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The effect of factors in full and fractional factorial designs is being studied 
ubiquitously in all fields of science and engineering. At times, researchers 
would want to gather additional information than the fractional factorial 
design provided, there is no restriction to conducting more experimental 
runs. In this study, we propose a reduced fractional factorial design 
consisting of all significant factors. This paper illustrates the effectiveness of 
factors through real data application and simulation by comparing the full 
factorial, reduced factorial, and fractional factorial designs. The actual 
weightage of the main/interaction effects in these three designs was found 
by identifying and quantifying the Bayes factors through the simulation 
datasets. It is observed that the reduced factorial design produces better 
results when there are no constraints to select or add factors to the model. 
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1. Introduction 

*Factorial designs are being widely used in 
experiments involving several factors and where it is 
necessary to study the impact of the factors or 
combination of factors on a process. The commonly 
used method in scientific experiments is a special 
case of general factorial designs and they form the 
basis for other designs of considerable practical 
value. The most important among these special cases 
is the factorial design with p factors, each having two 
levels and it may be quantitative or qualitative with 
levels corresponding to the “high” and “low” levels of 
a factor. The recent developments in the non-regular 
fractional factorial designs such as generalized 
minimum aberration criteria, optimality results, and 
analysis strategies were explained by Xu et al. 
(2009). A full replicate of such a design is called a 2𝑝 
full factorial design and requires 2𝑝 observations. 
Wang and Ma (2013) discussed how to identify the 
effects that are to be included in the model by 
applying the Bayesian approach. The construction of 
hierarchical ANOVA models was discussed and the 
different comparison strategies to the models were 
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based on the Bayes factors (Rouder et al., 2017). In 
the hierarchical Bayesian ANOVA with a simulation 
dataset (Dong and Wedel, 2017), the Bayesian 
approach is applied to the multi-way ANOVA models 
and compared to their hierarchical ANOVA model 
(Rouder et al., 2017). The framework of hypothesis-
based Bayesian decision theory with robust loss 
function and step-by-step guidelines was given to 
apply the Bayes factor to get optimal decisions was 
presented (Schwaferts and Augustin, 2021) and the 
best extraction condition of factors was identified 
from the application of six-factors fractional factorial 
design (Khaw et al., 2019). Lakens et al. (2020) have 
provided comprehensive explanations of the 
calculation and interpretation of Bayes factors for 
several tests. In educational research, the Bayesian 
analysis for treatment and control groups was 
discussed through factorial designs (Kassler et al., 
2020). The limitations of optimization and 
mathematical model for improving composting 
processes are addressed (Sokac et al., 2022). 
Outlined a thorough knowledge of Bayesian variable 
selection, Bayesian evaluation of cognitive models 
(Heck et al., 2022), and opportunities for Bayes 
factor applications. Gardini et al. (2021) gave an idea 
on the log-transformation of a response variable by 
applying the Bayesian analysis of variance mixed 
models to examples and simulation datasets. 
Egburonu and Abidoye (2021) discussed a balanced 
two-way analysis of variance of three cases such as 
the factors are fixed, random, and mixed by applying 
the Bayesian techniques. Grömping (2021) 
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developed an algorithm for a two-level regular 
fractional factorial design with two-factor 
interactions. Chang (2022) used the Bayesian 
approach for the minimum aberration criteria for 
many applications. 

2. Factorial design for four factors with two 
levels 

In this paper, we have taken up 24 factorial 
examples to identify the vital and significant factors 
in the full factorial reduced factorial and fractional 
factorial designs. In general, we propose to study 
fractional factorial design when the experimental 
run is huge, integrating all significant factors in the 
design. Xu et al. (2009) discussed recent 
developments in non-regular fractional factorial 
designs, particularly optimality criteria, projection 
properties, resolutions, and aberration criteria. Baba 
et al. (2013) proposed the usefulness of the 
empirical Bayesian approach to the saturated 
factorial designs and observed predictions and 
inferences for the parameters. Espinosa et al. (2016) 
proposed a new approach to screen for active 
factorial effects from replicated factorial design 
using the potential outcomes framework and based 
on sequential posterior predictive model checks. 
Rouder et al. (2017) presented the Bayes factor 
approach to multi-way ANOVA with hierarchical 
models for fixed, random effects, with-subjects, 
between-subjects, and mixed designs. The models 
which we have employed for this study are explained 
in the following session. 

