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This article introduces a reliable control scheme for a four-wheel vehicle. 
This scheme assumes that actuators fail and external disturbances occur to 
the system. In contrast to existing results, this study assumes the actuator 
fault model includes linear and nonlinear terms, and an output feedback 
controller is designed to improve vehicle stability and handling when 
actuators fail. Using Takagi-Sugeno (T-S) fuzzy models, a reliable fuzzy static 
output feedback (SOF) controller is designed to address the nonlinear aspect 
of the system. Based on the non-quadratic Lyapunov function with auxiliary 
matrices, less conservative sufficient conditions are established such that the 
closed-loop system is stable with a 𝛾 level of 𝐻∞ performance against 
external disturbances. Furthermore, using an appropriate model 
transformation, a set of linear matrix inequalities (LMIs) is formulated to 
synthesize the controller gains. The proposed scheme is then tested using 
numerical experiments to demonstrate potential applications and validate its 
effectiveness. 
 

Keywords: 
Fuzzy systems 
State feedback 
Observer 
Robust control 
LMI 

© 2022 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction 

*The automobile industry is continually striving to 
develop active control systems that enhance the 
stability and performance of vehicles in dangerous 
situations. Note that, the development of active 
control systems to achieve enhanced vehicle stability 
and comfort continues to be a topic of active 
investigation (Wang et al., 2020; 2015a; 2016b; Jin et 
al., 2018; Latrach et al., 2013). Ultimately, we want to 
produce vehicles that everyone can safely operate. 

Due to their complex models, the development of 
vehicle control systems is a significant challenge. 
However, we know that to cope with nonlinear 
systems, fuzzy logic might come up with an 
innovative solution for the design analysis and 
control synthesis of various industrial plants. 
Alternatively, Takagi–Sugeno (T-S) fuzzy models 
exhibit an excellent ability to express nonlinear 
systems through the combination of fuzzy logic and 
linear control theories (Takagi and Sugeno, 1985; 
Latrach et al., 2015; Kchaou et al., 2011). Therefore, 
the application of the T-S fuzzy model greatly 
expands the research field of nonlinear control 
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theory. As a result, a rich literature related to 
controller design, filtering design, and stability 
analysis on T-S has been published (Shi et al., 2020; 
Makni et al., 2019; Tao et al., 2018). Additionally, the 
T-S fuzzy model is recently investigated to deal with 
vehicle models. In Wang et al. (2016a), the yaw 
control issue for in-wheel-motor electric ground 
vehicles is investigated based on the differential 
steering and in the presence of the complete failure 
of the steering system. Dahmani et al. (2013) 
proposed a fuzzy-model-based roll state estimator 
for a three-degrees-of-freedom vehicle model in the 
presence of the road bank. 

The aforementioned control results of vehicle 
systems are assumed to be under ideal working 
conditions. However, such systems may experience 
catastrophic results in the event of a component 
system failure. Because actuator/sensor failures can 
have a negative impact on system performance, 
control communities are interested in this control 
problem. The goal of this issue is to introduce the 
concept of fault-tolerant control (FTC) and fault 
diagnosis as critical approaches for designing 
reliable controllers that are capable of maintaining 
the critical functionality of systems subject to 
problems and failures. Reviewing the literature, 
many elegant reported results related to this area 
have been proposed for different classes of systems 
(Wang et al., 2018; Kchaou et al., 2021; Yan et al., 
2019). Kaviarasan et al. (2016) developed a method 
for designing fault-tolerant controllers for power 
systems subject to random changes and actuator 
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failures in Kaviarasan et al. (2016). The FTC method 
for wind-diesel hybrid systems with time-varying 
bounded sensor faults has been proposed by Kamal 
et al. (2013). In Wang et al. (2015b), the reliable 
observer-based control problem for discrete-time 
Takagi-Sugeno fuzzy systems with time-varying 
delay and stochastic actuator faults is formulated 
from the input-output approach. The state variables 
of feedback control are not all measurable, which is 
another vulnerability in feedback control. The 
concept of static output feedback (SOF) as an 
alternative to state feedback has long been admitted 
as a compelling yet challenging implementation 
method in T-S fuzzy model-based design (Latrech et 
al., 2018; Regaieg et al., 2019). 

