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The existing power loads are continuously increasing and leading to various 
challenges related to economics and systems constraints. Any uncontrolled 
fluctuations of the demand over consecutive hours would dramatically 
complicate the correct management of the power generation. Therefore, this 
paper provides an effective solution for managing the uncertainty in loads 
and providing optimal scheduling of the power generation based on active 
load optimization in the day-ahead energy market. The proposed 
optimization model relies on operating active loads to encounter any 
unexpected change in the load pattern with taken into consideration the 
characteristics of these loads. The objective of the optimization model is to 
procure the lowest energy bill by reducing operational costs by taking into 
account the compensation cost in case of operating the active loads. The 
optimized problem is solved using mixed-integer linear programming 
through two technical stages. The first stage handles the normal operation of 
generation and passive demand, while the second stage treats all the 
uncertainty in stochastic scenarios. The active loads are operated under 
specific constraints such as the instantaneous min/max amount and the 
min/max duration over 24-h period of time. Case studies are used to 
demonstrate the effectiveness of implementing active loads. 
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1. Introduction 

*The current power grids around the world need 
urgent and efficient developments to meet advanced 
criteria related to security, reliability environment, 
and economic targets. The transference from old 
power infrastructure into adequate power systems 
requires an improvement in all energy sectors, 
including the demand side to meet the expansion 
growth of future loads. Smart grid with its 
technology has been widely introduced to address 
many challenges in power systems including the 
concerns of the unexpected variation in demand. 
Smart grid technology has considered the 
involvement of end-user customers in providing 
more solutions to interrupted loads (Liao et al., 
2017; Cataliotti et al., 2015; Yang et al., 2016; 
Unterweger and Engel, 2014). The smart grid in 
Mortaji et al. (2017) used a load-shedding algorithm 
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to generate an appropriate schedule for a group of 
customers who owned some intelligent electronic 
devices. The algorithm of the study was efficient to 
control selected home appliances and reduce risks of 
energy shortage. Residential buildings in a smart 
grid could have the opportunity to participate in the 
process of scheduling the time and amount of load 
reductions as discussed by Li et al. (2015). In 
addition, the smart grid can also serve industrial 
loads to manage load characteristics by providing 
optimal price schemes as described by Xu and Lai 
(2015). Loads in smart grids are reconfigured to 
more controllable and categorized frameworks to 
minimize consumers’ payments without losing their 
satisfaction as proposed by Safdarian et al. (2015). 
The study has clarified how energy cost benefits can 
be achieved for both energy providers and individual 
consumers in a smart grid that allows multiple 
payment methods. Furthermore, smart grids could 
significantly enhance the profit from energy 
consumption, provide accurate decisions for 
retailers on curtailing or shifting loads and take into 
consideration instant price and weather 
temperature as explained by Meng and Zeng (2015). 
Datacenter in the smart grids carefully tracks the 
variation of loads and gathers all bidding prices to 
match the optimal energy offers as described in 
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Kamyab et al. (2015). One of the attractive features 
of smart grids to treat the high variations in demand 
is applying for a demand response program. For 
example, the study by Roh and Lee (2015) has 
created a mathematical representation for a demand 
response program in a smart grid to reflect the 
behavior of end-user customers during different 
circumstances. Maximizing social welfare is another 
advantage of demand response programs as 
investigated by Gong et al. (2015). The study also 
proved that incentive-based demand response could 
effectively guarantee the privacy of end-user 
customers including sensitive information. The study 
by Wei et al. (2015) confirmed that the demand 
response program in a smart grid could significantly 
decrease the supply cost by almost 10% as 
compared to the passive loads. Multiple energy 
carriers in the smart grid can smoothly participate in 
demand response in both electricity and natural gas 
markets as demonstrated by Bahrami and Sheikhi 
(2015). The study showed the relationship and 
interaction between all energy carriers in the 
demand response, and how end-user customers 
could switch between electricity and natural gases.  

2. Literature review  

Demand response programs in smart grids give 
opportunities for customers to own on-site 
generation such as renewable energy resources as 
presented by Cao et al. (2018). The owner of the on-
site generation might submit the expected energy 
services through the demand response programs 
and efficiently manage their renewable energy 
resources. On-site generation and energy storage 
could reduce the dependency on power plants and 
help sell energy back to utilities when energy prices 
are high as discussed by Choobineh and Mohagheghi 
(2015). The vast increase in electric vehicles has 
considerably challenged the management of demand 
response and on-site generation as proposed by Wu 
et al. (2018). Rassaei et al. (2015) explained how 
electric vehicles cause high uncertainty in demand 
and change the patterns of traditional loads. This 
high uncertainty is mainly due to the randomness of 
the charging/discharging of the batteries of the 
electric vehicles, therefore demand response was 
suggested in the study to solve this issue.  