2.1. 𝟐𝟒 Full factorial design 

The factorial design of 24 was employed to give a 
16-step experimental run with the four factors each 
at low and high levels. We considered four factors A, 
B, C, and D each at two levels. The standard order of 
treatment combinations is (1), A, B, AB, C, AC, BC, 
ABC, D, AD, BD, ABD, CD, ACD, BCD, and ABCD, i.e., 
four main effects, six first-order interactions, four 
second-order interactions, and one third-order 
interaction. These fifteen effects are mutually 
orthogonal contrasts of the treatment means. The 
experimental matrix for the 24 factorial design is 
given in Table 1. 

2.2. 24-1 Fractional factorial design 

In a 2𝑝 factorial design, as the number of factors 
increases then the number of trials required for a full 
replicate of the design rapidly increases in the 
experiments. In such cases, we cannot perform a full 
replicate of the design and a fractional factorial 
design has to be run. Assume that certain 
interactions involving a large number of factors are 
negligible, the information on the lower order effects 
can be obtained by running a suitable fraction of the 
2𝑝 full factorial design. Two-level fractional factorial 
designs are broadly divided into regular and non-

regular fractional factorial designs discussed by 
Deng and Tang (1999). Statisticians have designated 
fractional factorial experiments to reduce the 
number of runs or trials, only selected treatment 
combinations are tried instead of all combinations. A 
fractional factorial design employs a systematic 
approach to reduce the number of experimental 
conditions to allow meaningful study. To run-size the 
economy and be cost-effective, we used fractional 
factorial designs, which are widely applied in various 
fields such as engineering, industrial and scientific 
research.  

The higher-order interactions are confounded, or 
aliased, with lower-order effects such that they are 
negligible in size in the fractional factorial designs. 
The experimenters have found that higher-order 
interactions of three or more factors tend to be small 
and can be ignored. Furthermore, for the objective of 
improving the process with 8 runs, we constructed 
24−1fractional factorials by selecting ABCD as the 
generator. Also, this choice of generator will result in 
a design of the highest possible resolution IV. To 
construct the design, we used the defining relation, 
each main effect is aliased with a three-factor 
interaction, A=BCD, B=ACD, C=ABD, and D=ABC. 
Moreover, every two-factor interaction is aliased 
with other two-factor interactions, the alias 
relationships AB=CD, AC=BD, BC=AD. Therefore, the 
four main effects plus the three two-factor 
interaction alias pairs account for the seven degrees 
of freedom for the design. The experimental matrix 
for the 24−1 fractional factorial design is shown in 
Table 2. 

2.3. 𝟐𝟒 Reduced factorial design 

If the number of significant factors in the full 
factorial design is more than the factors in the half-
fraction factorial design, our choice may be a 
reduced factorial design. The idea is to construct a 
reduced factorial design with significant factors 
alone. One cannot predetermine this before doing 
the full factorial design. Suppose, the experimenter 
decides never to lose any kind of reduced factorial 
design that will be useful and more informative. This 
screening design is preferable if there is no 
constraint or deliberately wanted by the 
experimenter, for adding all the main and interaction 
factors except the non-significant factors. Once the 
significant factors from the full factorial design are 
identified, this reduced factorial design is 
demonstrated in the full and fractional factorial 
designs. This experiment is used to compare the 
efficacy of reduced and fractional factorial designs. 

3. Priors and Bayes factors 

In this study, we used five different priors to find 
the Bayes factors for full, reduced, and fractional 
factorial designs. The estimating Bayes factor for 
repeated-measures analysis of variance design 1 was 
addressed by Faulkenberry (2020). These priors are 
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considered in the comparison of hierarchical two-
way ANOVA models 10 by Vijayaragunathan and 
Srinivasan (2020). Bayes factors were conceptually 

extensively discussed by Maruyama (2009), Wetzels 
et al. (2012), and Wang and Sun (2014). 