Having been inspired by the statements above, in 
this article, a reliable output feedback control 
scheme will be investigated to control the vehicle 
lateral motion in the presence of exogenous 
disturbance and actuator faults. The main 
contributions of this paper are highlighted as 
follows: 
 
1. Instead of existing fuzzy static output control 

schemes (Latrech et al., 2018; Kang and Lee, 
2018), this study introduces a new model of the 
fault including a non-linear part to deal with 
reliable control problems for T-S fuzzy systems 
subject to exogenous disturbance and nonlinear 
actuator faults.  

2. Based on non-quadratic Lyapunov functional, 
sufficient conditions for stability with 𝐻∞ 

performance of the resulting closed-loop system is 
derived.  

3. Different from the results suggested in Latrech et 
al. (2018) and Kang and Lee (2018), where the 
descriptor-redundancy scheme is adopted to 
design the SOF controller, in this study, we 
examine the properties of some specific slack 
matrices to convert bi-linear matrix conditions to 
LMI ones using an appropriate model 
transformation. Moreover, the design conditions 
are derived as a one-step LMI problem without 
ensuing equality constraints.  

 
Notations: The notations used in this paper are 
standard, where 𝑋 ∈ ℝ𝑛 is the set of 𝑛 −dimensional 
Euclidean space; 𝑋 ∈ ℝ𝑛×𝑚 is the set of 𝑛 × 𝑚 real 
matrices; 𝑋 > 0 is the real symmetric positive 
definite matrix; 𝑠𝑦𝑚(𝑋) stands for 𝑋 + 𝑋𝑇 . We note 
also 𝑋𝜂 = ∑𝑟𝑖=1 𝜂𝑖 , 𝑋𝜂𝜂 = ∑

𝑟
𝑖=1 ∑

𝑟
𝑗=1 𝜂𝑖𝜂𝑗𝑋𝑖𝑗 , and �̇�𝜂 =

∑𝑟𝑖=1 �̇�𝑙𝑋𝑙 . ∗ denotes the term that is induced by 
symmetry. 

2. Vehicle model 

In this section, the lateral dynamics of a vehicle 
are modeled based on a bicycle model as shown in 
Fig. 1. Based on the assumption that the front-wheel 
steering angle is small, the vehicle’s dynamics in the 
yaw plane are defined by the following differential 
equations (Latrech et al., 2018; Dahmani et al., 
2013). 

 

 
Fig. 1: Vehicle lateral yaw dynamics model 

 

{
�̇� =

2𝐹𝑓+2𝐹𝑟

𝑚𝑉
− Ω𝑧

Ω̇𝑧 =
2𝑙𝑓𝐹𝑓−2𝑙𝑟𝐹𝑟+𝑀𝑧

𝐽𝑧

                                                                  (1) 

 

where, 𝛽 denotes the slide slip angle, Ω𝑧 is the yaw 
velocity, 𝐹𝑓 is the nonlinear cornering force of the 

two front tires, 𝐹𝑟 is the nonlinear cornering force of 
the two rear tires and 𝑀𝑧 is yaw moment. 𝑉 is the 
vehicle velocity, 𝐽𝑧 is the yaw moment of inertia, 𝑚 is 
the vehicle mass. 

Using the T-S fuzzy approach, the forces 𝐹𝑓 and 𝐹𝑟 

can be described as follows (Latrech et al., 2018; 
Dahmani et al., 2013): 

{
𝐹𝑓 = 𝜂1(|𝛼𝑓|)𝐶𝑓1𝛼𝑓 + 𝜂2(|𝛼𝑓|)𝐶𝑓2𝛼𝑓
𝐹𝑟 = 𝜂1(|𝛼𝑓|)𝐶𝑟1𝛼𝑟 + 𝜂2(|𝛼𝑓|)𝐶𝑟2𝛼𝑟

                                 (2) 

 

where, 𝜂𝑖(𝑖 = 1, 2) identify the bell membership 
functions as below:  
 

𝜂1(𝛼𝑓) =
𝜔1(𝛼𝑓)

𝜔1(𝛼𝑓)+𝜔2(𝛼𝑓)
, 𝜂2(𝛼𝑓) =

𝜔2(𝛼𝑓)

𝜔1(𝛼𝑓)+𝜔2(𝛼𝑓)
,                  (3) 

𝜔1(𝛼𝑓) =
1

(1+|
|𝛼𝑓|−𝐶1

𝑎1
|)2𝑏1

, 𝜔2(𝛼𝑓) =
1

(1+|
|𝛼𝑓|−𝐶2

𝑎2
|)2𝑏2

.                 (4) 

