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Since the outbreak of the COVID-19 pandemic, many countries have 
continued to suffer economically due to trade losses. COVID-19 has evolved 
into different forms and hence became a problem to analyze its transmission. 
As a result of increased COVID-19 infections, there has been a scarcity of 
resources like hospital facilities, quarantine centers, and personal protective 
equipment (PPEs) for the medics. Therefore, accurate planning has to be 
made by the government of Kenya to ensure that resources are made 
available to combat the rising COVID-19 cases. To ensure effective future 
planning for the COVID-19 pandemic, proper analysis of the COVID-19 
pandemic among the population is key. Therefore, this study will go a long 
way in providing insights on how to plan for the Kenyan population through 
probabilistic analysis of the COVID-19 pandemic using the Markov chain. The 
study used Secondary Cumulative data from the Kenya ministry of health for 
a period between 1st June 2021 and 1st May 2022. The data was analyzed 
using a steady-state Markov chain in which the transition probability matrix 
for the COVID-19 pandemic was computed. The number of individuals 
infected by the COVID-19 virus and who recovered at the end of the study 
period was set at zero since COVID-19 disease is not curable. The results 
were presented in the table and reported at a 95% confidence level. Based on 
the findings, the study concluded that a steady-state Markov chain is 
beneficial in simulating the coronavirus infection in numerous stages. Also, it 
is noted that the use of the steady-state Markov chain model allows for 
capturing short and long-term memory effects that greatly improve the 
estimation of the number of new cases of COVID-19 and indicate whether the 
disease has an upward/downward trend. 
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1. Introduction 

*Coronavirus disease (COVID-19) is an infectious 
disease caused by the SARS-CoV-2 virus (Cihan, 
2022). The virus originated in Wuhan, China in early 
December 2019 and then spread exponentially 
across the globe (Cheng and Shan, 2020; Liu et al., 
2020). COVID-19 droplet transmission occurs when 
a person is in close contact with someone who has 
respiratory symptoms and is therefore at risk of 
having his/her mucosae exposed to potentially 
infective respiratory droplets (Kurniawan and 
Kurniawan, 2021; Peng et al., 2020; Swapnarekha et 
al., 2021). Transmission may also occur through 
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fomites in the immediate environment around the 
infected person. Therefore, the transmission of the 
COVID-19 virus can occur through direct contact 
with infected people and indirect contact with 
surfaces in the immediate environment or with 
objects used on the infected person. Most people 
infected with the virus experience mild to moderate 
respiratory illness and recover without requiring 
special treatment. However, some become seriously 
ill and require medical attention. Older people and 
those with underlying medical conditions like 
cardiovascular disease, diabetes, chronic respiratory 
disease, or cancer are more likely to develop serious 
illnesses. Anyone can get sick with COVID-19 and 
become seriously ill or die at any age. The COVID-19 
pandemic is unprecedented in its global reach and 
impact, posing formidable challenges to 
policymakers and to the empirical analysis of its 
direct and indirect effects within the interconnected 
global economy (Carmody et al., 2021). 

As of 30 January 2020, World Health Organization 
(WHO) declared the Corona Virus outbreak a Public 
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Health Emergency of Global Concern and COVID-19 
has since continued to spread across the world with 
immediate and long-term social economic effects on 
national economies and individual citizens 
(Pfefferbaum and North, 2020). Although, a series of 
prevention strategies such as lockdown, social 
distancing, and total quarantine of infected 
individuals were enforced to control the spread of 
the pandemic. During the COVID-19 pandemic, 
governments worldwide imposed severe restrictions 
on public life in order to limit the spread of the 
SARS-CoV-2 virus (Benke et al., 2020). A critical 
point in the decision-making process was the 
limitation of beds in intensive care units (ICU) in 
order to adequately treat all severe cases of COVID-
19. Many countries increased the number of ICU 
beds substantially at the onset of the crisis; a critical 
issue with severe COVID-19 disease is the frequent 
need for prolonged ICU treatment (Benke et al., 
2020). For informed decision making it is important 
to quantitatively assess how long the patients are 
expected to be in an ICU.  