 
Table 1: Experimental matrix for the 24 factorial design 

Runs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Factors 

A -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 
B -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 
C -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 
D -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 

 
Table 2: Experimental matrix for the 24−1 fractional factorial design with the defining relation I=ABCD 

Runs 1 2 3 4 5 6 7 8 

Factors 

A -1 1 -1 1 -1 1 -1 1 
B -1 -1 1 1 -1 -1 1 1 
C -1 -1 -1 -1 1 1 1 1 

D=ABC -1 1 1 -1 1 -1 -1 1 

 
 

3.1. Zellner’s 𝒈 prior 

Zellner’s priors were most commonly used prior 
to Bayesian hypothesis testing Many authors such as 
George and Foster (2000), Kass and Wasserman 
(1995), and others have discussed extensively on 
this prior. We consider two priors by setting the 
value of𝑔, (i) Unit Information Prior (UIP) if 𝑔 = 𝑛 
and (ii) Risk Inflation Criterion (RIC) if 𝑔 = 𝑘2, 
where 𝑛=number of observations and 𝑘= the number 
of predictors in the regression model. The Bayes 
Factor for the full model to the null model is 
 
𝐵𝐹 = (1 + g)(𝑛−𝑘−1)/2[1 + 𝑔(1 − 𝑅2)]−(𝑛−1)/2                   (1) 

3.2. Jeffreys-Zellner-Siow prior 

Jeffreys-Zellner-Siow (JZS) prior is a mixture of 
priors we estimate 𝑔 from the data, (Liang et al., 
2008). The Bayes Factor for the full model to the null 
model is in Eq. 2. 

3.3. Hyper-𝒈 prior 

Hyper-𝑔 prior is a family of prior distributions on 
𝑔 and this hyper-𝑔 approach. The term 𝑎 varies from 
2 to 4, it produces different behavior of hyper-𝑔 
prior, for our convenience, we take only two values 
such as 𝑎 = 3 and = 4. The Bayes Factor for the full 
model to the null model is in Eq. 3. 

Algorithm for comparison of Bayes Factor for full, 
reduced, and fractional factorial designs. 

The following steps were made for comparing 
and identifying the effect of factors in the full, 
fractional and reduced factorial designs:  
 
Step 1: Apply full factorial design for the suitable 
data and identify the significant and non-significant 
main and interaction effects. 
Step 2: Generate a reduced factorial design according 
to the significant factors from the full factorial design 
Step 3: Construct a fractional factorial design with 
minimum aberration then check its significance in 
the model. 
Step 4: Compute the Bayes factor values for these 
designs to compare the strength and weaknesses of 
factors while incorporating them into these designs. 

Step 5: To generalize the results we used different 
simulation datasets to find a substantial number of 
Bayes factors to conclude the ample and instructive 
conclusions. 
 

𝐵𝐹 =
(𝑛/2)1/2

Γ(
1

2
)

∫ (1 + 𝑔)(𝑛−𝑘−1)/2 [1 + 𝑔 (1 −
∞

0

𝑅2)]−(𝑛−1)/2 𝑔−3/2 𝑒−𝑛/2𝑔𝑑𝑔                                                     (2) 

𝐵𝐹 =
𝑎−2

2
∫ (1 + 𝑔)

𝑛−𝑘−1−𝑎

2  [1 + 𝑔(1 − 𝑅2)]−
𝑛−1

2
∞

0
𝑑𝑔          (3) 

4. Application of 𝟐𝟒 factorial design 

An example of 24 factorial design, a team of 
engineers at a semiconductor manufacturer run in a 
vertical oxidation furnace (Montgomery, 2019). Four 
wafers are “stacked” in the furnace, and the response 
variable of interest is the oxide thickness on the 
wafers. The four design factors are temperature (A), 
time (B), pressure (C), and gas flow (D). The 
experiment is conducted by loading four wafers into 
the furnace, setting the process variables to the test 
conditions required by the experimental design, 
processing the wafers, and then measuring the oxide 
thickness on all four wafers. The full factorial design 
was formed by the factors A to D. The effects of these 
four factors on the oxidation furnace were accessed 
using the experimental matrix of 24 full factorial 
experiments with four replications. 

