78 

Dubey D, Chandra S, and Mehra A (2012). Fuzzy linear 
programming under interval uncertainty based on IFS 
representation. Fuzzy Sets and Systems, 188(1): 68-87.  
https://doi.org/10.1016/j.fss.2011.09.008 

Ehrgott M (2005). Multicriteria optimization. Springer Science and 
Business Media, Auckland, New Zealand. 

Gupta P and Bhatia D (2001). Sensitivity analysis in fuzzy 
multiobjective linear fractional programming problem. Fuzzy 
Sets and Systems, 122(2): 229-236.  
https://doi.org/10.1016/S0165-0114(99)00164-5 

Güzel N (2013). A proposal to the solution of multiobjective linear 
fractional programming problem. Abstract and Applied 
Analysis, 2013: 435030.  
https://doi.org/10.1155/2013/435030 

Jagannathan R (1966). On some properties of programming 
problems in parametric form pertaining to fractional 
programming. Management Science, 12(7): 609-615.  
https://doi.org/10.1287/mnsc.12.7.609 

Jana B and Roy TK (2007). Multi-Objective intuitionistic fuzzy 
linear programming and its application in transportation 
model. Notes on Intuitionistic Fuzzy Sets, 13(1): 34-51. 

Jo CL and Lee GM (1998). Optimality and duality for 
multiobjective fractional programming Involvingn-Set 
functions. Journal of Mathematical Analysis and Applications, 
224(1): 1-13. https://doi.org/10.1006/jmaa.1998.5974 

Lai YJ and Hwang CL (1994). Fuzzy multiple objective decision 
making. In: Lai YJ and Hwang CL (Eds.), Fuzzy multiple 
objective decision making: 139-262. Springer, Berlin, 
Germany. https://doi.org/10.1007/978-3-642-57949-3 

Leber M, Kaderali L, Schönhuth A, and Schrader R (2005). A 
fractional programming approach to efficient DNA melting 

temperature calculation. Bioinformatics, 21(10): 2375-2382. 
https://doi.org/10.1093/bioinformatics/bti379 
PMid:15769839 

Liu JC and Yokoyama K (1999). ε-optimality and duality for 
multiobjective fractional programming. Computers and 
Mathematics with Applications, 37(8): 119-128.  
https://doi.org/10.1016/S0898-1221(99)00105-4 

Luhandjula MK (1989). Fuzzy optimization: An appraisal. Fuzzy 
Sets and Systems, 30(3): 257-282.  
https://doi.org/10.1016/0165-0114(89)90019-5 

Luo Y and Yu C (2008). A fuzzy optimization method for multi-
criteria decision making problem based on the inclusion 
degrees of intuitionistic fuzzy sets. Journal of Information and 
Computing Science, 3(2): 146-152. 

Mahapatra GS, Mitra M, and Roy TK (2010). Intuitionistic fuzzy 
multi-objective mathematical programming on reliability 
optimization model. International Journal of Fuzzy Systems, 
12(3): 259-266. 

Martos B (1964). Hyperbolic programming. Naval Research 
Logistics Quarterly, 11(2): 135-155.  
https://doi.org/10.21236/AD0622077 

Miettinen K (2012). Nonlinear multiobjective optimization. 
Springer Science and Business Media, Stanford, USA. 

Mohan C and Nguyen HT (2001). An interactive satisficing method 
for solving multiobjective mixed fuzzy-stochastic 
programming problems. Fuzzy Sets and Systems, 117(1): 61-
79. https://doi.org/10.1016/S0165-0114(98)00269-3 

Nachammai AL and Thangaraj P (2012). Solving intuitionistic 
fuzzy linear programming problem by using similarity 
measures. European Journal of Scientific Research, 72(2): 
204-210. 

Nagoorgani A and Ponnalagu K (2012). A new approach on solving 
intuitionistic fuzzy linear programming problem. Applied 
Mathematical Sciences, 6(70): 3467-3474. 

Nayak S and Ojha AK (2019). Solution approach to multi-objective 
linear fractional programming problem using parametric 
functions. Opsearch, 56: 174-190.  
https://doi.org/10.1007/s12597-018-00351-2 

Patel R (2005). Mixed-type duality for multiobjective fractional 
variational control problems. International Journal of 
Mathematics and Mathematical Sciences, 2005: 849539.  
https://doi.org/10.1155/IJMMS.2005.109 

Saad OM (2005). An iterative goal programming approach for 
solving fuzzy multiobjective integer linear programming 
problems. Applied Mathematics and Computation, 170(1): 
216-225. https://doi.org/10.1016/j.amc.2004.11.026 

Sahinidis NV (2004). Optimization under uncertainty: State-of-
the-art and opportunities. Computers and Chemical 
Engineering, 28(6-7): 971-983.  
https://doi.org/10.1016/j.compchemeng.2003.09.017 

Sakawa M and Nishizaki I (2001). Interactive fuzzy programming 
for two-level linear fractional programming problems. Fuzzy 
Sets and Systems, 119(1): 31-40.  
https://doi.org/10.1016/S0165-0114(99)00066-4 

Sakawa M and Yano H (1989). An interactive fuzzy satisficing 
method for multiobjective nonlinear programming problems 
with fuzzy parameters. Fuzzy Sets and Systems, 30(3): 221-
238. https://doi.org/10.1016/0165-0114(89)90017-1 