The first case of COVID-19 was confirmed in 
Kenya on 13th March 2020 and ever since, the 
pandemic has continued to ravage the Country 
(Odhiambo et al., 2020a; Maurice et al., 2021). The 
COVID-19 pandemic is a global shock like no other, 
involving simultaneous disruptions to both supply 
and demand in an interconnected world economy 
(Zhang et al., 2020). According to Güder (2020), on 
the supply side, infections reduce labor supply and 
productivity, while lockdowns, business closures, 
and social distancing also cause supply disruptions. 
On the demand side, layoffs and the loss of income 
reduced household consumption and firms’ 
investment. The extreme uncertainty about the path, 
duration, magnitude, and impact of the pandemic 
could pose a vicious cycle of dampening business 
and consumer confidence and tightening financial 
conditions, which could lead to job losses and 
investment. Mathematical models have been 
developed and used to trace the temporal course of 
the Middle East Respiratory Syndrome Coronavirus 
(MERS-CoV) outbreak 2020 (Olivares and Staffetti, 
2021). Other authors used clinical modeling 
techniques for explaining the disease outbreak (Al-
Qahtani, 2020). 

Markov analysis, like decision analysis, is a 
probabilistic technique; however, Markov analysis is 
different in that it does not provide a recommended 
decision (Zeng et al., 2020). Instead, Markov analysis 
provides probabilistic information about a decision 
situation that can aid the decision maker in making a 
decision. It is important to note that Markov analysis 
is not an optimization technique; it is a descriptive 
technique that results in probabilistic information 
(Zeng et al., 2020). Markov analysis is specifically 
applicable to systems that exhibit probabilistic 
movement from one state (or condition) to another, 
over time. COVID-19 has evolved into different forms 
and hence became a problem to analyze its 
transmission. Odhiambo et al. (2020b) modeled the 
Kenyan economic impact of coronavirus using 

steady-state discrete-time Markov chains presenting 
both conceptual and methodological gaps but they 
did not focus on the chances of transmission of 
COVID-19 in Kenya. Thus this study will focus on 
modeling probabilistic analysis of COVID-19 to 
understand the chances and transmission of COVID-
19 transmission in Kenya using the Markov chain.  

2. Materials and methods 

2.1. Data collection and analysis 

The COVID-19 secondary data was obtained from 
Kenya's Ministry of Health. The collected data was 
based on facts and figures collected by the Ministry 
of Health officials. After collecting the cumulative 
data, it was cleaned and analyzed using steady states 
Markov chain in which the Probability matrix was 
computed. The R statistical software was used to 
analyze and visualize the data. 

2.2. Markov chain modeling 

A Markov chain or Markov process is a stochastic 
model describing a sequence of possible events in 
which the probability of each event depends only on 
the state attained in the previous event. A countable 
infinite sequence, in which the chain moves state at 
discrete time steps, gives a discrete-time Markov 
chain. 

2.2.1. Model development 

This study considers three discrete states: 
susceptible (state 0), infected (state 1), and removed 
(state 2) states. If (𝑋𝑖 , 𝑖 = 0,1,2) represent the 
number of individuals in any state from COVID-19 
disease at any time t, then clearly, 𝑋𝑖  is a stochastic 
process with states 0, 1, and 2. Thus, the first-order 
time-homogeneous Markov dependency will be 
statistically modeled as: 

 
𝑃(𝑋𝑛 = 𝑖𝑛|𝑋𝑛−1 = 𝑖𝑛−1, ⋯ , 𝑋1 = 𝑖1, 𝑋0 = 𝑖0) =
𝑃(𝑋𝑛 = 𝑖𝑛|𝑋𝑛−1 = 𝑖𝑛−1).                                     (1) 

 

Then, the transition probability matrix 𝑃𝑖𝑗  for 

𝑖, 𝑗 = 0,1,2  
 

𝑃𝑖𝑗 = [
𝑃00 𝑃01 𝑃02

𝑃10 𝑃11 𝑃12

0 0 1
]                                                                 (2) 

 

where, ∑ 𝑃𝑖𝑗 = 1;   𝑖 = 0,1,22
𝑗=0    , 𝑃𝑖𝑖 is the probability 

of remaining in state 𝑖 and 𝑃𝑖𝑗 is the transition 

probability from state 𝑖 to state 𝑗, 𝑖 ≠ 𝑗. The 
parameter 𝑃01 is mostly referred to in the literature 
as discrete time force of infection. Also, the 
elements 𝑃02 and 𝑃12 signify mortality for uninfected 
and infected individuals, respectively, while 𝑃10 is 
the recovery or defection probability. Death is an 
absorbing state since the probability of becoming 
susceptible or infected is zero. The time step unit to 
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ensure the transition from one state to another is 
measured on a yearly basis. 