4.1. Frequentist approach to the 𝟐𝟒 full, 
fractional, and reduced factorial designs 

The ANOVA for 24 full factorial designs was 
carried out using the R program and presented in 
Table 3, all the main effects (A, B, C, and D) and the 
interaction effects (AB, AC, BC, BD, and ABD) are 
significant, other interaction effects are not 
significant. Now, we decided to devise a new 
factorial design consisting of the significant effects 
alone or we may say a reduced factorial design. To 
identify the effect of non-significant effects by 
comparing the full and reduced factorial designs. 
Furthermore, in 24 full factorial designs, the main 
factors A, B, and C are highly significant but the 
factor D is not as significant as compared with other 
main effects and the three or more higher-order 
interaction effects are not significant except the 
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interaction ABD. In the fractional factorial design, all 
the effects are highly significant. Particularly, the 
main effect D is observed to be less significant in the 
full and fractional factorial design as compared to 
the reduced factorial design (Tables 3-5). In the 24 

reduced factorial designs, all the main and 
interaction effects are significant which is shown in 
Table 5. Thus, the main effect D is highly significant 
in the reduced factorial design than the full factorial 
design.  

 
Table 3: ANOVA output for 24 full factorial design 

Source of Variations Sum of Squares d.f Mean Sum of Square F Value Pr(>F)  
Blocks 22 3 7 1.243 0.3053  

A 29756 1 29756 4931.975 2e-16 *** 
B 5256 1 5256 871.202 2e-16 *** 
C 1722 1 1722 285.456 2e-16 *** 
D 42 1 42 7.003 0.0112 * 

AB 4556 1 4556 755.180 2e-16 *** 
AC 1806 1 1806 299.378 2e-16 *** 
AD 20 1 20 3.356 0.0736 . 
BC 240 1 240 39.820 1.08e-07 *** 
BD 240 1 20 39.820 1.08e-07 *** 
CD 20 1 20 3.356 0.0736 . 

ABC 2 1 2 0.373 0.5445  
ABD 132 1 132 21.920 2.63e-05 *** 
ACD 0 1 0 0.041 0.8396  
BCD 6 1 6 1.036 0.3142  

ABCD 0 1 0 0.041 0.8396  
Residuals 272 45 6    

Significant codes 0.001 ‘***’   0.01 ‘**’ 0.05 ‘*’   0.1   ‘.’   1 ‘ ’ 

 
Table 4: ANOVA output for 24−1fractional factorial design 

Source of Variations Sum of Squares d.f Mean Sum of Square F Value Pr(>F)  
Blocks 3 3 1 0.304 0.82192  

A 14450 1 14450 4059.532 <2e-16 *** 
B 2592 1 2592 728.187 <2e-16 *** 
C 450 1 450 126.421 2.40e-10 *** 
D 32 1 32 8.990 0.00685 ** 

AB 2592 1 2592 728.187 <2e-16 *** 
AC 1682 1 1682 472.535 7.04e-16 *** 
BD 200 1 200 56.187 2.30e-07 *** 

Residuals 4 21 4    
Significant codes 0.001 ‘***’   0.01 ‘**’ 0.05 ‘*’   0.1   ‘.’   1 ‘ ’ 

 
Table 5: ANOVA output for 24 reduced factorial design 

Source of Variations Sum of Squares d.f Mean Sum of Square F Value Pr(>F)  
Blocks 7 3 2 0.59 0.628  

A 932 1 932 22.19 8.88e-14 *** 
B 1198 1 1198 294.62 5.57e-15 *** 
C 345 1 345 84.80 2.40e-09 *** 
D 6933 1 6933 1705.73 <2e-16 *** 

AB 3691 1 3691 907.92 <2e-16 *** 
AC 4760 1 4760 1171.05 <2e-16 *** 
BD 243 1 243 59.78 5.74e-08 *** 

ABD 11449 1 11449 2816.61 2e-16 *** 
Residuals 98 24 4    

Significant codes 0.001 ‘***’   0.01 ‘**’ 0.05 ‘*’   0.1   ‘.’   1 ‘ ’ 

 

4.2. Bayesian approach to the 𝟐𝟒 full, fractional, 
and reduced factorial designs 

All five priors of the Bayes factor decisively 
support the full, fractional, and reduced factorial 
designs are shown in Table 6. Nevertheless, both the 
Zellner’s g priors support the full factorial design 
around 35 times. It is also observed that the other 
priors support the full factorial design around 45 
times. The fractional factorial design provides half of 
the full factorial design results, which may be due to 
the loss of half of the effects from the original 
problem. In comparison to the fractional factorial 
design, our proposed reduced factorial model, which 
only considers significant effects, gives a better 
alternative. The reduced factorial design result may 
provide different results for our example due to 

inconsistency in the data. The simulated data set will 
resolve this issue. 