 

𝐶𝑓𝑖 , 𝐶𝑟𝑖  represent the consequence parameters of 

rules, 𝛼𝑓 , 𝛼𝑟 are the front and rear tire side slip 
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which can be determined using the following 
expression where 𝛿𝑓 stands for the steering input 

angle: 
 

{
𝛼𝑓 ≅ −𝛽 −

𝑙𝑓Ω𝑧

𝑉
+ 𝛿𝑓

𝛼𝑟 ≅ −𝛽 −
𝑙𝑟Ω𝑧

𝑉

                                                               (5) 

 

Thus, the following T-S fuzzy model for the 
vehicle lateral dynamic is obtained: 
 

{
 
 

 
 �̇�(𝑡) = ∑2𝑖=1 𝜂𝑖(𝛼𝑓){𝐴𝑖𝑥 + 𝐵2𝑖𝑢(𝑡) + 𝐵1𝑖𝑤(𝑡)}

𝑧(𝑡) = ∑2𝑖=1 𝜂𝑖(𝛼𝑓){𝐶1𝑖𝑥(𝑡) + 𝐷1𝑖𝑤(𝑡)}

𝑦(𝑡) = ∑2𝑖=1 𝜂𝑖(𝛼𝑓){𝐶2𝑖𝑥(𝑡)}
        (6) 

 

where, 𝑥(𝑡) = [𝛽𝑇 Ω𝑧
𝑇]𝑇 , 𝑢(𝑡) = 𝑀𝑧, 𝑤(𝑡) = 𝛿𝑓 , 

 

𝐴𝑖 = [
−2

𝐶𝑓𝑖+𝐶𝑟𝑖

𝑚𝑉
−2

𝐶𝑓𝑖𝑙𝑓−𝐶𝑟𝑖𝑙𝑟

𝑚𝑉2
− 1

−2
𝐶𝑓𝑖𝑙𝑓−𝐶𝑟𝑖𝑙𝑟

𝐽𝑧
−2

𝐶𝑓𝑖𝑙𝑓
2+𝐶𝑟𝑖𝑙𝑟

2

𝐽𝑧𝑉

] ,

𝐵1𝑖 = [
2
𝐶𝑓𝑖

𝑚𝑉

2
𝑎𝑓𝐶𝑓𝑖

𝐽𝑧

]   𝑖 = 1,2,

𝐵2 = [
0
1

𝐽𝑧

] , 𝐶2𝑖 = [0 1]

𝐶1𝑖 = [0.1 0], 𝐷1𝑖 = 0.1

                           (7) 

3. Main results 

Assume that the actuator failure happens. The 
following new actuator fault input model, which 
involves linear and nonlinear terms, is used: 
 
𝑢𝑓(𝑡) = Ω𝑢(𝑡) + Φ𝜑(𝑢(𝑡))                                                       (8) 
 

where, 0 < Ω ≤ 1 stand for the actuator fault matrix, 
and 𝜙(𝑢(𝑡)) is a nonlinear vector function satisfying: 
 
𝜑𝑇(𝑢(𝑡))𝜑(𝑢(𝑡)) ≤ 𝜎2𝑢𝑇(𝑡)𝐻𝑇𝐻𝑢(𝑡)                                    (9) 
 

where, 𝐻 is a matrix with an appropriate dimension. 
Based on the PDC approach, the following output 

feedback control law is suggested: 
 
𝑢(𝑡) = ∑2𝑖=1 𝜂𝑖(|𝛼𝑓(𝑡)|)𝐾𝑖𝑦(𝑡)                                               (10) 

where, 𝐾𝑖  is the controller gains. Then, the closed-
loop system is defined as  
 

{
�̇�(𝑡) = ∑2𝑖=1 ∑

2
𝑗=1 𝜂𝑖𝜂𝑗(𝐴𝑖𝑗𝑥(𝑡) + 𝐵2𝑖Φ𝜑(𝑢(𝑡)) + 𝐵1𝑖𝑤(𝑡))

𝑧(𝑡) = ∑2𝑖=1 𝜂𝑖(𝐶1𝑖𝑥(𝑡) + 𝐷1𝑖𝑤(𝑡))
  (11) 

 

where, 
 
𝐴𝑖𝑗 = 𝐴𝑖 + 𝐵2𝑖Ω𝐾𝑗𝐶2𝑗 . 