The uncertainty of demand is a major concern in 
building microgrids on the demand side as explored 
by Kou et al. (2016). The results of the study were 
procured after converting the stochastic demand 
uncertainty into standard programming equations, 
which facilitate the deterministic of the feasible 
solution. The effects of the uncertainty between 
supply and demand through short and long terms 
were highlighted by Ma et al. (2019). The 
investigation of the uncertainty in the study was 
based on a bi-level optimization problem that takes 
into account the reduction of operational costs and 
the management of interruptible loads. The 
uncertainty was further investigated by Käki et al. 
(2013) to evaluate the unexpected risks for a 

manufacturing company. The study used generated 
stochastic scenarios on supply and demand to 
improve the decisions of the manufacturer and get 
the best estimation of costs related to risk 
mitigation. Moreover, considering the uncertainty of 
demand is a major component in power system 
planning as highlighted by Giannelos et al. (2018). 
The study used an algorithm based on Bender 
Decomposition to examine the effects of the 
uncertain participation of end-user customers on the 
investment strategies. Searching for the optimal 
value of real and reactive power in a microgrid 
system might be achieved with a high number of 
errors unless the uncertainty of demand is 
controlled as explored by Roy and Das (2021). The 
objective of the study was to achieve the allocation of 
active/reactive power subjected to constraints of 
power losses and uncertainty in loads. One of the 
effective solutions to address the uncertainty of 
demand is to build battery banks at loads due to 
their ability to absorb/supply energy within a very 
short time. For example, the study by Sanjari and 
Karami (2020) has suggested using integrated 
battery storage to regulate the energy resource 
scheduling under uncertain deviation of loads. The 
uncertainty of demand not only affects the 
distribution sectors but also has a potential impact 
on developing the transmission lines as explained by 
Soroudi (2021). 

Active loads have been widely discussed in the 
literature to enhance the applicability of demand 
response and encourage end-user customers to 
change their passive energy usage. For instance, the 
study by Al-Sumaiti et al. (2020) has explained the 
positive impact of active loads in scheduling a 
demand response that is subjected to frequency 
limitations. The study has reported that when the 
active loads are in operation, the operational cost 
was significantly reduced as compared to the passive 
loads, even though the system was restricted by 
physical and time constraints. Economic dispatch 
and unit commitment are adequate techniques to 
schedule active loads in demand response programs 
(Le et al., 2021; Kiran AND Kumari, 2016; Howlader 
et al., 2016; Liu and Tomsovic, 2015). For example, 
scheduling active loads within an islanded microgrid 
have been organized through the economic dispatch 
technique as specified in Jordehi et al. (2020). This 
technique allows the operator to shed the optimal 
value of active loads during contingency or when the 
demand exceeds the defined deviation limits. Mixed-
integer linear programming (MILP) and unit 
commitment are applied by Mohandes et al. (2020) 
to manage active load participation and control the 
distributed generation. The reason behind using the 
MILP in the study was to combine the thermal 
generations cost and the supplementary cost of 
active loads in fast mathematical calculation with an 
acceptable rate of accuracy. On the other hand, non-
linear programming NLP was used by Azizipanah-
Abarghooee et al. (2016) with a unit commitment to 
procure wind power generation and the sharing of 
active loads in demand response, hinting the NLP 
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was particularly used since wind power generation 
depends on the non-linear output. Also, the benefit 
of using NLP in the previous study was to operate 
wind curtailment and enhance the spinning reserve 
availability from the optimal use of active loads by 
Lee et al. (2016). A non-linear bidding curve of active 
loads in demand response has been transferred into 
a linear curve to accommodate a large number of 
constraints in a short programming time. However, 
most of these studies did not consider the 
specifications and boundaries of active loads when 
scheduling energy resources during demand 
uncertainty.  

This paper introduces an optimization technique 
to manage generation units and active loads in a day-
ahead energy market. The objective of this study is 
to evaluate the minimum operational cost of 
generation and the compensation cost of the active 
loads. The compensation cost will be only accounted 
for if the active loads are in operation. The 
generation, active loads, and passive loads are 
optimized as MILP to merge all these variables 
together with the associated sets and constraints 
within short and accurate programming. The 
proposed optimization model takes into 
consideration the uncertainty of demand during the 
scheduling of the active loads. The stochastic 
scenarios of the uncertain demand are generated 
through Gather-Update-Solves-Scatter GUSS, which 
is an extension tool in GAMS that has been created to 
support random probability distribution (Bussieck et 
al., 2012). The optimization problem includes the 
characteristics and limitations of the active loads 
during high deviation of uncertain demand. The 
model splits the optimization problem into two 
stages to avoid any constraints’ interruptions during 
the stochastic scenarios. The first stage is 
responsible for finding the optimal value in the base 
model, whereas all the uncertainties are treated in 

the second stage. The compensation cost of the 
active loads is precisely evaluated using a specific 
linearized curve to make it suitable for the MILP.  