5. Simulation of 𝟐𝟒 full, fractional, and reduced 
factorial designs 

This section also simulated 10,000 data with the 
error variance is 1 to compute 10,000 Bayes factor 
values for each of the five prior and also computed 
Bayes factors for various datasets with the error 
variances of 5, 25, and 50, respectively. The five 
prior’s Bayes factors for these simulated data to both 
full and half-fraction factorial designs were shown in 
Figs. 1-4. The mean and standard deviation of Bayes 
factor values for 24  full and fractional factorial 
designs were presented in Table 7. All the five priors 
produce more or less similar results in a full factorial 
design and the same as in fractional factorial design 
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too. All the Bayes factor values in the full model are 
almost two times as compared with the fractional 
factorial model. Thus, we lose half of the information 
in a fractional factorial design. In the simulation 

dataset with less error variance, the data support full 
and fractional design, but if the error variance is high 
the simulation data support the null model. This 
trend may cause less variability in the original data. 

  

 
Fig. 1: Bayes factors for 24 full, fractional, and reduced factorial designs to the simulation datasets (𝜎𝑒

2=1) 
 



R. Vijayaragunathan, M. R. Srinivasan/International Journal of Advanced and Applied Sciences, 9(9) 2022, Pages: 158-167 

163 
 

 
Fig. 2: Bayes factors for 24 full, fractional, and reduced factorial designs to the simulation datasets (𝜎𝑒

2=5) 
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Fig. 3: Bayes factors for 24 full, fractional, and reduced factorial designs to the simulation datasets (𝜎𝑒

2=25) 



R. Vijayaragunathan, M. R. Srinivasan/International Journal of Advanced and Applied Sciences, 9(9) 2022, Pages: 158-167 

165 
 

 
Fig. 4: Bayes factors for 24 full, fractional, and reduced factorial designs to the simulation datasets (𝜎𝑒

2=50) 
 

Table 6: Bayes factor for 24 full, reduced, and fractional factorial designs 
Prior 24 Full Factorial Design 24−1Fractional Factorial Design 24 reduced Factorial Design 

Zellner’s g prior (UIP) 34.5580 17.5011 20.2610 
Zellner’s g prior (RIC) 35.4780 19.3128 22.9253 
Jeffreys-Zellner-Siow 45.2391 24.8760 28.0650 
Hyper –g prior (a=3) 44.4630 24.2300 27.3944 
Hyper –g prior (a=4) 43.4245 23.0776 26.2407 
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Table 7: Average (SD) of 10000 Bayes factor values to the simulation of (a) 24 full factorial, (b) 24−1fractional factorial and 
(c) 24 reduced factorial designs for five priors when the error variances are 1, 5, 25 and 50 

Error Variance (𝜎𝑒
2) 

Zellner’s g-prior 
(UIP) 

Zellner’s g-prior 
(RIC) 

Jeffreys-Zellner-Siow Hyper-g prior (a=3) Hyper-g prior (a=4) 

a). 𝟐𝟒full factorial design 

1 
38.9888 
(1.3818) 

43.8288 
(2.4902) 

44.1892 
(3.2031) 

43.4177  
(3.1927) 

42.4013 
(3.1255) 

5 
29.0771 
(1.9418) 

29.0037 
(2.4981) 

28.8342 
(2.2235) 

28.1732  
(2.1930) 

27.4817 
(2.1452) 

25 
0.9358 

(2.4664) 
-2.1816 
(2.5408) 

3.2750 
(2.0428) 

4.3887  
(1.6163) 

4.3145 
(1.5525) 

50 
-5.6703 
(2.0146) 

-8.9420 
(2.0518) 