2.2.2. Model assumptions 

The current state of an individual is dependent 
only on the state of the individual at the previous 
time step; No individual at the removed state can be 
susceptible or infected; Transitioning probabilities 
are independent of time and remain constant over 
time or the study period; Successive transitions or 
relapse confirmed confections of COVID-19 or other 
medical complications do not take into consideration 
or does not meet the eligibility criteria of the study. 
The removed state comprises subjects who either 
died from the disease or were found to be immune 
after recovery; the only assumption required 
regarding losses and withdrawals is that they have 
the same future experience as those remaining 
under observation. 

2.3. Estimating transition probabilities 

The number of individuals infected by the COVID-
19 virus and recovered at the end of the study period 
of the cohort studies will be set at zero since COVID-
19 disease is not curable. The transition events 
𝑃𝑖𝑗 will be considered independent of one another 

and the likelihood of the transition probability will 
follow a binomial model: 
 

𝐿(𝑃𝑖𝑗|𝑁, 𝑥) = (𝑁𝑖
𝑥𝑖𝑗

) 𝑃𝑖𝑗

𝑥𝑖𝑗(1 − 𝑃𝑖𝑗)
𝑁𝑖−𝑥𝑖𝑗

                                    (3) 

 

where, 𝑁𝑖𝑗  is the number of observed transition that 

starts from state 𝑖 to 𝑗 then, 
 
∑ 𝑃𝑖𝑗 = 1.𝑗                                                                                         (4) 

 

From Eq. 4, the assumption of constant transition 
probabilities over the period, the transition 
probability matrix will be estimated as a multinomial 
distribution given as 
 

𝑃̂𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗𝑗
=

𝑥𝑖𝑗

𝑁𝑖
                                                                              (5) 

 

For 𝑖, 𝑗 = 0,1, with standard errors from the 
sampling distribution of the estimate will be given as 
 

𝑠̂. 𝑒(𝑃𝑖𝑗) = √
𝑃̂𝑖𝑗=(1−𝑃̂𝑖𝑗)

𝑁𝑖
                                                                (6) 

2.4. Computing probability-matrix 

The probability that a susceptible individual 
becomes infected by COVID-19 disease for the first 
time between 𝑚 − 1 and 𝑚 time steps for states 
𝑖, 𝑗 = 0,1from the transition probability matrix will 
be given as:  
 

𝑓01
(𝑚)

= 𝑃(𝑋𝑛+𝑚 = 1, 𝑋𝑛+𝑚−1 = 0, ⋯ , 𝑋𝑛+1 = 0|𝑋𝑛 = 1) =

𝑃00
𝑚−1𝑃01                                                                                           (7) 

 

Similarly, the probability that an individual 
infected by COVID-19 first recovers between 𝑚 − 1 
and 𝑚 time steps will be given as: 
 

𝑓10
(𝑚)

= 𝑃(𝑋𝑛+𝑚 = 1, 𝑋𝑛+𝑚−1 = 0, ⋯ , 𝑋𝑛+1 = 1|𝑋𝑛 = 1) =

𝑃11
𝑚−1𝑃10                                                                                            (8) 

 

The expected time to infection and recovery has a 
closed-form solution which will be computed as: 
 

𝐸(𝜏𝑖𝑗
1 ) = ∑

𝑚𝑓𝑖𝑗
𝑚

𝑃𝑟(𝑖→𝑗)
=

1

1−𝑃𝑖𝑖

∞
𝑚=1                                                     (9) 

 

For 𝑖, 𝑗 = 0,1, 𝑖 ≠ 𝑗 where, the numerator 
∑ 𝑚𝑓𝑖𝑗

𝑚∞
𝑚=1  is the expected value of the first passage 

time from state 𝑖 to state 𝑗 and the denominator 

𝑃𝑟(𝑖 → 𝑗) =
𝑃𝑖𝑗

1−𝑃𝑖𝑖
 is the overall probability or lifetime 

probability of transitioning from state 𝑖 to state 𝑗. 
The life expectancies (𝑊𝑖 , 𝑖 = 0,1) for COVID-19 
susceptible and infected individuals will also be 
estimated using the following equation: 
 

𝑊 = (𝐼 − 𝑄)−1(1
1
)                                                                       (10) 

 

where, I is a 2x2 identity matrix and 𝑄 = (
𝑃00 𝑃01

𝑃10 𝑃11
) 

3. Results and discussion 

3.1. Transition probability matrix 

This analysis is modeled by the Markov chain 
process where five health states were considered 
Infected (I), Hospitalized (Ho), Home Based (HB), 
Recovered (R), and Dead (D). Table 1 shows the 
computed transition probability matrix for the 
COVID-19 transmission in Kenya from state 𝑖 to state 
j. The Markov property is observed since the sum of 
the rows of each state adds to one. 