3. Problem formulation 

3.1. Master function  

The objective of the proposed model is to 
minimize the function provided in Eq. 1. The first 
part of the master problem in Eq. 1 contains the cost 
of heating up a generator ℋ𝑖𝑡 , the cost of cooling 
down a generator 𝒞𝑖𝑡  and the instantaneous cost of 
feeding the required demand, which is 𝒫𝑖𝑡 ∗ 𝒬𝑖𝑡 . The 
binary indicators 𝜆𝑖𝑡 , 𝛾𝑖𝑡  and 𝜓𝑖𝑡  are defined in the 
master problem to maintain the operation of the 
generators and control the start-up and shut-down 
status. The second part of the master problem is 
responsible for calculating the compensation cost of 
the active loads 𝐶𝑎𝑡

𝒜ℒ involved in the scheduling 
procedure. The status of the active loads ∈𝑎𝑡,𝑟 is a 

binary variable. If ∈𝑎𝑡,𝑟  is one, the active load is 

under operation and ∈𝑎𝑡,𝑟  will be zero otherwise. 

The determination of the active load cost is 
described in Eq. 2. The cost of the active loads 
follows the linear relationship described in Fig. 1. 
The first part in Eq. 2 presents the consideration of 
the initial active loads, whereas the second part 
evaluates every participation of the active loads 
through specific stages 𝛽𝑎

𝑠. The stages of the active 
loads are used to specify the number of active loads 
and are located between 𝜀𝑎

𝑠 and 𝜀𝑎
𝑠−1.  

 

𝑚𝑖𝑛 ∑ {∑ (ℋ𝑖𝑡 ∗ 𝜆𝑖𝑡 + 𝒞𝑖𝑡 ∗ 𝛾𝑖𝑡 + 𝒫𝑖𝑡 ∗ 𝒬𝑖𝑡 ∗ 𝜓𝑖𝑡
𝑁𝐺
𝑖=1 ) +𝑁𝑇

𝑡=1

∑ 𝐶𝑎𝑡
𝒜ℒ𝑁𝐴

𝑎=1 ∗ ∈𝑎𝑡}                                                                             (1) 

𝐶𝑎𝑡
𝒜ℒ = 𝜏𝑎

0 𝜀𝑎
0 ∈𝑎

0+ ∑ 𝜏𝑎
𝑠𝑁𝑆

𝑠=1 𝛽𝑎
𝑠 ∈𝑎

𝑠                                                (2) 
𝛽𝑎

𝑠 = 𝜀𝑎
𝑠 − 𝜀𝑎

𝑠−1                                                                               (3) 

 

 
Fig. 1: Active loads curve 

 

3.2. Stage-one constraints 

The stage-one constraints are defined in the base 
model, where all uncertainties are excluded from the 
optimization problem. The stage-one would 

concentrate on the energy balance of the system, the 
boundaries of the transmission lines, the 
specifications of the generating units, and the 
required reserve of the system. The flow of the 
energy through all transmission lines is ensured in 

𝜏𝑎
1 

𝜏𝑎
2 

𝜏𝑎
3 

𝜏𝑎
4 

𝜀𝑎
1 𝜀𝑎

2 𝜀𝑎
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Price ($/MW) 

Active loads (MW) 

𝛽𝑎
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Eq. 4. The hourly flow ℱ𝒲𝑙𝑡  in line l always reflects 
the instantaneous power supply minus the demand. 
The phase shift and the reactance of the 
transmission lines are essential in the calculation of 
the DC ℱ𝒲𝑙𝑡  as specified in Eq. 5. Constraint (6) 
provides more security of the transmission lines 
since the max/min of ℱ𝒲𝑙𝑡  is restricted. The heating-
up cost ℋ𝑖𝑡  mentioned previously in the master 
function is only considered if Eq. 7 is satisfied. The 
ℋ𝑖𝑡  is considered if the previous operation status is 0 
and the current operation status is 1, which presents 
the transition of the generator from OFF to ON mode. 
The fixed heating-up cost 𝒰𝑖

𝑢𝑝
 is varying according to 

the prime mover of each generator. The 
instantaneous power supply is accomplished 
through Eq. 8, where 𝜚𝑖

𝑚𝑖𝑛  presents the minimum 
capacity at initial of each generator and 𝑃𝑗𝑡  presents 

the power of each stage 𝑗. The instantaneous power 
is always positive and forced to operate within the 
defined limits as shown in Eq. 9. One of the most 
important factors of the generating units is the 
ramping ability over specific time duration, which 
has been considered in Eqs. 10-11. The increase of 
the power supply over the time duration 𝒫𝑖𝑡 −
𝒫𝑖(𝑡−1) must be less than the ramping-up limit 𝜉𝑖

𝑈𝑃 . 

Similarly, the decrease of the power supply over the 
time duration 𝒫𝑖(𝑡−1) − 𝒫𝑖𝑡  must be less than the 

ramping-down limit 𝜉𝑖
𝐷𝑁 .  