 
Equivalently, the system in Eq. 11 can be written as: 
 

{
�̇�(𝑡) = (𝐴𝜂𝜂𝑥(𝑡) + 𝐵2𝜂Φ𝜑(𝑢(𝑡)) + 𝐵1𝜂𝑤(𝑡))

𝑧(𝑡) = (𝐶1𝜂𝑥(𝑡) + 𝐷1𝜂𝑤(𝑡))
              (12) 

 

Two cases can be obtained according to model in 
Eq. 8: 

1. If Ω = 1 and Φ = 0, the actuator is working in 
normal mode. 

2. If Ω ≠ 1 and Φ ≠ 0, the actuator is working in 
failure mode. 

 
The control design purpose of this study is to 

design an output feedback control law (Eq. 10) in 
order to improve vehicle stability and 
maneuverability when this latter is subject to lane-
changing maneuvers. The control system can 
tolerate the presence of failures. 

Before proceeding, we recall the following lemma. 
 
Lemma 1 (Tuan et al., 2001): The following 
inequality holds: 
 
∑𝑟𝑖=1 ∑

𝑟
𝑗=1 𝜂𝑖𝜂𝑗Υ𝑖𝑗 < 0                                                               (13) 

 

if, 
 
Υ𝑖𝑖 < 0, 𝑖 = 1,2,⋯ , 𝑟                                                                 (14) 
2

𝑟−1
Υ𝑖𝑖 + Υ𝑖𝑗 + Υ𝑗𝑖 < 0,    𝑗 > 𝑖                                                  (15) 

3.1. Stability analysis 

This subsection of the paper focuses on the 
development of a reliable control law such that the 
resulting closed-loop system is 𝐻∞ stable. 
 
Theorem 1: For given scalars 𝜙𝑖 < 0, 𝜇1 and 𝜇2, 
closed-loop system (Eq. 12) is stable with 𝐻∞ 
performance 𝛾, if there exist matrices 𝑃𝑖 > 0, 𝑍, 𝐺, 𝐹 
and scalars 휀1𝑖 > 0 and 𝛾 > 0 such that the following 
inequalities hold for 𝑖, 𝑗, 𝑙 = 1,2,⋯ , 𝑟: 
 
𝑃𝑖 + 𝑍 ≥ 0                                                                                     (16) 

𝚽𝑖𝑗
𝑙 =

[
 
 
 
 
 
 
Φ𝑖𝑗
11𝑙 Φ𝑖𝑗

12 𝐵2𝑖Φ 𝐵1𝑖 𝜇1(𝐶1𝑖𝐺)
𝑇 Φ𝑖𝑗

16

Φ𝑖𝑗
22 0 0 𝜇2(𝐶1𝑖𝐹)

𝑇 Φ𝑖𝑗
26

∗ −휀1𝑖
−1𝐼 0 0 0

∗ ∗ −𝛾𝐼 𝐷1𝑖
𝑇 0

∗ ∗ ∗ −𝛾𝐼 0

∗ ∗ ∗ ∗ −휀1𝑖𝐼]
 
 
 
 
 
 

< 0, 

                                                                                                         (17) 

where,  
Φ𝑖𝑗
11𝑙 = −∑2𝑙=1 𝜙𝑙(𝑃𝑙 + 𝑍) + 𝑠𝑦𝑚(𝐴𝑖𝑗𝐺)  

Φ𝑖𝑗
12 = 𝑃𝑖 − 𝜇1𝐺

𝑇 + 𝜇2𝐴𝑖𝑗𝐹  

Φ𝑖𝑗
22 = −𝜇2𝑠𝑦𝑚(𝐹)                               (18) 

Φ𝑖𝑗
16 = 𝜇1(𝜎𝐻𝐾𝑗𝐶2𝑗𝐺)

𝑇  

Φ𝑖𝑗
26 = 𝜇2(𝜎𝐻𝐾𝑗𝐶2𝑗𝐹)

𝑇  

 

Proof: Based on the property of the membership 
functions, we know from Eq. 17 that: 
 

𝚽𝜂𝜂
𝜂
= ∑𝑟𝑖=1 ∑

𝑟
𝑗=1 ∑

𝑟
𝑙=1 𝜂𝑖𝜂𝑗𝜂𝑙𝚽𝑖𝑗

𝑙 < 0                                 (19) 