Sakawa M, Nishizaki I, and Uemura Y (2000). Interactive fuzzy 
programming for two-level linear fractional programming 
problems with fuzzy parameters. Fuzzy Sets and Systems, 
115(1): 93-103.                                   
https://doi.org/10.1016/S0165-0114(99)00027-5 

Sharma MK, Dhiman N, Mishra VN, Mishra LN, Dhaka A, and 
Koundal D (2022). Post-symptomatic detection of COVID-
2019 grade based mediative fuzzy projection. Computers and 
Electrical Engineering, 101: 108028.  

https://doi.org/10.1007/BF02568552
https://doi.org/10.1007/978-3-7908-1870-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1287/mnsc.17.4.B141
https://doi.org/10.1063/1.4801185
https://doi.org/10.1016/S0377-2217(98)00078-2
https://doi.org/10.1002/nav.3800090303
https://doi.org/10.1016/j.ejor.2005.11.051
https://doi.org/10.1287/mnsc.13.7.492
https://doi.org/10.2991/eusflat.2011.78
https://doi.org/10.1016/j.fss.2011.09.008
https://doi.org/10.1016/S0165-0114(99)00164-5
https://doi.org/10.1155/2013/435030
https://doi.org/10.1287/mnsc.12.7.609
https://doi.org/10.1006/jmaa.1998.5974
https://doi.org/10.1007/978-3-642-57949-3
https://doi.org/10.1093/bioinformatics/bti379
https://doi.org/10.1016/S0898-1221(99)00105-4
https://doi.org/10.1016/0165-0114(89)90019-5
https://doi.org/10.21236/AD0622077
https://doi.org/10.1016/S0165-0114(98)00269-3
https://doi.org/10.1007/s12597-018-00351-2
https://doi.org/10.1155/IJMMS.2005.109
https://doi.org/10.1016/j.amc.2004.11.026
https://doi.org/10.1016/j.compchemeng.2003.09.017
https://doi.org/10.1016/S0165-0114(99)00066-4
https://doi.org/10.1016/0165-0114(89)90017-1
https://doi.org/10.1016/S0165-0114(99)00027-5


Solomon et al/International Journal of Advanced and Applied Sciences, 10(4) 2023, Pages: 44-52 

52 
 

https://doi.org/10.1016/j.compeleceng.2022.108028 
PMid:35498557 PMCid:PMC9042789 

Stancu-Minasian IM and Pop B (2003). On a fuzzy set approach to 
solving multiple objective linear fractional programming 
problem. Fuzzy Sets and Systems, 134(3): 397-405.  
https://doi.org/10.1016/S0165-0114(02)00142-2 

Tanaka H and Asai K (1984). Fuzzy linear programming problems 
with fuzzy numbers. Fuzzy Sets and Systems, 13(1): 1-10.  
https://doi.org/10.1016/0165-0114(84)90022-8 

Tigan S and Stancu-Minasian IM (2000). On Rohn's relative 
sensitivity coefficient of the optimal value for a linear-
fractional program. Mathematica Bohemica, 125(2): 227-234. 
https://doi.org/10.21136/MB.2000.125953 

Valipour E, Yaghoobi MA, and Mashinchi M (2014). An iterative 
approach to solve multiobjective linear fractional 
programming problems. Applied Mathematical Modelling, 
38(1): 38-49. https://doi.org/10.1016/j.apm.2013.05.046 

Wolf H (1986). Solving special nonlinear fractional programming 
problems via parametric linear programming. European 

Journal of Operational Research, 23(3): 396-400.  
https://doi.org/10.1016/0377-2217(86)90305-X 

Yadav SR and Mukherjee RN (1990). Duality for fractional 
minimax programming problems. The ANZIAM Journal, 31(4): 
484-492. https://doi.org/10.1017/S0334270000006809 

Zadeh LA (1965). Fuzzy sets. Information and Control, 8(3): 338-
353. https://doi.org/10.1016/S0019-9958(65)90241-X 

Zhong Z and You F (2014). Parametric solution algorithms for 
large-scale mixed-integer fractional programming problems 
and applications in process systems engineering. Computer 
Aided Chemical Engineering, 33: 259-264.  
https://doi.org/10.1016/B978-0-444-63456-6.50044-2 

Zimmermann HJ (1978). Fuzzy programming and linear 
programming with several objective functions. Fuzzy Sets and 
Systems, 1(1): 45-55.                             
https://doi.org/10.1016/0165-0114(78)90031-3 

Zimmermann HJ (1983). Fuzzy mathematical programming. 
Computers and Operations Research, 10(4): 291-298.  
https://doi.org/10.1016/0305-0548(83)90004-7 

 

https://doi.org/10.1016/j.compeleceng.2022.108028
https://doi.org/10.1016/S0165-0114(02)00142-2
https://doi.org/10.1016/0165-0114(84)90022-8
https://doi.org/10.21136/MB.2000.125953
https://doi.org/10.1016/j.apm.2013.05.046
https://doi.org/10.1016/0377-2217(86)90305-X
https://doi.org/10.1017/S0334270000006809
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/B978-0-444-63456-6.50044-2
https://doi.org/10.1016/0165-0114(78)90031-3
https://doi.org/10.1016/0305-0548(83)90004-7

	Intuitionistic fuzzy optimization method for solving multi-objective linear fractional programming problems
	1. Introduction
	2. Parametric approach
	3. Multi-objective linear programming problem
	4. Intuitionistic fuzzy optimization
	4.1. Intuitionistic fuzzy set (IFS)
	4.2. Intuitionistic fuzzy method (IFM)

	5. Computational algorithm
	6. Numerical examples
	7. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References