The shut-down or turn-on operation of a 
generator needs a certain time to cover specific 
requirements related to manufacturing, and this has 
been taken into consideration in Eqs. 12-13. The 
operating hours of a generator are tracked and 
nominated by 𝒯𝑖(𝑡−1)

𝑜𝑛  and should not exceed the min 

on-time defined as 𝒩𝑖
𝑜𝑛 . In contrast, the duration of 

the shut-down 𝒯𝑖(𝑡−1)
𝑜𝑓𝑓

 must match the min off-time 

limit defined as 𝒩𝑖
𝑜𝑓𝑓

.  
 
∑ 𝒫𝑖𝑡

𝑁𝐺
𝑖=1 − 𝑑𝑚𝑏𝑡 = ∑ ℱ𝒲𝑙𝑡

𝑁𝐿
𝑙=1                                                    (4) 

ℱ𝒲𝑙𝑡 =
1

𝒳𝑙

(𝜗𝑙𝑛 − 𝜗𝑙𝑚)                                                                 (5) 

ℱ𝒲𝑙𝑡
𝑚𝑖𝑛 ≤ ℱ𝒲𝑙𝑡 ≤ ℱ𝒲𝑙𝑡

𝑚𝑎𝑥                                                       (6) 

ℋ𝑖𝑡 ≥ 𝒰𝑖
𝑢𝑝

(𝜓𝑖𝑡 − 𝜓𝑖(𝑡−1))                                                           (7) 

𝒫𝑖𝑡 = 𝜚𝑖
𝑚𝑖𝑛 𝜓𝑖𝑡 + ∑ 𝑃𝑗𝑡

𝑁𝐽
𝑗=1                                                             (8) 

𝒫𝑖
𝑚𝑖𝑛 ≤ 𝒫𝑖𝑡 ≤ 𝒫𝑖

𝑚𝑎𝑥                                                                      (9) 

𝒫𝑖𝑡 − 𝒫𝑖(𝑡−1) ≤ (1 − 𝜓𝑖𝑡(1 − 𝜓𝑖(𝑡−1))) ∗ 𝜉𝑖
𝑈𝑃 +

𝜓𝑖𝑡(1 − 𝜓𝑖(𝑡−1)) ∗ 𝒫𝑖
𝑚𝑖𝑛                                                            (10) 

𝒫𝑖(𝑡−1) − 𝒫𝑖𝑡 ≤ (1 − 𝜓𝑖(𝑡−1)(1 − 𝜓𝑖𝑡)) ∗ 𝜉𝑖
𝐷𝑁 +

𝜓𝑖(𝑡−1)(1 − 𝜓𝑖𝑡) ∗ 𝒫𝑖
𝑚𝑖𝑛                                                            (11) 

(𝒯𝑖(𝑡−1)
𝑜𝑛 − 𝒩𝑖

𝑜𝑛)(𝜓𝑖(𝑡−1) − 𝜓𝑖𝑡) ≥ 0                                      (12) 

(𝒯𝑖(𝑡−1)
𝑜𝑓𝑓

− 𝒩𝑖
𝑜𝑓𝑓

) (𝜓𝑖𝑡 − 𝜓𝑖(𝑡−1)) ≥ 0                                   (13) 

3.3. Stage-two constraints  

Now all uncertainties of the stochastic scenarios 
are considered in the optimization problem through 
GUSS. The energy balance from supply to demand in 
all stochastic scenarios is maintained as described in 
Eq. 14, where 𝑟 presets the number of stochastic 
scenarios and  𝜌𝑖

𝐺(𝑟) presents the availability of 

generations in the scenarios. Similarly, the outage 
status of the transmission lines 𝜌𝑖

𝐿(𝑟) is included in 
the calculation of the power flow in the random 
scenarios as shown in Eq. 15. The new power flow in 
the stochastic scenarios is restricted according to the 
previous definition of the transmission limitations as 
illustrated in Eq. 16. The selection of the active loads 
is achieved through the linear curve of the cost and 
amount of the active loads as demonstrated 
previously in Fig. 1. The active load 𝑎 at time 𝑡 in 
scenario 𝑟 is the combination of the segments 𝛽 as 
displayed in Eq. 17. The collection of all segments of 
the active loads must be less than the maximum limit 
𝒜𝑎,𝛽

𝑀𝑎𝑥  as specified in Eq. 18. The hourly active loads 

are operating according to the boundaries defined in 
Eq. 19. The aggregated active loads over the 
complete period of time 𝑁𝑇 must not exceed the 
maximum limit 𝒴𝑀𝑎𝑥  as shown in Eq. 20. This 
constraint provides more control over the maximum 
daily limit of the active loads in each scenario. For 
efficient operation of the active loads over a certain 
consecutive period of time, the constraints (21)-(24) 
are defined. The operator of the active loads is 
obligated to change the level of the active loads over 
two consecutive hours in all stochastic scenarios 
according to the assigned maximum and minimum 
limits 𝓆𝑎

𝑀𝑎𝑥  and 𝓆𝑎
𝑀𝑖𝑛 , respectively as defined in Eqs. 