 

Define, 
 

𝕋𝜂𝜂 =

[
 
 
 
 
𝐼 𝐴𝜂𝜂 0 0 0 0

0 0 𝐼 0 0 0
0 0 0 𝐼 0 0
0 𝐶1𝜂 0 0 𝐼 0

0 𝜎𝐻𝐾𝜂𝐶2𝜂 0 0 0 𝐼 ]
 
 
 
 

.  
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Pre- and post-multiplying Eq. 19 by 𝕋𝜂𝜂  and its 

transpose, respectively, and assuming that �̇�𝑙 ≥ 𝜙𝑙 , 
the following condition holds: 
 

[
 
 
 
 
 Φ𝜂𝜂

11𝜂
𝐵2𝜂Φ 𝐵1𝜂 𝑃𝜂𝐶1𝜂

𝑇 (𝜎𝐻𝐾𝜂𝐶2𝜂𝑃𝜂)
𝑇

−휀1𝜂
−1𝐼 0 0 0

∗ −𝛾𝐼 𝐷1𝜂
𝑇 0

∗ ∗ −𝛾𝐼 0

∗ ∗ ∗ −휀1𝜂𝐼 ]
 
 
 
 
 

< 0.       (20) 

 

where, 
 
Φ𝜂𝜂
11𝜂

= −(�̇�𝜂 + �̇�) + 𝑠𝑦𝑚(𝐴𝜂𝜂𝑃𝜂). 

 
To address the stability analysis, the following 

non-quadratic fuzzy Lyapunov function is 
introduced:  
 
𝑉(𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑃𝜂

−1𝑥(𝑡)                                                          (21) 

 

The evaluation of �̇�(𝑥(𝑡)) onward the solutions of 
system in Eq. 12, with 𝜑(𝑢(𝑡)) = 0 and 𝑤(𝑡) = 0, 
provides  
 
�̇�(𝑥(𝑡)) = 2𝑥𝑇(𝑡)𝑃𝜂

−1�̇�(𝑡) + 𝑥𝑇(𝑡)�̇�𝜂
−1𝑥(𝑡)

= 2𝑥𝑇(𝑡)𝑃𝜂
−1𝐴𝜂𝜂𝑥(𝑡) − 𝑥

𝑇(𝑡)𝑃𝜂
−1�̇�𝜂𝑃𝜂

−1𝑥(𝑡)
 (22) 

 

On the other hand, we can easily deduce from 
∑2𝑖=1 𝜂𝑖 = 1 that ∑2𝑖=1 �̇�𝑖 = 0. Thus, for any matrix 𝑍, 
we get: 
 

𝑃𝜂
−𝑇 ∑2𝑖=1 �̇�𝑖𝑍𝑃𝜂

−1 = 𝑃𝜂
−1�̇�𝑃𝜂

−1 = 0                                     (23) 

 

and, 
 

�̇�(𝑥(𝑡)) = 𝑥𝑇(𝑡)(𝑠𝑦𝑚(𝑃𝜂
−1𝐴𝜂𝜂) − 𝑃𝜂

−1(�̇�𝜂 + �̇�)𝑃𝜂
−1)𝑥(𝑡). 

                                                                                                         (24) 
 

From Eq. 17, the following condition is verified: 
 

Φ𝜂𝜂
11𝜂

= −(�̇�𝜂 + �̇�) + 𝑠𝑦𝑚(𝐴𝜂𝜂𝑃𝜂) < 0.                                (25) 

 

By performing the congruence transformation by 
𝑃𝜂
−1 to Eq. 25, we know that: 

 

𝑠𝑦𝑚(𝑃𝜂
−1𝐴𝜂𝜂) − 𝑃𝜂

−1(�̇�𝜂 + �̇�)𝑃𝜂
−1 < 0.                                (26) 

 

Thus, it can be verified, for 𝑥(𝑡) ≠ 0, that 
�̇�(𝑥(𝑡)) < 0 and the system in Eq. 12 is stable. 