-2.2033 
(1.6764) 

0.6918  
(0.9151) 

0.8150 
(0.8512) 

b). 𝟐𝟒−𝟏fractional factorial design 

1 
17.3011 
(0.3518) 

19.0300 
(0.4993) 

23.9242 
(2.0058) 

23.2808  
(2.0013) 

22.1700  
(1.9138) 

5 
13.8103 
(0.9421) 

14.4622 
(1.1496) 

14.4712 
(1.5001) 

13.8886  
(1.4792) 

13.1936  
(1.4123) 

25 
1.2146 

(1.6433) 
0.7073 

(1.6939) 
1.5412 

(1.4016) 
1.9730  

(1.0750) 
1.9233 

(0.9885) 

50 
-1.9786 
(1.3742) 

-2.5615 
(1.4007) 

-1.1624 
(1.1610) 

0.2092  
(0.6508) 

0.3321 
(0.5793) 

c). 𝟐𝟒 reduced factorial design 

1 
20.0467 
(0.3462) 

22.5857  
(0.5519) 

27.0577  
(1.8971) 

26.3896  
(1.8932) 

25.2748  
(1.8199) 

5 
16.2577 
(0.9866) 

17.1918  
(1.2810) 

17.0600  
(1.5810) 

16.4499  
(1.5619) 

15.7237  
(1.4998) 

25 
1.8366 

(1.7811) 
1.0411  

(1.8488) 
2.2762  

(1.5094) 
2.6725  

(1.2004) 
2.5894  

(1.1193) 

50 
-2.1745 
(1.5071) 

-3.0848  
(1.5409) 

-1.0972  
(1.2651) 

0.3798  
(0.7234) 

0.4920  
(0.6508) 

 

6. Discussion and conclusion 

In the study, we explored how to use Bayes 
factors to determine the intensity of factors in the 
factorial designs. The Bayesian framework has been 
widely applied to factorial designs, but we will use it 
to determine the intensity of the component in the 
model. We illustrate the full, fractional factorial 
designs by in the Bayesian principle, furthermore, 
we construct the reduced factorial design consisting 
of only significant factors. Through Bayes factors, we 
can see how much the reduced factorial design will 
yield the best result if it has fewer factors than full 
and/or fractional factorial designs. 

In general, when a factorial design is planned, it is 
normal to start with a full factorial design. However, 
if the number of factors is too large then the size of 
the design shall be enormous. Therefore, we may use 
an alternative to the full factorial design i.e., a 
fractional factorial design that can help to reduce the 
number of runs for screening designs. In a fractional 
factorial design, we may lose some significant 
factors. We propose a reduced factorial design that 
includes all the significant factors as an alternative to 
the fractional factorial design. We have considered 
an example 24 of factorial designs and applied the 
frequentist and Bayesian concepts to find the effects 
of the factors in the full, fractional and reduced 
factorial designs. 

In the classical approach, we find the significance 
of factors from the ANOVA output, and based on the 
results and aliased factors we form a fractional 
factorial design. The Bayes Factor for five priors, 
such as Zellner’s g (UIP), Zellner’s g (RIC), Jeffreys-
Zellner-Siow, Hyper-g (a=3), and Hyper-g (a=4) 
priors, are computed for 24 full, fractional, and 
reduced factorial designs. It provided different 
results within the respective models. To generalize 

the Bayesian approach, we generated a large set of 
data by simulation with different error variances and 
it gives a wide range of ideas to compare the full, 
fractional, and reduced factorial design with the 
existence of the factors. All the Bayes factor values in 
the full model are almost two times as compared to 
the fractional factorial model. Nevertheless, in a 
reduced factorial design, Bayes factor values are 
better than the fractional factorial designs, since we 
lose half of the information in a fractional factorial 
design. In the simulation dataset with less error 
variance, the data support full, fractional, and 
reduced design, but if the error variance is high, the 
simulation data support the null model in these 
three models. This tendency may be due to the less 
variability in the original data and more precisely 
mean squared error is minimum in all three models. 
If researchers consider including all essential factors 
in the model, they might prefer a reduced factorial 
model, since it produces much better results when 
there are no constraints as to selecting or adding 
factors to the model. 
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