21-22. Similarly, the change of the active loads over 
the time 𝑡 − 1 and 𝑡 is totally controlled through Eqs. 
23-24. The overall operating time for the active loads 
in each random scenario is restricted to be less than 
the 𝓇𝑀𝑎𝑥  and maximum than the limit 𝓇𝑀𝑖𝑛 as 
described in Eq. 25 and Eq. 26, respectively.  

The location of the active load 𝑎 on the power 
network is important and must be determined in all 
random scenarios. Therefore, the incident matrix 
𝛬𝑎𝑡,𝑟 is defined, which clarifies the participation of 

the active loads on each bus of the system as 
illustrated in Eq. 27. The results of the multiplication 
of the 𝛬𝑎𝑡,𝑟 and the active load 𝒜𝑎𝑡,𝑟 gives the exact 

allocation of the active loads ℒ𝑏𝑡,𝑟 on bus 𝑏. Finally, 

the total hourly demand is simply calculated through 
Eq. 28, which is the hourly uncertain load 𝐻𝐿𝑏𝑡,𝑟 

subtracted by the active loads on buses ℒ𝑏𝑡,𝑟 . 
 
∑ 𝜌𝑖

𝐺(𝑟) 𝒫𝑖𝑡,𝑟
𝑁𝐺
𝑖=1 − 𝑑𝑚𝑏𝑡,𝑟

𝑇 = ∑ 𝑓𝑤𝑙𝑡,𝑟
𝑁𝐿
𝑙=1                                (14) 

𝑓𝑤𝑙𝑡,𝑟 = 𝜌𝑖
𝐿(𝑟) (

1

𝒳𝑙
(𝜗𝑙𝑛,𝑟 − 𝜗𝑙𝑚,𝑟))                                        (15) 

ℱ𝒲𝑙𝑡
𝑚𝑖𝑛 ≤ 𝑓𝑤𝑙𝑡,𝑟 ≤ ℱ𝒲𝑙𝑡

𝑚𝑎𝑥                                                     (16) 

𝒜𝑎𝑡,𝑟 = ∑ 𝛽𝑎,𝑟
𝑠𝑁𝛽

𝛽=1 ∈𝑎𝑡,𝑟                                                             (17) 

𝛽𝑎,𝑟
𝑠 ≤ 𝒜𝑎,𝛽

𝑀𝑎𝑥                                                                                 (18) 

∈𝑎𝑡,𝑟 𝒜𝑎
𝑀𝑖𝑛 ≤ 𝒜𝑎𝑡,𝑟 ≤ 𝒜𝑎

𝑀𝑎𝑥 ∈𝑎𝑡,𝑟                                          (19) 
∑ 𝒜𝑎𝑡,𝑟 ≤ 𝒴𝑀𝑎𝑥𝑁𝑇

𝑡=1                                                                      (20) 

𝒜𝑎𝑡,𝑟 − 𝒜𝑎(𝑡−1),𝑟 ≤ 𝓆𝑎
𝑀𝑎𝑥                                                        (21) 

𝒜𝑎𝑡,𝑟 − 𝒜𝑎(𝑡−1),𝑟 ≥ 𝓆𝑎
𝑀𝑖𝑛                                                         (22) 

𝒜𝑎(𝑡−1),𝑟 − 𝒜𝑎𝑡,𝑟 ≤ 𝓏𝑎
𝑀𝑎𝑥                                                        (23) 

𝒜𝑎(𝑡−1),𝑟 − 𝒜𝑎𝑡,𝑟 ≥ 𝓏𝑎
𝑀𝑖𝑛                                                         (24) 

∑ ∈𝑎𝑡,𝑟≤𝑁𝑇
𝑡=1 𝓇𝑀𝑎𝑥                                                                        (25) 

∑ ∈𝑎𝑡,𝑟≤𝑁𝑇
𝑡=1 𝓇𝑀𝑖𝑛                                                                        (26) 

ℒ𝑏𝑡,𝑟 = ∑ ∑ 𝛬𝑎𝑡,𝑟 ∗ 𝒜𝑎𝑡,𝑟
𝑁𝐴
𝑎=1

𝑁𝑅
𝑟=1                                               (27) 

𝑑𝑚𝑏𝑡,𝑟
𝑇 = 𝐻𝐿𝑏𝑡,𝑟 − ℒ𝑏𝑡,𝑟                                                              (28) 
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4. Results and discussion  

The optimization of the proposed model and the 
operation of the active loads are examined using the 
10-generators test model obtained (Saravanan et al., 
2016; Alqunun et al., 2020). The data of the 
generators including amount and costs are depicted 

in Table 1. The function of the supply cost is 
transferred into linearized stages to present the 
power of each generator with its related cost in the 
MILP. The optimization problem is run using 
GAMS/Cplex software on a personal computer. Two 
case studies are applied to inspect the effectiveness 
of the active loads.  