Now, the following index is introduced to 
examine the 𝐻∞ performance for the system in Eq. 
12, 
 

𝐽 = ∫
∞

0
(𝛾−1𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾𝑤𝑇(𝑡)𝑤(𝑡))𝑑𝑡.                        (27) 

 

Based on the condition in Eq. 9, inequality in Eq. 
28 holds for any scalar 휀1ℎ > 0: 
 
−휀1ℎ𝜑

𝑇(𝑢(𝑡))𝜑(𝑢(𝑡))  
+휀1ℎ𝜎

2𝑥𝑇(𝑡)(𝐾ℎ𝐶2ℎ)
𝑇𝐻𝑇𝐻(𝐾ℎ𝐶2ℎ)𝑥(𝑡) ≥ 0                     (28) 

 

Defining  
 

𝐽𝑧𝑤(𝑡) = 𝛾
−1𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾𝑤𝑇(𝑡)𝑤(𝑡). 

 
According to the similar procedure outlined above, 
we can conclude that: 
 
�̇�(𝑥(𝑡)) + 𝐽𝑧𝑤(𝑡) + (28) = 𝜉(𝑡)Φ̂𝜂𝜂𝜉(𝑡)                             (29) 

 

where, 
 
𝜉(𝑡) = [𝑥𝑇(𝑡)  𝜑𝑇(𝑢(𝑡))  𝑤𝑇(𝑡)]𝑇 , 
 
and: 
 

Φ̂𝜂𝜂
𝜂
= [

Φ̂𝜂𝜂
11𝜂

𝑃𝜂
−1𝐵2𝜂Φ 𝑃𝜂

−1𝐵1𝜂

휀1𝜂
−1𝐼 0

∗ −𝛾𝐼

] + 𝛾−1 [

𝐶1𝜂
𝑇

0
𝐷1𝜂
𝑇
] [

𝐶1𝜂
𝑇

0
𝐷1𝜂
𝑇
]

𝑇

  

                                                                                                                       (30) 
 

and 
 
Φ𝜂𝜂
11𝜂

= 𝑠𝑦𝑚(𝑃𝜂
−1𝐴𝜂𝜂) − 𝑃𝜂

−1(�̇�𝜂 + �̇�)𝑃𝜂
−1 +

휀1ℎ𝜎
2(𝐾ℎ𝐶2ℎ)

𝑇𝐻𝑇𝐻(𝐾ℎ𝐶2ℎ). 

 
By performing firstly, the congruence 

transformation to Eq. 19 by 𝑑𝑖𝑎𝑔{𝑃𝜂
−1, 𝐼, 𝐼, 𝐼, 𝐼}, 

and secondly the Schur Complement Lemma, we 
deduce that Φ̂𝜂𝜂

𝜂
< 0, and, 

 

𝐽 ≤ ∫
∞

0
(�̇�(𝑥(𝑡)) +  𝐽𝑧𝑤(𝑡))𝑑𝑡 < 0                                       (31) 

 

Hence, we can conclude that the closed-loop 
system is stable and achieve a 𝛾 level of the 𝐻∞ 
performance. 
 
• As can be seen from the proof of Theorem 1, a non-
quadratic Lyapunov function is investigated, in 
which the property of fuzzy membership functions is 
exploited to derive the 𝐻∞ stability for the system in 
Eq. 12. The method is further reduced in 
conservatism by introducing some slack matrixes. 
• In cases where the membership functions are not 
differentiable, a quadratic Lyapunov should be used, 
while the matrices themselves are independent of 
the membership functions. It can be shown that the 
conditions in Theorem 1 hold for this case by setting 
𝜙𝑖  to be sufficiently small, and restraining 𝑃𝑖  
variables to be 𝑃. 

4. Controller synthesis  

In the sequel, intend to develop a method to 
synthesize the gains 𝐾𝑖  such that a closed-loop 
system in Eq. 12 is stable with a 𝐻∞ performance 𝛾. 
 
Theorem 2: For given scalars 𝜇1, 𝜇2, and 𝜙𝑖 < 0, 
closed-loop system in Eq. 12 is stable with 𝛾 level of 
𝐻∞ performance, if there exist scalars 𝛾 > 0, 휀1𝑖 > 0, 
matrices 𝑃𝑖 > 0, 𝑍, 𝐺, 𝐹 and 𝑌𝑖  such that the following 
LMIs hold: 
 
𝑃𝑖 + 𝑍 > 0                                                                                     (32) 

Υ𝑖𝑖
𝑙 < 0,    𝑖 = 1,⋯ , 𝑟                                                                   (33) 
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2