 
Table 1: Transition probability from state i to state j in one cycle 

 From state i to state j Infected (I) Hospitalized (Ho) Home-based (HB) Recovered (R) Dead (D) 

COVID-19 

Infected (I) 0.07 0.05 0.07 0.80 0.01 
Hospitalized 

(Ho) 
0.05 0.00 0.00 0.94 0.01 

Home-based (HB) 0.07 0.00 0.00 0.92 0.01 
Recovered (R) 0.80 0.19 0.00 0.00 0.01 

Dead (D) 0.01 0.00 0.99 0.00 0.00 

 

Figs. 1 and 2 show the Markov chain transition 
diagram for COVID-19 with their corresponding 
transition probability matrix. The COVID-19 patient 
who is in state 𝑖 (Infected state) are Hospitalized, 

then the patient can either remain in the same state 
or transit to state j that is, the patient either dies or 
recovers from the virus. 
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Fig. 1: Diagram of transitions in the Markov chain for COVID-19 

 

 
Fig. 2: Diagram of transitions in the Markov chain for COVID-19 

 

3.2. Discussion 

This study presents a steady-state Markov chain 
model to predict the Kenyan COVID-19 pandemic 
transition matrix. The findings revealed that one of 
the most important uses of the steady-state Markov 
chain in analyzing the COVID-19 pandemic situation 
in Kenya is that it compares performances for 
different states of affairs and courses of action within 
the health sector, by using system steady-state 
performance measurements. In the inefficient case, 
when infection rates are 10% instead of CDC 
suggested 5%, there is a higher percentage of 
patients hospitalized or have a higher rate of 
entering the Hospital (29% instead of 18%). This 
shows how, letting the infection rate increase above 
the suggested upper bound of 5%, results in 
saturating the Health Care system with too many 

patients. A similar situation occurs with times 
between two successive visits to a state 𝑖. 

The eigenvector associated with the eigenvalues 
of 1 is the stationary vector. This stationary vector is 
called the Markov chain ergodic distribution vector 
(steady-state vector). The ergodic vector shows the 
prediction of COVID-19 spread as the current status 
continues, including the current policies. 
Convergence speed towards steady-state 
distribution and mobility index was calculated using 
a transition probability matrix. As indicated in a 
study by El-Hadidy (2021) on developing a detection 
model for a COVID-19-infected person based on a 
probabilistic dynamical system. The study findings 
revealed that Markov Chains have a unique steady 
state distribution regardless of the initial state that is 
approached by successive iterations from any 
starting distributions. Other researchers (Din et al., 
2020; Kharroubi, 2020; Raherinirina et al., 2021) 
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have also applied the Markov chain probability 
analysis to model the COVID-19 transmission, and 
their findings agree with our findings. 

4. Conclusion  

On the basis of the findings above, this study 
concludes that the state transition probability matrix 
of a Markov chain gives the probabilities of 
transitioning from one state to another in a single 
time unit and it is important that the concept is 
extended to longer time intervals. In addition, the 
steady-state situation has been discussed to get the 
probability and the mean time of detection for the 
infected person. The study also concludes that a 
steady-state Markov chain is beneficial in simulating 
the coronavirus infection in numerous stages. This 
type of simulation could be very much useful in 
generating the time period of coronavirus 
transmission. The evaluation of COVID-19 
transmission indicates that the Markov chain 
approach offers one opportunity for modeling in the 
future. Moreover, the use of the steady-state Markov 
model allows for capturing short and long-term 
memory effects that greatly improve the estimation 
of the number of new cases of COVID-19 and indicate 
whether the disease has an upward/downward 
trend. This can help decision-makers to plan for 
health policy interventions and take the appropriate 
actions to contain the spread of the virus.  
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