 
Table 1: The characteristics of the generating units 

Unit 
𝒫𝑖

𝑚𝑖𝑛 
(MW) 

𝒫𝑖
𝑚𝑎𝑥 

(MW) ia
 

ib  ic  
𝒩𝑖

𝑜𝑛(h) 𝒩𝑖
𝑜𝑓𝑓

(h) ℋ𝑖𝑡($) 𝒞𝑖𝑡($) 
𝜉𝑖

𝑈𝑃 
(MW) 

𝜉𝑖
𝐷𝑁 

(MW) 

1 150 455 1000 16.19 0.00048 8 8 4500 9000 80 80 
2 150 455 917 17.26 0.00031 8 8 5000 10,000 60 60 
3 20 130 700 16.60 0.00200 5 5 550 1100 40 40 
4 20 130 680 16.50 0.00211 5 5 560 1120 40 40 
5 25 162 450 19.70 0.00398 6 6 900 1800 50 50 
6 20 80 370 22.26 0.00712 3 3 170 340 30 30 
7 25 85 480 27.74 0.00079 3 3 260 520 30 30 
8 10 55 660 25.92 0.00413 1 1 30 60 15 15 
9 10 55 665 27.27 0.00222 1 1 30 60 15 15 

10 10 55 770 27.79 0.00173 1 1 30 60 10 10 

 

4.1. Case 1: Power generation scheduling with 
uncertainty in demand  

The target of the power network operator is to 
satisfy the variation of the demand with the least 
operating cost with respect to all the defined system 
constraints. The normal distribution function is used 
in the stochastic simulation to specify the forecasting 
errors of the demand. The deviation of the 
uncertainty in demand is considered to be 10% of 
the hourly rated loads. A large number of scenarios 
is generated, then a scenario reduction tool is used 
to reduce the number of scenarios into 10 scenarios 
as depicted in Fig. 2. The minimum demand is 579 
MW at hour 2 in scenario 7, whilst the maximum 
demand has reached 1644 MW at hour 12 in 
scenario 8. The accumulative daily loads of the 
scenarios vary between 25,230 MWh and 27,763 
MWh. The generating units have many challenges to 
cover the high variation of the demand such as the 
ramping-up/down capabilities and maximum power 
capacity. The power dispatch schedule starts with 
the generating units with low production cost, then 
any sudden increase in the demand will be 
immediately supplied by certain generating units 
with flexible on/off generating units regardless of 
the production cost. To investigate the effect of the 
uncertainty in demand on the power schedule, the 
hourly power dispatch of all scenarios has to be 
investigated. For example, the power dispatch 
schedule of scenario 8 is illustrated in Table 2. It can 
be noticed from Table 2 that the power dispatch is 
mainly dependent on units 1-5 to cover the majority 
of the demand, while units 6-10 have limited 
commitment due to their high production cost and 
low supply capacity. In addition, the comparison of 
the unit commitment schedule between base 
demand and scenario 8 is shown in Table 3. One 
means the generator is supplying the demand and 
zero otherwise, where the change of the dispatch 
status from base demand to scenario 8 is 
represented by bold style. For example, the total 
operating hours of unit 5 is 21 hours in the base 
demand, however, this number is significantly 

decreased to 15 hours in scenario 8. The variation of 
the operating hours amongst all the scenarios leads 
to the variation in the hourly production cost. Fig. 3 
illustrated the hourly production cost of the 
committed generating units in scenario 8. The 
maximum daily production cost is $569,204 in 
scenario 10, whilst the minimum is $504,406 in 
scenario 4. The uncertainty of the passive loads in all 
scenarios has challenged the generating units in 
terms of security and economic, which requires the 
need to involve active loads operation in the 
scheduling optimization problem. 

4.2. Case 2: Active loads impact on demand 
uncertainty  

20% of the passive loads are now converted into 
active loads. The converted active loads would 
follow the structure of the demand segments and 
cost segments during the hourly operation. Also, the 
defined constraints of the active loads are 
considered in this case to provide complete control 
during the generation schedule. The power network 
operator, with full control of the active loads, has the 
ability to shut down the low-priority loads with 
taking into consideration the compensation cost of 
these loads. The data of the active loads are given in 
Table 4. The power dispatch has completely changed 
after the participation of the active loads in all 
scenarios. Fig. 4 demonstrates the hourly power 
dispatch in scenario 10 with and without the active 
loads’ operation. The scheduling of the active loads 
started at hour 3 by curtailing 41.5 MW and ended at 
hour 22 by curtailing 243 MW. 