𝑟−1
Υ𝑖𝑖
𝑙 + Υ𝑖𝑗

𝑙 + Υ𝑗𝑖
𝑙 < 0,    𝑖 ≠ 𝑗 = 1,⋯ , 𝑟, 𝑙 = 1,⋯ , 𝑟        (34) 

 

where, 
 

Υ𝑖𝑗
𝑙 =

[
 
 
 
 
 
 
Υ𝑖𝑗
11𝑙 Υ𝑖𝑗

12𝑙 휀1𝑖�̅�2𝑖Φ �̅�1𝑖 𝜇1(𝐶1̅𝑖𝐺)
𝑇 Υ𝑖𝑗

16

Υ𝑖𝑗
22𝑙 0 0 𝜇2(𝐶1̅𝑖𝐹)

𝑇 Υ𝑖𝑗
26

∗ −휀1𝑖𝐼 0 0 0

∗ ∗ −𝛾𝐼 𝐷1𝑖
𝑇 0

∗ ∗ ∗ −𝛾𝐼 0

∗ ∗ ∗ ∗ −휀1𝑖𝐼]
 
 
 
 
 
 

  

Υ𝑖𝑗
11𝑙 = −∑2𝑙=1 𝜙𝑙(𝑃𝑙 + 𝑍) + 𝜇1𝑠𝑦𝑚(�̅�𝑖𝐺 + �̅�2𝑖Ω𝑌𝑗𝐶2̅𝑖)  

Υ𝑖𝑗
12𝑙 = 𝑃𝑖 + 𝜇2(�̅�𝑖𝐹 + �̅�2𝑖Ω𝑌𝑗𝐶2̅𝑖) − 𝜇1𝐺

𝑇   

Υ𝑖𝑗
16 = 𝜇1(𝜎𝐻�̅�2𝑖𝑌𝑗𝐶2̅𝑖)

𝑇  

Υ𝑖𝑗
26 = 𝜇2(𝜎𝐻�̅�2𝑖𝑌𝑗𝐶2̅𝑖)

𝑇                                                            (35) 

𝐺 = [
𝐺11 0
𝐺21 𝐺22

] , 𝐹 = [
𝐺11 0
𝐹21 𝐹22

],  

 

Moreover, the gain 𝐾𝑖  is calculated from 𝐾𝑖 =
𝑌𝑖𝐺11

−1, where �̅�𝑖 = 𝑇𝑖
−1𝐴𝑖𝑇𝑖  �̅�2𝑖 = 𝑇𝑖

−1𝐵2𝑖 , �̅�1𝑖 =
𝑇𝑖
−1𝐵1𝑖 , 𝐶1̅𝑖 = 𝐶1𝑖𝑇𝑖 , and 𝑇𝑖  is any matrix satisfying 
𝐶2̅𝑖 = 𝐶2𝑖𝑇𝑖 = [𝐼    0]. 
 
Proof: Using the conditions stated in the theorem, it 
is easy to check that matrix 𝐹 is non-singular, using 
the fact that −𝑠𝑦𝑚(𝐹) < 0. Thus, 𝐺11 is non-singular. 
Set 𝑌𝑖 = 𝐾𝑖𝐺11 = 𝐾𝑖𝐶2̅𝑖𝐹 = 𝐾𝑖𝐶2̅𝑖𝐺. According to 
Lemma 1, we have: 
 
∑𝑟𝑖=1 ∑

𝑟
𝑗=1 ∑

𝑟
𝑙=1 𝜂𝑖𝜂𝑗𝜂𝑙Υ𝑖𝑗

𝑙 < 0                                                 (36) 

 

By substituting matrices 𝐴𝑖 , 𝐵2𝑖 , 𝐵1𝑖 , 𝐶2𝑖, 𝐶1𝑖  by �̅�𝑖 , 
�̅�2𝑖 , �̅�1𝑖 , 𝐶2̅𝑖, 𝐶1̅𝑖 , respectively, condition in Eq. 17 
holds, and in view of Theorem 1, we know that 
closed-loop system in Eq. 12 is stable with a 𝛾 level 
of 𝐻∞ performance for all 0 ≠ 𝑤(𝑘) ∈ 𝐿2[0,∞). 
 