The operation of the active loads is concentrated 
on the peak hours to maximize the benefits of these 
loads within the specified limit and to avoid 
operating expensive generating units. The total 
active loads' participation has satisfied the maximum 
limit over the 24-hour period of time. The active 
loads in scenario 10 have a significant reduction in 
the power dispatch scheduling. Only units 1, 2, and 4 
are dispatching to supply the demand, while the rest 
are totally off. 
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Fig. 2: Hourly demand of the power network (all scenarios) 

 
Table 2: Power dispatch schedule in scenario 8 (MW) 

 
No. of units 

 
h 1 2 3 4 5 6 7 8 9 10 Demand 
1 455 244.31 

  
25 

     
724.31 

2 455 349.76 
  

25 
     

829.76 
3 455 455 

  
30.198 

     
940.2 

4 455 455 
  

152.46 
  

10 
  

1072.5 
5 455 455 

  
138.88 

     
1048.9 

6 455 455 
  

115.62 
     

1025.6 
7 455 455 

 
130 107.41 

     
1147.4 

8 455 455 
 

130 128.1 
     

1168.1 
9 455 455 130 130 145.34 

     
1315.3 

10 455 455 130 130 137.26 
     

1307.3 
11 455 455 130 130 162 31.778 

    
1363.8 

12 455 455 130 130 162 80 85 55 55 37.527 1644.5 
13 455 455 130 130 162 80 50.497 55 

  
1517.5 

14 455 455 130 130 161.88 
 

25 
   

1356.9 
15 455 455 130 130 81.812 

     
1251.8 

16 455 381.85 130 130 
      

1096.8 
17 455 249.43 130 130 

      
964.43 

18 455 379.37 130 130 
      

1094.4 
19 455 419.36 130 130 

      
1134.4 

20 455 422.03 130 130 
      

1137 
21 455 455 130 130 

   
47.053 

  
1217.1 

22 455 340.58 130 130 
      

1055.6 
23 455 373.12 

        
828.12 

24 455 447.57 
        

902.57 

 

Fig. 5 presents the active loads' operation in all 
scenarios with uncertainty in demand. 9.5% of the 
active loads are operating at hour 12 over all the 
stochastic scenarios. The active loads have 
effectively reduced the production cost in all of the 
stochastic scenarios. Fig. 6 demonstrates the positive 
impact of the active loads on the hourly production 
cost in scenario 4 as compared to Case 1. For 
example, the production cost at hour 10 was $28,278 
in Case 1, however, this cost is remarkably reduced 
to $17,234. It can be noticed from Fig. 6 that the 
active loads have dramatically smoothed the hourly 
cost, particularly at hours 5-21. In addition, the 

hourly compensation cost of the active loads is small 
compared to the high production cost. The min/max 
compensation costs of the active loads are $777 and 
$6526 at hours 16 and 22, respectively. The total 
production cost is less in this case as compared to 
Case 1, even though the compensation cost of the 
active loads is considered. 

5. Conclusion  

This paper presented an optimization procedure 
to manage generation and active load scheduling in a 
day-ahead energy market. The model considered the 
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uncertainty of demand through stochastic scenarios. 
The aim of the work was to seek the minimum 

operational cost besides the consideration of the 
compensation cost when active loads are in charge. 

 
Table 3: Comparison of the unit commitment schedule between base demand and scenario 8 

 
Base Scenario 8 

 
No. of units No. of units 

h 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 
2 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 
3 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 
4 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 
5 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 
6 1 1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 
7 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 
8 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 
9 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 

10 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 
11 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 
12 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 
13 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 
14 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 
15 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 
16 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
17 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
18 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
19 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
20 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
21 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 
22 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
23 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
24 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

 

 
Fig. 3: Hourly production cost of the generating units (scenario 8) 

 
Table 4: Active loads characteristics 

Segment NO. 1 2 3 4 5 
Amount (MW) 1084 2168 3252 4336 5420 
Cost ($/MW) 10 11 12 13 14 
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Fig. 4: Power dispatch in scenario 10 (with and without active loads) 

 

 
Fig. 5: Hourly active loads operation in all scenarios 

 

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 D
is

p
at

ch
 (

M
W

)

Time (h)

Unit 1 Unit 2 Unit 4 AL Demand w/o Active loads Demand w Active loads

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
ct

iv
e 

L
o

ad
s 

(M
W

)

Time (h)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10



Khalid Alqunun/International Journal of Advanced and Applied Sciences, 10(2) 2023, Pages: 12-22 

20 
 

 
Fig. 6: Hourly production cost of scenario 4 

 

Two stages have been designed to accumulate the 
optimal scheduling of generation and active loads 
during normal passive demand and uncertain 
demand. The active loads' operation was examined 
through ten-generating units with respect to the 
constraints of the transmission lines. Case 1 
explained the effects of all passive loads on the 
operational cost in both base mode and stochastic 
scenarios. In some scenarios, the fluctuation of the 
passive demand was high, which dramatically 
increases the generation cost. However, part of the 
passive loads has been converted into active loads in 
Case 2 to examine the effects on the generation cost. 
The active loads have a positive impact on regulating 
the high fluctuation of the uncertain demand even 
though the compensation cost of the active loads was 
considered. The results of active loads operation 
demonstrated that the generation cost in some 
scenarios can be significantly reduced by 39% as 
compared to operating only passive loads.  