Remark: Note that the optimal performance index 
𝛾∗ for 𝐻∞ performance can be obtained by solving 
the following optimization problem: 
 
min 𝛾2  
s. t, LMIs  Eqs. 32 − 34                                                               (37) 

5. Simulation results 

To validate the effectiveness of the designed 
controller, we conduct this section of numerical 
simulations to show that the control system can 
tolerate the effect of the actuator failure. Assume 
that the parameters of the model are selected from 
Latrech et al. (2018) as 𝑚 = 1500𝑘𝑔, 𝐼𝑧 =
3000𝑘𝑔.𝑚2, 𝑎𝑟 = 1.3 𝑎𝑓 = 1.2 and 𝑈 = 20𝑚/𝑠, 

𝐶𝑓1 = 60712, 𝐶𝑓2 = 4812, 𝐶𝑟1 = 60088, 𝐶𝑟2 =

3455. For 𝜂 = 0.7 the parameters of membership 
functions are 𝑎1 = 0.0908, 𝑎2 = 23.3421, 𝑏1 =
0.7237, 𝑏2 = 204.0533, 𝑐1 = 0.0415 and 𝑐2 =
23.4094. 

By selecting Ω = 0.25, 𝜎 = 0.1, 𝐻 = 1, 𝜇1 = 5, 
𝜇2 = 7, 𝛼 = 1270, 𝜙1 = 𝜙2 = −1, the optimization 
problem in Eq. 37 produces a feasible solution with 
𝛾∗ = 0.18915 and the following parameters: 
 
𝐾1 = −242224.92,    𝐾2 = −228116.31                              (38) 
 

For the simulation, we choose the nonlinear fault 
function as 𝜑(𝑢(𝑡)) = 0.1𝑠𝑖𝑛(5𝑢(𝑡)), and the initial 
condition as 𝑥0(𝑡) = [−0.05 0.1]𝑇 . 

In real life, the driver may give a steering 
correction to control the vehicle’s yaw motion when 
the vehicle deviates from the desired trajectory. 
Interestingly, the reaction lag of the driver can 
drastically affect the lateral movement of the vehicle. 
Moreover, since the rate of the vehicle’s yaw will 
increase rapidly when a fault occurs, the driver will 
become panicked and may give inappropriate 
steering input, which may cause an accident. So, 
using the proposed reliable controller the stability of 
the vehicle is maintained by reducing the effect of 
the steering input angle 𝛿𝑓 (Fig. 2). 

To further show the merit of the proposed control 
scheme, we apply the controller designed by Latrech 
et al. (2018) with the following gains: 

 
𝐾1 = 41871,    𝐾2 = −57066                                                  (39) 

 

 
Fig. 2: State trajectories using controller in Eq. 38 
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Figs. 2-5 depicts the states and the input of the 
vehicle when the controller with the gains of Eqs. 38-
39 is applied. These Figs. 2-5 confirm the 
performance of the proposed controller and its 
robustness to failures in actuators and to external 
disturbances as is evident from the comparative 
simulation results. 

Simulation results suggest that the designed 
controller stabilizes the vehicle system, while the 
fuzzy static output controller has the benefit of 
tolerating and accommodating the actuator-fault 
constraints as well as exogenous disturbances. 

 

 
Fig. 3: Input trajectory using controller in Eq. 38 

 

 
Fig. 4: State trajectories using controller in Eq. 39 
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Fig. 5: Input trajectory using controller in Eq. 39 

 

6. Conclusion 

A fuzzy reliable control scheme for a lateral 
dynamic is proposed. The developed controller is 
based on the T-S fuzzy representation. First, the 
nonlinear vehicle model is introduced, then its 
representation by a T-S fuzzy model is provided. 
Next, based on a non-quadratic Lyapunov function, 
sufficient conditions are formulated in LMI terms to 
design a static output feedback controller able to 
tolerate the effect of the actuator failures which can 
affect the vehicle. The numerical simulations have 
shown the effectiveness of this proposed control 
scheme. 

List of symbols 

𝑚 Vehicle mass   
𝐽𝑧 yaw moment of inertia   
𝑙𝑓 Distance of gravity from front axle 
𝑙𝑟 Distance of gravity from rear axle 
Ω𝑧 Yaw velocity, 
𝑀𝑧 Yaw moment. 
𝑉 Vehicle velocity, 
𝐹𝑓 Front tire lateral forces 
𝐹𝑟  Rear tire lateral forces 
𝛽 Sideslip angle 
𝛼𝑓  Front tire slip angle 
𝛼𝑟 Rear tire slip angle 
𝛿 Steering angle 
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