List of symbol 

Indices 
𝑖 Index for generators  
𝑡 Index for time  
𝑎 Index for active load 
𝛽 Index for active load segments  
𝑆 Index for number of active load segments 
𝑙 Index for transmission line 
𝑗 Index for power generation segment 
𝑏 Index for bus 
  𝑟 Index for scenario  

Parameters 
𝒬𝑖𝑡 Operating cost of generator 𝑖 at time 𝑡 
𝜏𝑎

𝑠  Cost of active load 𝑎 in the active load 
curve 

𝛽𝑎
𝑠 Active load amount of active load 𝑎 

𝜀𝑎
𝑠 Active load points in the active load curve 

𝑑𝑚𝑏𝑡  Hourly demand on bus 𝑏 at time 𝑡 
𝒰𝑖

𝑢𝑝
 Heat-up cost of generator 𝑖 

𝜚𝑖
𝑚𝑖𝑛 Minimum power supply at initial of 

generator 𝑖 

𝒫𝑖
𝑚𝑖𝑛 Minimum power capacity of generator 𝑖 

𝒫𝑖
𝑚𝑎𝑥 Maximum power capacity of generator 𝑖 

𝜉𝑖
𝑈𝑃 Maximum ramping-up of generator 𝑖 

𝜉𝑖
𝐷𝑁 Maximum ramping-down of generator 𝑖 

𝒩𝑖
𝑜𝑛 Minimum on-time generator 𝑖 

𝒩𝑖
𝑜𝑓𝑓

 Minimum off-time generator 𝑖 

𝒳𝑙 Reactance of transmission line 𝑙 
𝒜𝑎,𝛽

𝑀𝑎𝑥 Maximum capacity in the active load curve  

𝒜𝑎
𝑀𝑎𝑥 Maximum limit of the hourly active load 𝑎 

𝒜𝑎
𝑀𝑖𝑛 Minimum limit of the hourly active load 𝑎 

𝒴𝑀𝑎𝑥  Maximum amount of daily active loads  
𝓆𝑎

𝑀𝑎𝑥 Maximum change of the active load 
between 𝑡 and (𝑡 − 1) 

𝓆𝑎
𝑀𝑖𝑛 Minimum change of the active load 𝑡 and 

(𝑡 − 1) 
𝓏𝑎

𝑀𝑎𝑥 Maximum change of the active load 
between (𝑡 − 1) and 𝑡 

𝓏𝑎
𝑀𝑖𝑛 Minimum change of the active load 

between (𝑡 − 1) and 𝑡 
𝓇𝑀𝑎𝑥 Maximum operating hours of the active 

loads 
𝓇𝑀𝑖𝑛 Minimum operating hours of the active 

loads 
𝛬𝑎𝑡,𝑟  Incident matrix (active loads and buses) at 

time 𝑡 in scenario 𝑟 
𝐻𝐿𝑏𝑡,𝑟  Hourly stochastic demand on bus 𝑏 at time 

𝑡 in scenario 𝑟 
Variables  

ℋ𝑖𝑡  Heat-up cost of generator 𝑖 at time 𝑡 
𝒞𝑖𝑡  Cooling-down cost of generator 𝑖 at time 𝑡 
𝒫𝑖𝑡 Instantaneous power supply of generator 𝑖 

at time 𝑡 
ℱ𝒲𝑙𝑡  Power flow of line 𝑙 at time 𝑡 
𝐶𝑎𝑡

𝒜ℒ  Compensation cost of the active load 𝑎 at 
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time 𝑡 
𝜗𝑙𝑛  Voltage phase angle of line 𝑙 at bus 𝑛  
𝜗𝑙𝑚 Voltage phase angle of line 𝑙 at bus 𝑚 
𝑃𝑗𝑡  Power supply of stage 𝑗 at time 𝑡 

𝒯𝑖𝑡
𝑜𝑛  Operating duration of generator 𝑖 at time 𝑡 

𝒯𝑖𝑡
𝑜𝑓𝑓

 Shut-down duration of generator 𝑖 at time 
𝑡 

𝑑𝑚𝑏𝑡,𝑟
𝑇  Total hourly demand on bus 𝑏 at time 𝑡 in 

scenario 𝑟 
𝑓𝑤𝑙𝑡,𝑟 Power flow of line 𝑙 at time 𝑡 in scenario 𝑟 

𝒜𝑎𝑡,𝑟  Hourly active load 𝑎 at time 𝑡 in scenario 𝑟 

ℒ𝑏𝑡,𝑟 Active loads participation on bus 𝑏 at time 
𝑡 in scenario 𝑟 

Binary variables 

𝜆𝑖𝑡 Start-up indicator of generator 𝑖 at time 𝑡 
𝛾𝑖𝑡 Turn-off indicator of generator 𝑖 at time 𝑡 
𝜓𝑖𝑡 Operation status of generator 𝑖 at time 𝑡 
∈𝑎𝑡 Active load status of load 𝑎 at time 𝑡 

𝜌𝑖
𝐺(𝑟) Availability of generator 𝑖 in scenario 𝑟 

𝜌𝑖
𝐿(𝑟) Availability of transmission line 𝑙 in 

scenario 𝑟 
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